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Cherlin and Shelah (1980)

Main goal: Theorem 1
Any infinite superstable field is algebraically closed.
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134+14—8

Definition
A-rank(S) = R[¢s, L, \T]
oo-rank(S) = Ii)r\n A-rank(S)

Fact
T is superstable iff R[x = x, L, (2ITh*+] < | T|*

The A-rank function is total, elementary and satisfies the A-splitting
condition: for any definable subset S C |M| with A-rank(S) < oo, any
{Sa : @ < A} disjoint definable subsets of S, there is av < A such that
A-rank(Sy) < A-rank(S).
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134+14—8

Lemma (13)
Let H be a definable subgroup of G. Suppose G is superstable, then

oo-rank(H) < co-rank(G) < [G: H] > Ry.

Proof.
Cosets of H have the same co-rank. O

Lemma (14)

Let M be superstable, E be a definable equivalence relation on M having
finite equivalence classes of bounded size, then

oo-rank(M) = oo-rank(M/E).
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13+14—8

Lemma (13)
Let H be a definable subgroup of G. Suppose G is superstable, then

oo-rank(H) < co-rank(G) < [G: H] > Ry.

Proof.

Let A = (2|T‘)Jr Then R[p, A, \T] = R[p, A, o0] for any type p.
Let ¢(x; h) define H in G, where h € G. For any a € G, ¢(xa~1; h) define
the coset Ha. We show that A-rank(H) = A-rank(Ha).

By induction, we prove A-rank(H) > « iff A-rank(Ha) > a.

For @ = 0, A-rank(H) > 0 iff H is nonempty iff Ha is nonempty iff
A-rank(Ha) > 0. For limit ordinal 7, A-rank(H) > ~ iff A\-rank(H) > « for
all a < v iff A-rank(Ha) > « for all & < v by I.H. iff A\-rank(Ha) > ~.
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13+14—8

Proof continued.

If A\-rank(H) > a + 1, then there are {S; : i < A} disjoint definable
subsets of H such that A-rank(S;) > « for all i < A. Let ¢;(x; &;) define
Si. Then w;(xa~!; 3;) define S;a and {S;a: i < A} are disjoint definable
subsets of Ha. By I.H., A-rank(S;a) > a. Hence A-rank(Ha) > a + 1.

= Suppose [G : H] < Rg. List all the distinct cosets {Ha; : i < n} of H in
G where n < w. Then A-rank(H) = A-rank(Ha;) for all i < n. By the
ultrametric property of A-rank,

A-rank(G) = )\—rank(U Haj) = max A-rank(Ha;) = A-rank(H),

1

oo-rank(G) = A-rank(G) = A-rank(H) = co-rank(H).
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13+14—8

Proof continued.
<: Suppose [G : H] > Ng. For n < w,

GE 3y ...y, Vx /\ (¢(xyi_1; h) —|¢(xyj_1; I_1))
1<i<j<n

By compactness, there is an elementary extension G’ of G such that
[G’ : H'] > X, where H' is defined by ¢(x; h) in G’. By the A-splitting
condition, there is some coset H'a of H' such that

A-rank(G’) > A-rank(H'a) = A\-rank(H') = A-rank(H).

The last equality holds because H, H' are defined by the same formula.
But then oo-rank(G) = oo-rank(G’) > oo-rank(H). O
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134+14—8

Definition
A group G is connected iff there is no proper definable subgroup of finite
index.

Theorem (8)(Surjectivity Theorem)

Let G be a connected superstable group, h: G — G be a definable
endomorphism. If | ker(h)| < No, then h is surjective.

Proof.

ker(h) induces a definable equivalence relation having equivalence classes
of size | ker(h)|. Let H = h[G] = G/ ker(h).

By lemma 14, oco-rank(G) = oo-rank(H). By lemma 13, [G : H] < N,.
But G is connected, thus G = H. O

v
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16/18—6

Definition

Let 4 = {H,} be a family of definable subgroups of G.

& is uniformly definable iff there is a formula ¢(x; ), and some g, € G
such that ¢(x; g,) defines H,,.

G satisfies the &-chain condition iff 4 does not contain an infinite
decreasing chain by inclusion.

G satisfies the stable chain condition iff for every uniformly definable ¥,
let ¢ be its closure under arbitrary intersections, then G satisfies the
%-chain condition.

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.
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16/18—6

Lemma (16)
If G is a stable group, then G satisfies the stable chain condition.

Proof.

Let % be uniformly definable by ¢(x;¥). We first show that G satisfies
the %-chain condition. Suppose there is an infinite decreasing chain
{Hp : n < w} with H, defined by ¢(x; h,). For each n pick b, € H,\Hp1.

G E @[bn; hn] A =¢[bn; hni1] A Vx(gb(x; hni1) — é(x; f_l,,))

The formula ¥ (ja, 72) = Vx(é(x; 1) — ¢(x; ¥2)) has the order property,
contradicting the stability of G.
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16/18—6

Proof continued.

Let ¢ be closure of % = {H,} under arbitrary intersections. Suppose
there is an infinite decreasing chain {K, : n < w} in 4. For each n < w,
write K, = ﬂA,, H,, for some index set A,. Without loss of generality, we
may assume A, is increasing. Fix ag € Ag. Since K, 2 Kpy1, there is

ant1 € Ant1\An and some b, € K;\H,,,,. Thus we may replace A, by
AnU{ap+1}, and write

K, = Hi= () Ha
0<i<n 0<i<n

Each K, is defined by finitely many formulas. To use the previous case, it
suffices to show that any finite intersection of H; reduces to an
N-intersection for some N < w.
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16/18—6

Proof continued.

Otherwise, for each n < w, there is a finite | C w such that |/| > n+1
and for each j € I, (i, Hi © (jep gy Hi- We may assume / = n+ 1 and
for each j < n+ 1 pick ¢; witnessing the proper inclusion, i.e.

¢j € H; for i # j and ¢; ¢ H;.
Forany JC /I, ¢y =1]];c ¢ € Hiiff i ¢ J. Let ¢(x; 5;) define H;, then

J

i€ Jiff GE=¢[cy; hi]

showing independence property, contradicting the stability of G. [
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16/18—6

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.

is equivalent to

Lemma (18)
Suppose G is a stable group, % is uniformly definable in G. Then
o G satisfies the %y-chain condition.

@ There is an integer n < w such that any arbitrary intersection in %
equals to an n-intersection.

Proof.
18—16: Let ¢(x;y) define %, ¥ be the closure of % under intersections,

then A_; ¢(x; y;) uniformly defines ¢. O

v
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16/18—6

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

Proof.

Let A be a definable additive subgroup of (D, +) with [D : A] < Rg, we
need to show that A= (D, +).

Let ¢(x; 3) define A for some 3 € D. For each d € D\{0}, dA is also
definable by ¢(d~1x; 3) and [D : dA] < Rg. Hence

% = {dA : d € D\{0}} is uniformly definable.

Let ¢ be its closure under arbitrary intersections. By lemma 18, there is
n < w such that

9

{,DldiA di,...,.dp € D\{o}}.

v
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16/18—6
Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

Proof (continued).

In particular, (% = (i, diA for some di,...,d, € D\{0}. Since

D:ﬁd,-A

i=1

< [[ID: diA] < Ro,

i=1

N, diA is infinite. Pick g € (%\{0}. For any f € D\{0},

f=(fg g e(fe™) [{dA:d e D\{0}} =(%.

Notice that A€ % so (% CAand f €% C A, f € A Also, 0 € A,
therefore D = A. ]

v
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07

We have proved:

Theorem (8)(Surjectivity Theorem)

Let G be a connected superstable group, h: G — G be a definable
endomorphism. If | ker(h)| < No, then h is surjective.

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

In the next seminar, we will prove the equivalence of Theorem 6 and
Theorem 7.

Theorem (7)

If D is an infinite stable division ring, then the multiplicative group of D is
connected.
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6+7+8—20

Lemma (19)

Let F be a field of characteristic p, and K be a Galois extension of F, with
[K : F] = q prime and x9 — 1 splits in F.

(Artin-Schreier extension) If p = q, then K is generated over F together
with a solution of xP — x = a.

(Kummer extension) If p # q, then K is generated over F together with a
solution of x9 = a.

v

Lemma (20)

A superstable field F is perfect and has no Artin-Schreier/Kummer
extension.
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6+7+8—20

Lemma (20)

A superstable field F is perfect and has no Artin-Schreier/Kummer
extension.

Proof.

Let p be the characteristic of F. Consider the following maps:
h:x— xP—x p#0
k:x— x9 x#0,g>1

h and k are definable endomorphisms of (F,+) and (F,-) respectively.
Their kernels are finite.

By Theorems 6 and 7, (F,+) and (F,-) are connected.

By Theorem 8, both h and k are surjective. [
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19+20—1

Theorem (1)
Any infinite superstable field is algebraically closed.

Proof.

Suppose there exists an infinite superstable field Fy that is not
algebraically closed. We say P(K, F) whenever K is a Galois extension of
F of finite degree greater than 1, F is infinite and superstable.

By assumption, P is nonempty and we pick a pair (K, F) € P of minimal
degree q. We show that g is prime and x9 — 1 splits in F.

If g is not prime, pick a proper prime factor r of g. Let F; be the fixed
field of an element of order r in Gal(K/F). Then Fy is superstable,
P(K,F1) and [K : F1] < [K : F]. If x9 — 1 does not split in F, then the
splitting extension of x4 — 1 over F has degree g — 1 < q.

By Lemma 19, K is an Artin-Schreier/Kummer extension of F. But F is

superstable so it contradicts Lemma 20. O
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35436 — (6 <> 7)

We will complete the proof of Theorem 1 by establishing the equivalence of

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

and

Theorem (7)

If D is an infinite stable division ring, then the multiplicative group of D is
connected.

Samson Leung (Carnegie Mellon University) Model Theory Seminar April 6, 2020 20/35



A-rank

Let ME T, A C FmI(L(T)). Denote A(M) to be the boolean algebra of
subsets of M definable by ¢(x; 3) for some ¢(x;y) € A, 3€ M.

Definition
Let S € A(M), ¥ = {S,} be an infinite family of subsets of S. .
A-splits S iff

@ S, are pairwise disjoint, and

e S, =SnND, for some D, € A(M), for all a.

Definition

A-rank(S) = R[S, A, No]

A-rank is the least elementary rank function with the A-splitting
condition: for any S € A(M), A-rank(S) < oo and . = {5,} A-splits S
then there is some « such that A-rank(S,) < A-rank(S).
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A-rank

In the following, we assume A-rank(M) < co. Let S, X, Y € A(M).
Definition
S is A-small iff A-rank(S) < A-rank(M).
X =p Y iff XAY is A-small.

Fact

T is stable iff for every finite A C Fml(L(T)), A-rank is total.
Let 51,52 E A(M)

A-rank(S1 U Sp) = max (A-rank(Sy1), A-rank(52))
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A-rank

Let / = {S € A(M): S is A-small}.
e [ is an ideal of A(M) and A(M)/I is a finite Boolean algebra.
o We call the number of atoms in A(M)/I the A-multiplicity of M.

o Let M have A-multiplicity m < w. There are disjoint
{M; :1<i<m}C A(M) such that A-rank(M;) = A-rank(M),
M = J; M; and the M; are unique up to =a.

e For any S € A(M), there is a unique | C {1,..., m} such that
S =a Uje; Mi. We call |/] the A-multiplicity of S.

e S € A(M) is A-indecomposable iff S has A-multiplicity is 1.
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31+33—34

Definition
Let T 5 Tyroups: & C FmI(L(T)).
A is right-invariant iff Vé(x; y) € A, VG E T,Va,g € G

®(xg; 3) is G-equivalent to an instance of a formula in A.
A-rank is right-invariant iff for any S € A(G) with A-rank(S) < oo, any

g € G, A-rank(Sg) = A-rank(S).
Similarly for left invariance and (bi-)invariance.

Lemma (31)

Let T D Tgroups, A C FmI(L(T)).
If A is invariant, then /A-rank is invariant.
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31+33—34

Lemma (33)
Let T O Tgroups, A C FmI(L(T)). For ¢(x;y) € A, let

A(x; ¥, 21,22) = P(z1 x 22, ¥)

Then A = {¢,¢ : ¢ € A} is invariant.

Theorem (34)(The Indecomposability Theorem)
Let G be a stable group. The following are equivalent:
@ G is connected.
@ G is A-indecomposable for any finite invariant A.

© For any finite Ag, there is a finite A D Ag such that A is invariant
and G is A-indecomposable.
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31+33—34

Theorem (34)(The Indecomposability Theorem)
@ G is connected.
@ G is A-indecomposable for any finite invariant A.

© For any finite Ao, there is a finite A D Ag such that A is invariant
and G is A-indecomposable.

Proof.

We will prove (2)=-(3)=-(1) and leave (1)=-(2) for later.

(2)=(3): Given any finite Ag, by Lemma 33 there is an invariant A D Ag.
|A| < 2|Ag| < Ng. By assumption (2), G is A-indecomposable.

(3)=(1): Let H < G of finite index be definable by ¢(x; 3) for some

3 e G. Set Ag = {¢(x;3)} to obtain A. Since A is invariant, by Lemma
31, A-rank is invariant. So all cosets of H have the same A-rank, which
must be the same as A-rank(G). By indecomposability, [G : H] = 1. O |

Samson Leung (Carnegie Mellon University) Model Theory Seminar April 6, 2020 26 /35



38,/40—34

Lemma (40)

Let G be a group and K < G of finite index. Suppose G is kT -saturated
and K is the intersection of k-many definable subsets of G, then K is
definable in G.

Proof.

Let k =[G : K] and g1, ...,8k € G be such that G = Ufle Kg;. Assume
k>1and g =1 Let K=, , Sa with S, € A(G) for a < k. Assume
{54 : @ < K} is closed under finite intersections.

Fix i € [2, k]. Consider the following type p(x) with x constants:

x € KNKg = ﬂ (Sa N Sagi)

a<k

Since G is k" -saturated and does not realize p, p is inconsistent.

Samson Leung (Carnegie Mellon University) Model Theory Seminar April 6, 2020 27/35



38,/40—34

Proof continued.

By compactness, there is o < k such that Sy, N Sy,gi = 0.
Let S =K, Sa;. Since

k k k
snl|JKeicsnlJSe=](s5nSe) =9,
i=2 i=2 i=2
SCKand K=S€{S,:a< k}, hence K is definable. O

v

Let G be a stable group and A be a finite invariant set of formulas. Then
A-rank(G) < w and we can decompose G = [JI; A; for some disjoint
indecomposable A; € A(G),1 < i< m.

By uniqueness (up to =a), the right multiplication by g € G induces a
permutation pg of the indices i. Thus we can define a group
homomorphism p : g — p,. Let K = ker(p).
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38,/40—34

Corollary (38)
If G is Ni-saturated, then K is a definable subgroup of G.

Proof.

Observe that for any g € G,

g€ K& Aig =a A for all i & A-rank(Ajg N A;j) = A-rank(G) for all i.
Since A-rank(G) < w, A-rank(G) = n for some n < w.

For each i, A-rank(A;g N A;) = n is equivalent to the consistency of some
countable theory, so is g € K. By compactness, it suffices to check
countably many finite subtheories. Hence K is a countable intersection of
definable subsets of G.

Since G/K =~ p[G] is finite, [G : K] < Xg. Also, G is Ni-saturated by
assumption. Therefore, by Lemma 40, K is definable in G. O

v
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38,/40—34

Theorem (34)(The Indecomposability Theorem)
Let G be a stable group. The following are equivalent:
© G is connected.
@ G is A-indecomposable for any finite invariant A.

© For any finite g, there is a finite A D Ag such that A is invariant
and G is A-indecomposable.

Proof.

We have proved (2)=-(3)=(1). Now we proceed to prove (1)=(2).
Assume G is connected, we can further assume that G is N;-saturated.
By Corollary 38, K is a definable subgroup of G, so K = G by
connectedness. For all g € G, i € [1,m], Aig =a A;. For any finite

F C G, NgerAig =a Ai 50 (gep Aig # 0. By compactness, the theory
T* = CD(G)U{ccy € A1 : g € G} is consistent, with a new constant c.

v
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38,/40—34

Theorem (34)(The Indecomposability Theorem)
Let G be a stable group. The following are equivalent:
© G is connected.
@ G is A-indecomposable for any finite invariant A.

© For any finite g, there is a finite A D Ag such that A is invariant
and G is A-indecomposable.

Proof continued.

Let G* E T* with G < G* [ L(T), a* = ¢ and A* defined in G* by the
same formula as A;. Then a*G C A7.

a*A; C AN a*A; C A]. Since a*A7 are disjoint, so are a*A;.
A-rank(a*A;) = A-rank(A;) because A is invariant (Lemma 31).

Also, A-rank(A;) = A-rank(A?¥) by elementarity = A-rank(A7).

However A7 is A-indecomposable, so i = 1. O

v
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34—35

Theorem (34)(The Indecomposability Theorem)
Let G be a stable group. The following are equivalent:
© G is connected.
@ G is A-indecomposable for any finite invariant A.

© For any finite Ay, there is a finite A D Ay such that A is invariant
and G is A-indecomposable.

Theorem (35)

Let - and + be two binary operations of a stable structure M; X, Y be
definable in M such that

o (M\X,+) and (M\Y,-) are groups;

o For every finite Ag, there is A D Aq finite and invariant with respect
to both - and + such that X, Y are A-small.

Then (M\X,+) is connected iff (M\YY, ) is connected.

v
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34—35

Proof.

We establish the following equivalences:
@ (M\X,+) is connected.

@ For any finite A, there is a finite (-, +) -invariant A D A such that
M\X and M\'Y are both A-indecomposable.

@ (M\Y,:) is connected.

(b)=(a),(c): (M\X,+) and (M\Y/,-) are stable groups, so we can

directly use Theorem 34(3)=(1).

(a)=(b): For any finite Ao, by the second assumption of the theorem,

there is a finite (-, +)-invariant A D A such that X, Y are A-small.

By Theorem 34(1)=-(2), (M\ X, +) is A-indecomposable. As X, Y are

small, (M\Y,-) is also A-indecomposable. (c)=- (b) is similar. O

v
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354+36—(6<>7)

Lemma (36)

Let T O Tiings, A be a finite subset of FmlI(L(T)). For any ¢(x;y) € A,
define 5

(X ¥, 21, 22,23) = P21 X 22 + 23, §)
Then A = {qb,(;NS : ¢ € A} D A is finite and invariant with respect to both
- and +.

Theorem (64>7)

If D is an infinite stable division ring, then the additive group of D is
connected iff the multiplicative group of D is connected.

Proof.

Take X = () and Y = {0} in Theorem 35. The first assumption is
satisfied. The second assumption follows from Lemma 36 and the fact
that X, Y are finite, hence A-small. []

v
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Cherlin and Shelah (1980)

Main goal: Theorem 1
Any infinite superstable field is algebraically closed.
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