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Cherlin and Shelah (1980)

Main goal: Theorem 1

Any infinite superstable field is algebraically closed.
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13+14→8

Definition

λ-rank(S) = R[φS , L, λ
+]

∞-rank(S) = lim
λ
λ-rank(S)

Fact

T is superstable iff R[x = x , L, (2|T |)++] < |T |+

The λ-rank function is total, elementary and satisfies the λ-splitting
condition: for any definable subset S ⊂ |M| with λ-rank(S) <∞, any
{Sα : α < λ} disjoint definable subsets of S , there is α < λ such that
λ-rank(Sα) < λ-rank(S).
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13+14→8

Lemma (13)

Let H be a definable subgroup of G. Suppose G is superstable, then

∞-rank(H) <∞-rank(G ) ⇔ [G : H] ≥ ℵ0.

Proof.

Cosets of H have the same ∞-rank.

Lemma (14)

Let M be superstable, E be a definable equivalence relation on M having
finite equivalence classes of bounded size, then

∞-rank(M) =∞-rank(M/E ).
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13+14→8

Lemma (13)

Let H be a definable subgroup of G. Suppose G is superstable, then

∞-rank(H) <∞-rank(G ) ⇔ [G : H] ≥ ℵ0.

Proof.

Let λ = (2|T |)+. Then R[p,∆, λ+] = R[p,∆,∞] for any type p.
Let φ(x ; h̄) define H in G , where h̄ ∈ G . For any a ∈ G , φ(xa−1; h̄) define
the coset Ha. We show that λ-rank(H) = λ-rank(Ha).

By induction, we prove λ-rank(H) ≥ α iff λ-rank(Ha) ≥ α.
For α = 0, λ-rank(H) ≥ 0 iff H is nonempty iff Ha is nonempty iff

λ-rank(Ha) ≥ 0. For limit ordinal γ, λ-rank(H) ≥ γ iff λ-rank(H) ≥ α for
all α < γ iff λ-rank(Ha) ≥ α for all α < γ by I.H. iff λ-rank(Ha) ≥ γ.
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13+14→8

Proof continued.

If λ-rank(H) ≥ α + 1, then there are {Si : i < λ} disjoint definable
subsets of H such that λ-rank(Si ) ≥ α for all i < λ. Let ψi (x ; āi ) define
Si . Then ψi (xa

−1; āi ) define Sia and {Sia : i < λ} are disjoint definable
subsets of Ha. By I.H., λ-rank(Sia) ≥ α. Hence λ-rank(Ha) ≥ α + 1.

⇒: Suppose [G : H] < ℵ0. List all the distinct cosets {Hai : i < n} of H in
G where n < ω. Then λ-rank(H) = λ-rank(Hai ) for all i < n. By the
ultrametric property of λ-rank,

λ-rank(G ) = λ-rank
(⋃

i

Hai
)

= max
i
λ-rank(Hai ) = λ-rank(H),

∞-rank(G ) = λ-rank(G ) = λ-rank(H) =∞-rank(H).
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13+14→8

Proof continued.

⇐: Suppose [G : H] ≥ ℵ0. For n < ω,

G � ∃y1 . . . ∃yn ∀x
∧

1≤i<j≤n

(
φ(xy−1

i ; h̄)↔ ¬φ(xy−1
j ; h̄)

)
By compactness, there is an elementary extension G ′ of G such that
[G ′ : H ′] ≥ λ, where H ′ is defined by φ(x ; h̄) in G ′. By the λ-splitting
condition, there is some coset H ′a of H ′ such that

λ-rank(G ′) > λ-rank(H ′a) = λ-rank(H ′) = λ-rank(H).

The last equality holds because H,H ′ are defined by the same formula.
But then ∞-rank(G ) =∞-rank(G ′) >∞-rank(H).
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13+14→8

Definition

A group G is connected iff there is no proper definable subgroup of finite
index.

Theorem (8)(Surjectivity Theorem)

Let G be a connected superstable group, h : G → G be a definable
endomorphism. If | ker(h)| < ℵ0, then h is surjective.

Proof.

ker(h) induces a definable equivalence relation having equivalence classes
of size | ker(h)|. Let H = h[G ] = G/ ker(h).
By lemma 14, ∞-rank(G ) =∞-rank(H). By lemma 13, [G : H] < ℵ0.
But G is connected, thus G = H.
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16/18→6

Definition

Let G = {Hα} be a family of definable subgroups of G .
G is uniformly definable iff there is a formula φ(x ; ȳ), and some ḡα ∈ G
such that φ(x ; ḡα) defines Hα.
G satisfies the G -chain condition iff G does not contain an infinite
decreasing chain by inclusion.
G satisfies the stable chain condition iff for every uniformly definable G0,
let G be its closure under arbitrary intersections, then G satisfies the
G -chain condition.

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.
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16/18→6

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.

Proof.

Let G0 be uniformly definable by φ(x ; ȳ). We first show that G satisfies
the G0-chain condition. Suppose there is an infinite decreasing chain
{Hn : n < ω} with Hn defined by φ(x ; h̄n). For each n pick bn ∈ Hn\Hn+1.

G � φ[bn; h̄n] ∧ ¬φ[bn; h̄n+1] ∧ ∀x
(
φ(x ; h̄n+1)→ φ(x ; h̄n)

)
The formula ψ(ȳ1, ȳ2) ≡ ∀x

(
φ(x ; ȳ1)→ φ(x ; ȳ2)

)
has the order property,

contradicting the stability of G .
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16/18→6

Proof continued.

Let G be closure of G0 = {Hα} under arbitrary intersections. Suppose
there is an infinite decreasing chain {Kn : n < ω} in G . For each n < ω,
write Kn =

⋂
An

Hα for some index set An. Without loss of generality, we
may assume An is increasing. Fix a0 ∈ A0. Since Kn ) Kn+1, there is
an+1 ∈ An+1\An and some bn ∈ Kn\Han+1 . Thus we may replace An+1 by
An ∪ {an+1}, and write

Kn =
⋂

0≤i≤n
Hi ≡

⋂
0≤i≤n

Hai .

Each Kn is defined by finitely many formulas. To use the previous case, it
suffices to show that any finite intersection of Hi reduces to an
N-intersection for some N < ω.
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16/18→6

Proof continued.

Otherwise, for each n < ω, there is a finite I ⊂ ω such that |I | ≥ n + 1
and for each j ∈ I ,

⋂
i∈I Hi (

⋂
i∈I\{j}Hi . We may assume I = n + 1 and

for each j < n + 1 pick cj witnessing the proper inclusion, i.e.

cj ∈ Hi for i 6= j and cj /∈ Hj .

For any J ⊂ I , cJ =
∏

j∈J cj ∈ Hi iff i /∈ J. Let φ(x ; h̄i ) define Hi , then

i ∈ J iff G � ¬φ[cJ ; h̄i ]

showing independence property, contradicting the stability of G .
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16/18→6

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.

is equivalent to

Lemma (18)

Suppose G is a stable group, G0 is uniformly definable in G. Then

G satisfies the G0-chain condition.

There is an integer n < ω such that any arbitrary intersection in G0

equals to an n-intersection.

Proof.

18→16: Let φ(x ; ȳ) define G0, G be the closure of G0 under intersections,
then

∧n
i=1 φ(x ; ȳi ) uniformly defines G .
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16/18→6

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

Proof.

Let A be a definable additive subgroup of (D,+) with [D : A] < ℵ0, we
need to show that A = (D,+).
Let φ(x ; ā) define A for some ā ∈ D. For each d ∈ D\{0}, dA is also
definable by φ(d−1x ; ā) and [D : dA] < ℵ0. Hence
G0 = {dA : d ∈ D\{0}} is uniformly definable.
Let G be its closure under arbitrary intersections. By lemma 18, there is
n < ω such that

G =
{ n⋂

i=1

diA : d1, . . . , .dn ∈ D\{0}
}
.
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16/18→6

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

Proof (continued).

In particular,
⋂

G0 =
⋂n

i=1 diA for some d1, . . . , dn ∈ D\{0}. Since[
D :

n⋂
i=1

diA

]
≤

n∏
i=1

[D : diA] < ℵ0,

⋂n
i=1 diA is infinite. Pick g ∈

⋂
G0\{0}. For any f ∈ D\{0},

f = (fg−1)g ∈ (fg−1) ·
⋂
{dA : d ∈ D\{0}} =

⋂
G0.

Notice that A ∈ G0 so
⋂

G0 ⊂ A and f ∈
⋂

G0 ⊂ A, f ∈ A. Also, 0 ∈ A,
therefore D = A.
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6↔7

We have proved:

Theorem (8)(Surjectivity Theorem)

Let G be a connected superstable group, h : G → G be a definable
endomorphism. If | ker(h)| < ℵ0, then h is surjective.

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

In the next seminar, we will prove the equivalence of Theorem 6 and
Theorem 7.

Theorem (7)

If D is an infinite stable division ring, then the multiplicative group of D is
connected.
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6+7+8→20

Lemma (19)

Let F be a field of characteristic p, and K be a Galois extension of F , with
[K : F ] = q prime and xq − 1 splits in F .
(Artin-Schreier extension) If p = q, then K is generated over F together
with a solution of xp − x = a.
(Kummer extension) If p 6= q, then K is generated over F together with a
solution of xq = a.

Lemma (20)

A superstable field F is perfect and has no Artin-Schreier/Kummer
extension.
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6+7+8→20

Lemma (20)

A superstable field F is perfect and has no Artin-Schreier/Kummer
extension.

Proof.

Let p be the characteristic of F . Consider the following maps:

h : x 7→ xp − x p 6= 0

k : x 7→ xq x 6= 0, q ≥ 1

h and k are definable endomorphisms of (F ,+) and (F , ·) respectively.
Their kernels are finite.
By Theorems 6 and 7, (F ,+) and (F , ·) are connected.
By Theorem 8, both h and k are surjective.
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19+20→1

Theorem (1)

Any infinite superstable field is algebraically closed.

Proof.

Suppose there exists an infinite superstable field F0 that is not
algebraically closed. We say P(K ,F ) whenever K is a Galois extension of
F of finite degree greater than 1, F is infinite and superstable.
By assumption, P is nonempty and we pick a pair (K ,F ) ∈ P of minimal
degree q. We show that q is prime and xq − 1 splits in F .

If q is not prime, pick a proper prime factor r of q. Let F1 be the fixed
field of an element of order r in Gal(K/F ). Then F1 is superstable,
P(K ,F1) and [K : F1] < [K : F ]. If xq − 1 does not split in F , then the
splitting extension of xq − 1 over F has degree q − 1 < q.
By Lemma 19, K is an Artin-Schreier/Kummer extension of F . But F is
superstable so it contradicts Lemma 20.
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35+36 → (6↔ 7)

We will complete the proof of Theorem 1 by establishing the equivalence of

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is
connected.

and

Theorem (7)

If D is an infinite stable division ring, then the multiplicative group of D is
connected.
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∆-rank

Let M � T , ∆ ⊂ Fml(L(T )). Denote ∆(M) to be the boolean algebra of
subsets of M definable by φ(x ; ā) for some φ(x ; ȳ) ∈ ∆, ā ∈ M.

Definition

Let S ∈ ∆(M), S = {Sα} be an infinite family of subsets of S . S
∆-splits S iff

Sα are pairwise disjoint, and

Sα = S ∩ Dα for some Dα ∈ ∆(M), for all α.

Definition

∆-rank(S) = R[S ,∆,ℵ0]

∆-rank is the least elementary rank function with the ∆-splitting
condition: for any S ∈ ∆(M), ∆-rank(S) <∞ and S = {Sα} ∆-splits S
then there is some α such that ∆-rank(Sα) < ∆-rank(S).
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∆-rank

In the following, we assume ∆-rank(M) <∞. Let S ,X ,Y ∈ ∆(M).

Definition

S is ∆-small iff ∆-rank(S) < ∆-rank(M).

X ≡∆ Y iff X4Y is ∆-small.

Fact

T is stable iff for every finite ∆ ⊂ Fml(L(T )), ∆-rank is total.
Let S1, S2 ∈ ∆(M).

∆-rank(S1 ∪ S2) = max
(
∆-rank(S1),∆-rank(S2)

)
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∆-rank

Let I = {S ∈ ∆(M) : S is ∆-small}.
I is an ideal of ∆(M) and ∆(M)/I is a finite Boolean algebra.

We call the number of atoms in ∆(M)/I the ∆-multiplicity of M.

Let M have ∆-multiplicity m < ω. There are disjoint
{Mi : 1 ≤ i ≤ m} ⊂ ∆(M) such that ∆-rank(Mi ) = ∆-rank(M),
M =

⋃m
i=1 Mi and the Mi are unique up to ≡∆.

For any S ∈ ∆(M), there is a unique I ⊂ {1, . . . ,m} such that
S ≡∆

⋃
i∈I Mi . We call |I | the ∆-multiplicity of S .

S ∈ ∆(M) is ∆-indecomposable iff S has ∆-multiplicity is 1.
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31+33→34

Definition

Let T ⊃ Tgroups, ∆ ⊂ Fml(L(T )).
∆ is right-invariant iff ∀φ(x ; ȳ) ∈ ∆, ∀G � T , ∀ā, g ∈ G

φ(xg ; ā) is G -equivalent to an instance of a formula in ∆.

∆-rank is right-invariant iff for any S ∈ ∆(G ) with ∆-rank(S) <∞, any
g ∈ G , ∆-rank(Sg) = ∆-rank(S).
Similarly for left invariance and (bi-)invariance.

Lemma (31)

Let T ⊃ Tgroups, ∆ ⊂ Fml(L(T )).
If ∆ is invariant, then ∆-rank is invariant.
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31+33→34

Lemma (33)

Let T ⊃ Tgroups, ∆ ⊂ Fml(L(T )). For φ(x ; ȳ) ∈ ∆, let

φ̃(x ; ȳ , z1, z2) ≡ φ(z1 x z2; ȳ)

Then ∆̃ = {φ, φ̃ : φ ∈ ∆} is invariant.

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

1 G is connected.

2 G is ∆-indecomposable for any finite invariant ∆.

3 For any finite ∆0, there is a finite ∆ ⊃ ∆0 such that ∆ is invariant
and G is ∆-indecomposable.
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31+33→34

Theorem (34)(The Indecomposability Theorem)

1 G is connected.

2 G is ∆-indecomposable for any finite invariant ∆.

3 For any finite ∆0, there is a finite ∆ ⊃ ∆0 such that ∆ is invariant
and G is ∆-indecomposable.

Proof.

We will prove (2)⇒(3)⇒(1) and leave (1)⇒(2) for later.
(2)⇒(3): Given any finite ∆0, by Lemma 33 there is an invariant ∆ ⊃ ∆0.
|∆| ≤ 2|∆0| < ℵ0. By assumption (2), G is ∆-indecomposable.
(3)⇒(1): Let H ≤ G of finite index be definable by φ(x ; ā) for some
ā ∈ G . Set ∆0 = {φ(x ; ā)} to obtain ∆. Since ∆ is invariant, by Lemma
31, ∆-rank is invariant. So all cosets of H have the same ∆-rank, which
must be the same as ∆-rank(G ). By indecomposability, [G : H] = 1.
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38/40→34

Lemma (40)

Let G be a group and K ≤ G of finite index. Suppose G is κ+-saturated
and K is the intersection of κ-many definable subsets of G, then K is
definable in G.

Proof.

Let k = [G : K ] and g1, . . . , gk ∈ G be such that G =
⋃k

i=1 Kgi . Assume
k > 1 and g1 = 1. Let K =

⋂
α<κ Sα with Sα ∈ ∆(G ) for α < κ. Assume

{Sα : α < κ} is closed under finite intersections.
Fix i ∈ [2, k]. Consider the following type p(x) with κ constants:

x ∈ K ∩ Kgi =
⋂
α<κ

(
Sα ∩ Sαgi

)
Since G is κ+-saturated and does not realize p, p is inconsistent.
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38/40→34

Proof continued.

By compactness, there is αi < κ such that Sαi ∩ Sαigi = ∅.
Let S =

⋂k
i=2 Sαi . Since

S ∩
k⋃

i=2

Kgi ⊂ S ∩
k⋃

i=2

Sgi =
k⋃

i=2

(
S ∩ Sgi

)
= ∅,

S ⊂ K and K = S ∈ {Sα : α < κ}, hence K is definable.

Let G be a stable group and ∆ be a finite invariant set of formulas. Then
∆-rank(G ) < ω and we can decompose G =

⋃m
i=1 Ai for some disjoint

indecomposable Ai ∈ ∆(G ), 1 ≤ i ≤ m.
By uniqueness (up to ≡∆), the right multiplication by g ∈ G induces a
permutation ρg of the indices i . Thus we can define a group
homomorphism ρ : g 7→ ρg . Let K = ker(ρ).
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38/40→34

Corollary (38)

If G is ℵ1-saturated, then K is a definable subgroup of G.

Proof.

Observe that for any g ∈ G ,
g ∈ K ⇔ Aig ≡∆ Ai for all i ⇔ ∆-rank(Aig ∩ Ai ) = ∆-rank(G ) for all i .
Since ∆-rank(G ) < ω, ∆-rank(G ) = n for some n < ω.
For each i , ∆-rank(Aig ∩ Ai ) = n is equivalent to the consistency of some
countable theory, so is g ∈ K . By compactness, it suffices to check
countably many finite subtheories. Hence K is a countable intersection of
definable subsets of G .
Since G/K ' ρ[G ] is finite, [G : K ] < ℵ0. Also, G is ℵ1-saturated by
assumption. Therefore, by Lemma 40, K is definable in G .
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38/40→34

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

1 G is connected.

2 G is ∆-indecomposable for any finite invariant ∆.

3 For any finite ∆0, there is a finite ∆ ⊃ ∆0 such that ∆ is invariant
and G is ∆-indecomposable.

Proof.

We have proved (2)⇒(3)⇒(1). Now we proceed to prove (1)⇒(2).
Assume G is connected, we can further assume that G is ℵ1-saturated.
By Corollary 38, K is a definable subgroup of G , so K = G by
connectedness. For all g ∈ G , i ∈ [1,m], Aig ≡∆ Ai . For any finite
F ⊂ G ,

⋂
g∈F Aig ≡∆ Ai so

⋂
g∈F Aig 6= ∅. By compactness, the theory

T ∗ = CD(G ) ∪ {ccg ∈ A1 : g ∈ G} is consistent, with a new constant c .
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38/40→34

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

1 G is connected.

2 G is ∆-indecomposable for any finite invariant ∆.

3 For any finite ∆0, there is a finite ∆ ⊃ ∆0 such that ∆ is invariant
and G is ∆-indecomposable.

Proof continued.

Let G ∗ � T ∗ with G ≤ G ∗ � L(T ), a∗ = cG
∗

and A∗i defined in G ∗ by the
same formula as Ai . Then a∗G ⊂ A∗1.
a∗Ai ⊂ A∗1 ∩ a∗A∗i ⊂ A∗1. Since a∗A∗i are disjoint, so are a∗Ai .
∆-rank(a∗Ai ) = ∆-rank(Ai ) because ∆ is invariant (Lemma 31).
Also, ∆-rank(Ai ) = ∆-rank(A∗i ) by elementarity = ∆-rank(A∗1).
However A∗1 is ∆-indecomposable, so i = 1.
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34→35

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

1 G is connected.

2 G is ∆-indecomposable for any finite invariant ∆.

3 For any finite ∆0, there is a finite ∆ ⊃ ∆0 such that ∆ is invariant
and G is ∆-indecomposable.

Theorem (35)

Let · and + be two binary operations of a stable structure M; X ,Y be
definable in M such that

(M\X ,+) and (M\Y , ·) are groups;

For every finite ∆0, there is ∆ ⊃ ∆0 finite and invariant with respect
to both · and + such that X ,Y are ∆-small.

Then (M\X ,+) is connected iff (M\Y , ·) is connected.
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34→35

Proof.

We establish the following equivalences:

(a) (M\X ,+) is connected.

(b) For any finite ∆0, there is a finite (·,+) -invariant ∆ ⊃ ∆0 such that
M\X and M\Y are both ∆-indecomposable.

(c) (M\Y , ·) is connected.

(b)⇒(a),(c): (M\X ,+) and (M\Y , ·) are stable groups, so we can
directly use Theorem 34(3)⇒(1).
(a)⇒(b): For any finite ∆0, by the second assumption of the theorem,
there is a finite (·,+)-invariant ∆ ⊃ ∆0 such that X ,Y are ∆-small.
By Theorem 34(1)⇒(2), (M\X ,+) is ∆-indecomposable. As X ,Y are
small, (M\Y , ·) is also ∆-indecomposable. (c)⇒ (b) is similar.
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35+36→(6↔7)

Lemma (36)

Let T ⊃ Trings, ∆ be a finite subset of Fml(L(T )). For any φ(x ; ȳ) ∈ ∆,
define

φ̃(x ; ȳ , z1, z2, z3) = φ(z1 x z2 + z3; ȳ)

Then ∆̃ = {φ, φ̃ : φ ∈ ∆} ⊃ ∆ is finite and invariant with respect to both
· and +.

Theorem (6↔7)

If D is an infinite stable division ring, then the additive group of D is
connected iff the multiplicative group of D is connected.

Proof.

Take X = ∅ and Y = {0} in Theorem 35. The first assumption is
satisfied. The second assumption follows from Lemma 36 and the fact
that X ,Y are finite, hence ∆-small.
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Cherlin and Shelah (1980)

Main goal: Theorem 1

Any infinite superstable field is algebraically closed.
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