Model Theory Seminar Superstable Fields and Groups

Samson Leung

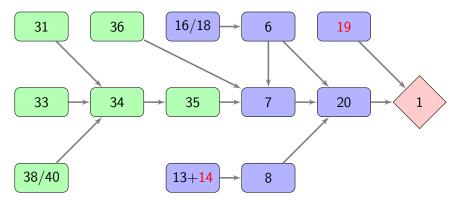
Carnegie Mellon University

April 6, 2020

Cherlin and Shelah (1980)

Main goal: Theorem 1

Any infinite superstable field is algebraically closed.



Definition

$$\lambda$$
-rank(S) = R[ϕ_S, L, λ^+]
 ∞ -rank(S) = $\lim_{\lambda} \lambda$ -rank(S)

Fact

T is superstable iff
$$R[x = x, L, (2^{|T|})^{++}] < |T|^{+}$$

The λ -rank function is total, elementary and satisfies the λ -splitting condition: for any definable subset $S \subset |M|$ with λ -rank $(S) < \infty$, any $\{S_{\alpha} : \alpha < \lambda\}$ disjoint definable subsets of S, there is $\alpha < \lambda$ such that λ -rank $(S_{\alpha}) < \lambda$ -rank(S).

Lemma (13)

Let H be a definable subgroup of G. Suppose G is superstable, then

 ∞ -rank(H) < ∞ -rank(G) $\Leftrightarrow [G:H] \ge \aleph_0.$

Proof.

Cosets of H have the same ∞ -rank.

Lemma (14)

Let M be superstable, E be a definable equivalence relation on M having finite equivalence classes of bounded size, then

 ∞ -rank(M) = ∞ -rank(M/E).

Lemma (13)

Let H be a definable subgroup of G. Suppose G is superstable, then

 ∞ -rank(H) < ∞ -rank(G) $\Leftrightarrow [G:H] \ge \aleph_0.$

Proof.

Let $\lambda = (2^{|\mathcal{T}|})^+$. Then $R[p, \Delta, \lambda^+] = R[p, \Delta, \infty]$ for any type p. Let $\phi(x; \bar{h})$ define H in G, where $\bar{h} \in G$. For any $a \in G$, $\phi(xa^{-1}; \bar{h})$ define the coset Ha. We show that λ -rank $(H) = \lambda$ -rank(Ha). By induction, we prove λ -rank $(H) \ge \alpha$ iff λ -rank $(Ha) \ge \alpha$. For $\alpha = 0$, λ -rank $(H) \ge 0$ iff H is nonempty iff Ha is nonempty iff λ -rank $(Ha) \ge 0$. For limit ordinal γ , λ -rank $(H) \ge \gamma$ iff λ -rank $(H) \ge \alpha$ for all $\alpha < \gamma$ iff λ -rank $(Ha) \ge \gamma$.

Proof continued.

If λ -rank $(H) \ge \alpha + 1$, then there are $\{S_i : i < \lambda\}$ disjoint definable subsets of H such that λ -rank $(S_i) \ge \alpha$ for all $i < \lambda$. Let $\psi_i(x; \bar{a}_i)$ define S_i . Then $\psi_i(xa^{-1}; \bar{a}_i)$ define S_ia and $\{S_ia : i < \lambda\}$ are disjoint definable subsets of Ha. By I.H., λ -rank $(S_ia) \ge \alpha$. Hence λ -rank $(Ha) \ge \alpha + 1$.

⇒: Suppose $[G : H] < \aleph_0$. List all the distinct cosets $\{Ha_i : i < n\}$ of H in G where $n < \omega$. Then λ -rank $(H) = \lambda$ -rank (Ha_i) for all i < n. By the ultrametric property of λ -rank,

$$\lambda ext{-rank}(G) = \lambda ext{-rank}ig(igcup_i Ha_iig) = \max_i \lambda ext{-rank}(Ha_iig) = \lambda ext{-rank}(H),$$

$$\infty$$
-rank(G) = λ -rank(G) = λ -rank(H) = ∞ -rank(H).

Proof continued.

 \Leftarrow : Suppose $[G:H] \ge \aleph_0$. For $n < \omega$,

$$G \vDash \exists y_1 \ldots \exists y_n \, \forall x \bigwedge_{1 \le i < j \le n} \left(\phi(xy_i^{-1}; \bar{h}) \leftrightarrow \neg \phi(xy_j^{-1}; \bar{h}) \right)$$

By compactness, there is an elementary extension G' of G such that $[G':H'] \ge \lambda$, where H' is defined by $\phi(x;\bar{h})$ in G'. By the λ -splitting condition, there is some coset H'a of H' such that

$$\lambda$$
-rank $(G') > \lambda$ -rank $(H'a) = \lambda$ -rank $(H') = \lambda$ -rank (H) .

The last equality holds because H, H' are defined by the same formula. But then ∞ -rank $(G) = \infty$ -rank $(G') > \infty$ -rank(H).

Definition

A group G is connected iff there is no proper definable subgroup of finite index.

Theorem (8)(Surjectivity Theorem)

Let G be a connected superstable group, $h : G \to G$ be a definable endomorphism. If $|\ker(h)| < \aleph_0$, then h is surjective.

Proof.

ker(*h*) induces a definable equivalence relation having equivalence classes of size $|\ker(h)|$. Let $H = h[G] = G/\ker(h)$. By lemma 14, ∞ -rank(G) = ∞ -rank(H). By lemma 13, $[G : H] < \aleph_0$. But G is connected, thus G = H.

Definition

Let $\mathscr{G} = \{H_{\alpha}\}$ be a family of definable subgroups of G. \mathscr{G} is uniformly definable iff there is a formula $\phi(x; \bar{y})$, and some $\bar{g}_{\alpha} \in G$ such that $\phi(x; \bar{g}_{\alpha})$ defines H_{α} .

G satisfies the $\mathscr{G}\text{-}chain\ condition\ iff\ \mathscr{G}$ does not contain an infinite decreasing chain by inclusion.

G satisfies the *stable chain condition* iff for every uniformly definable \mathscr{G}_0 , let \mathscr{G} be its closure under arbitrary intersections, then G satisfies the \mathscr{G} -chain condition.

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.

Proof.

Let \mathscr{G}_0 be uniformly definable by $\phi(x; \bar{y})$. We first show that G satisfies the \mathscr{G}_0 -chain condition. Suppose there is an infinite decreasing chain $\{H_n : n < \omega\}$ with H_n defined by $\phi(x; \bar{h}_n)$. For each n pick $b_n \in H_n \setminus H_{n+1}$.

$$G \vDash \phi[b_n; \bar{h}_n] \land \neg \phi[b_n; \bar{h}_{n+1}] \land \forall x \big(\phi(x; \bar{h}_{n+1}) \to \phi(x; \bar{h}_n) \big)$$

The formula $\psi(\bar{y}_1, \bar{y}_2) \equiv \forall x (\phi(x; \bar{y}_1) \rightarrow \phi(x; \bar{y}_2))$ has the order property, contradicting the stability of G.

Proof continued.

Let \mathscr{G} be closure of $\mathscr{G}_0 = \{H_\alpha\}$ under arbitrary intersections. Suppose there is an infinite decreasing chain $\{K_n : n < \omega\}$ in \mathscr{G} . For each $n < \omega$, write $K_n = \bigcap_{A_n} H_\alpha$ for some index set A_n . Without loss of generality, we may assume A_n is increasing. Fix $a_0 \in A_0$. Since $K_n \supseteq K_{n+1}$, there is $a_{n+1} \in A_{n+1} \setminus A_n$ and some $b_n \in K_n \setminus H_{a_{n+1}}$. Thus we may replace A_{n+1} by $A_n \cup \{a_{n+1}\}$, and write

$$K_n = \bigcap_{0 \le i \le n} H_i \equiv \bigcap_{0 \le i \le n} H_{a_i}.$$

Each K_n is defined by finitely many formulas. To use the previous case, it suffices to show that any finite intersection of H_i reduces to an N-intersection for some $N < \omega$.

Proof continued.

Otherwise, for each $n < \omega$, there is a finite $I \subset \omega$ such that $|I| \ge n + 1$ and for each $j \in I$, $\bigcap_{i \in I} H_i \subsetneq \bigcap_{i \in I \setminus \{j\}} H_i$. We may assume I = n + 1 and for each j < n + 1 pick c_j witnessing the proper inclusion, i.e.

$$c_j \in H_i$$
 for $i \neq j$ and $c_j \notin H_j$.

For any $J \subset I$, $c_J = \prod_{j \in J} c_j \in H_i$ iff $i \notin J$. Let $\phi(x; \bar{h_i})$ define H_i , then

$$i \in J$$
 iff $G \models \neg \phi[c_J; \bar{h}_i]$

showing independence property, contradicting the stability of G.

Lemma (16)

If G is a stable group, then G satisfies the stable chain condition.

is equivalent to

Lemma (18)

Suppose G is a stable group, \mathscr{G}_0 is uniformly definable in G. Then

- *G* satisfies the *G*₀-chain condition.
- There is an integer n < ω such that any arbitrary intersection in G₀ equals to an n-intersection.

Proof.

18 \rightarrow 16: Let $\phi(x; \bar{y})$ define \mathscr{G}_0 , \mathscr{G} be the closure of \mathscr{G}_0 under intersections, then $\bigwedge_{i=1}^n \phi(x; \bar{y}_i)$ uniformly defines \mathscr{G} .

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is connected.

Proof.

Let A be a definable additive subgroup of (D, +) with $[D : A] < \aleph_0$, we need to show that A = (D, +). Let $\phi(x; \bar{a})$ define A for some $\bar{a} \in D$. For each $d \in D \setminus \{0\}$, dA is also definable by $\phi(d^{-1}x; \bar{a})$ and $[D : dA] < \aleph_0$. Hence $\mathscr{G}_0 = \{dA : d \in D \setminus \{0\}\}$ is uniformly definable. Let \mathscr{G} be its closure under arbitrary intersections. By lemma 18, there is $n < \omega$ such that

$$\mathscr{G} = \Big\{ \bigcap_{i=1}^n d_i A : d_1, \ldots, d_n \in D \setminus \{0\} \Big\}.$$

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is connected.

Proof (continued).

In particular, $\bigcap \mathscr{G}_0 = \bigcap_{i=1}^n d_i A$ for some $d_1, \ldots, d_n \in D \setminus \{0\}$. Since

$$\left[D:\bigcap_{i=1}^n d_iA\right]\leq\prod_{i=1}^n [D:d_iA]<\aleph_0,$$

 $\bigcap_{i=1}^n d_i A$ is infinite. Pick $g \in \bigcap \mathscr{G}_0 \setminus \{0\}$. For any $f \in D \setminus \{0\}$,

$$f = (fg^{-1})g \in (fg^{-1}) \cdot \bigcap \{ dA : d \in D \setminus \{0\} \} = \bigcap \mathscr{G}_0.$$

Notice that $A \in \mathscr{G}_0$ so $\bigcap \mathscr{G}_0 \subset A$ and $f \in \bigcap \mathscr{G}_0 \subset A$, $f \in A$. Also, $0 \in A$, therefore D = A.

$6\leftrightarrow 7$

We have proved:

Theorem (8)(Surjectivity Theorem)

Let G be a connected superstable group, $h : G \to G$ be a definable endomorphism. If $|\ker(h)| < \aleph_0$, then h is surjective.

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is connected.

In the next seminar, we will prove the equivalence of Theorem 6 and Theorem 7.

Theorem (7)

If D is an infinite stable division ring, then the multiplicative group of D is connected.

6+7+8→20

Lemma (19)

Let F be a field of characteristic p, and K be a Galois extension of F, with [K : F] = q prime and $x^q - 1$ splits in F. (Artin-Schreier extension) If p = q, then K is generated over F together with a solution of $x^p - x = a$. (Kummer extension) If $p \neq q$, then K is generated over F together with a solution of $x^q = a$.

Lemma (20)

A superstable field F is perfect and has no Artin-Schreier/Kummer extension.

6+7+8→20

Lemma (20)

A superstable field F is perfect and has no Artin-Schreier/Kummer extension.

Proof.

Let p be the characteristic of F. Consider the following maps:

$$\begin{array}{ll} h: x\mapsto x^p-x & p\neq 0 \\ k: x\mapsto x^q & x\neq 0, q\geq 1 \end{array}$$

h and *k* are definable endomorphisms of (F, +) and (F, \cdot) respectively. Their kernels are finite.

By Theorems 6 and 7, (F, +) and (F, \cdot) are connected.

By Theorem 8, both h and k are surjective.

$19{+}20{\rightarrow}1$

Theorem (1)

Any infinite superstable field is algebraically closed.

Proof.

Suppose there exists an infinite superstable field F_0 that is not algebraically closed. We say P(K, F) whenever K is a Galois extension of F of finite degree greater than 1, F is infinite and superstable. By assumption, P is nonempty and we pick a pair $(K, F) \in P$ of minimal degree q. We show that q is prime and $x^q - 1$ splits in F.

If q is not prime, pick a proper prime factor r of q. Let F_1 be the fixed field of an element of order r in Gal(K/F). Then F_1 is superstable, $P(K, F_1)$ and $[K : F_1] < [K : F]$. If $x^q - 1$ does not split in F, then the splitting extension of $x^q - 1$ over F has degree q - 1 < q. By Lemma 19, K is an Artin-Schreier/Kummer extension of F. But F is superstable so it contradicts Lemma 20.

$$35+36 \rightarrow (6 \leftrightarrow 7)$$

We will complete the proof of Theorem 1 by establishing the equivalence of

Theorem (6)

If D is an infinite stable division ring, then the additive group of D is connected.

and

Theorem (7)

If D is an infinite stable division ring, then the multiplicative group of D is connected.

Δ -rank

Let $M \vDash T$, $\Delta \subset \operatorname{Fml}(L(T))$. Denote $\Delta(M)$ to be the boolean algebra of subsets of M definable by $\phi(x; \bar{a})$ for some $\phi(x; \bar{y}) \in \Delta$, $\bar{a} \in M$.

Definition

Let $S \in \Delta(M)$, $\mathscr{S} = \{S_{\alpha}\}$ be an infinite family of subsets of S. \mathscr{S} Δ -splits S iff

- S_{α} are pairwise disjoint, and
- $S_{\alpha} = S \cap D_{\alpha}$ for some $D_{\alpha} \in \Delta(M)$, for all α .

Definition

$$\Delta\operatorname{-rank}(S) = R[S, \Delta, \aleph_0]$$

 Δ -rank is the least elementary rank function with the Δ -splitting condition: for any $S \in \Delta(M)$, Δ -rank $(S) < \infty$ and $\mathscr{S} = \{S_{\alpha}\} \Delta$ -splits S then there is some α such that Δ -rank $(S_{\alpha}) < \Delta$ -rank(S).

Δ -rank

In the following, we assume Δ -rank $(M) < \infty$. Let $S, X, Y \in \Delta(M)$.

Definition

S is
$$\Delta$$
-small iff Δ -rank(S) < Δ -rank(M).
 $X \equiv_{\Delta} Y$ iff $X \triangle Y$ is Δ -small.

Fact

T is stable iff for every finite $\Delta \subset \operatorname{Fml}(L(T))$, Δ -rank is total. Let $S_1, S_2 \in \Delta(M)$.

 Δ -rank $(S_1 \cup S_2) = \max(\Delta$ -rank $(S_1), \Delta$ -rank $(S_2))$

Δ -rank

Let $I = \{S \in \Delta(M) : S \text{ is } \Delta\text{-small}\}.$

- I is an ideal of $\Delta(M)$ and $\Delta(M)/I$ is a finite Boolean algebra.
- We call the number of atoms in $\Delta(M)/I$ the Δ -multiplicity of M.
- Let M have Δ -multiplicity $m < \omega$. There are disjoint $\{M_i : 1 \le i \le m\} \subset \Delta(M)$ such that Δ -rank $(M_i) = \Delta$ -rank(M), $M = \bigcup_{i=1}^{m} M_i$ and the M_i are unique up to \equiv_{Δ} .
- For any $S \in \Delta(M)$, there is a unique $I \subset \{1, \ldots, m\}$ such that $S \equiv_{\Delta} \bigcup_{i \in I} M_i$. We call |I| the Δ -multiplicity of S.
- $S \in \Delta(M)$ is Δ -indecomposable iff S has Δ -multiplicity is 1.

$31 + 33 \rightarrow 34$

Definition

Let $T \supset T_{\text{groups}}$, $\Delta \subset \text{Fml}(L(T))$. Δ is *right-invariant* iff $\forall \phi(x; \bar{y}) \in \Delta$, $\forall G \vDash T$, $\forall \bar{a}, g \in G$

 $\phi(xg; \bar{a})$ is *G*-equivalent to an instance of a formula in Δ .

 Δ -rank is *right-invariant* iff for any $S \in \Delta(G)$ with Δ -rank $(S) < \infty$, any $g \in G$, Δ -rank $(Sg) = \Delta$ -rank(S). Similarly for left invariance and (bi-)invariance.

Lemma (31) Let $T \supset T_{groups}$, $\Delta \subset \operatorname{Fml}(L(T))$. If Δ is invariant, then Δ -rank is invariant.

$31 + 33 \rightarrow 34$

Lemma (33)

Let $T \supset T_{groups}$, $\Delta \subset \mathsf{Fml}(L(T))$. For $\phi(x; \bar{y}) \in \Delta$, let

$$\tilde{\phi}(x; \bar{y}, z_1, z_2) \equiv \phi(z_1 \times z_2; \bar{y})$$

Then $\tilde{\Delta} = \{\phi, \tilde{\phi} : \phi \in \Delta\}$ is invariant.

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

- G is connected.
- **2** G is Δ -indecomposable for any finite invariant Δ .
- So For any finite Δ₀, there is a finite Δ ⊃ Δ₀ such that Δ is invariant and G is Δ-indecomposable.

$31 + 33 \rightarrow 34$

Theorem (34)(The Indecomposability Theorem)

- **G** is connected.
- **2** G is Δ -indecomposable for any finite invariant Δ .
- So For any finite Δ₀, there is a finite Δ ⊃ Δ₀ such that Δ is invariant and G is Δ-indecomposable.

Proof.

We will prove $(2)\Rightarrow(3)\Rightarrow(1)$ and leave $(1)\Rightarrow(2)$ for later. $(2)\Rightarrow(3)$: Given any finite Δ_0 , by Lemma 33 there is an invariant $\Delta \supset \Delta_0$. $|\Delta| \leq 2|\Delta_0| < \aleph_0$. By assumption (2), *G* is Δ -indecomposable. $(3)\Rightarrow(1)$: Let $H \leq G$ of finite index be definable by $\phi(x; \bar{a})$ for some $\bar{a} \in G$. Set $\Delta_0 = \{\phi(x; \bar{a})\}$ to obtain Δ . Since Δ is invariant, by Lemma 31, Δ -rank is invariant. So all cosets of *H* have the same Δ -rank, which must be the same as Δ -rank(*G*). By indecomposability, [G:H] = 1.

Lemma (40)

Let G be a group and $K \leq G$ of finite index. Suppose G is κ^+ -saturated and K is the intersection of κ -many definable subsets of G, then K is definable in G.

Proof.

Let k = [G : K] and $g_1, \ldots, g_k \in G$ be such that $G = \bigcup_{i=1}^k Kg_i$. Assume k > 1 and $g_1 = 1$. Let $K = \bigcap_{\alpha < \kappa} S_\alpha$ with $S_\alpha \in \Delta(G)$ for $\alpha < \kappa$. Assume $\{S_\alpha : \alpha < \kappa\}$ is closed under finite intersections. Fix $i \in [2, k]$. Consider the following type p(x) with κ constants:

$$x \in \mathcal{K} \cap \mathcal{K}g_i = \bigcap_{\alpha < \kappa} (S_{\alpha} \cap S_{\alpha}g_i)$$

Since G is κ^+ -saturated and does not realize p, p is inconsistent.

Proof continued.

By compactness, there is $\alpha_i < \kappa$ such that $S_{\alpha_i} \cap S_{\alpha_i} g_i = \emptyset$. Let $S = \bigcap_{i=2}^k S_{\alpha_i}$. Since

$$S \cap \bigcup_{i=2}^{k} Kg_i \subset S \cap \bigcup_{i=2}^{k} Sg_i = \bigcup_{i=2}^{k} (S \cap Sg_i) = \emptyset,$$

 $S \subset K$ and $K = S \in \{S_{\alpha} : \alpha < \kappa\}$, hence K is definable.

Let G be a stable group and Δ be a finite invariant set of formulas. Then Δ -rank(G) < ω and we can decompose $G = \bigcup_{i=1}^{m} A_i$ for some disjoint indecomposable $A_i \in \Delta(G), 1 \le i \le m$. By uniqueness (up to \equiv_{Δ}), the right multiplication by $g \in G$ induces a permutation ρ_g of the indices *i*. Thus we can define a group homomorphism $\rho : g \mapsto \rho_g$. Let $K = \ker(\rho)$.

Corollary (38)

If G is \aleph_1 -saturated, then K is a definable subgroup of G.

Proof.

Observe that for any $g \in G$, $g \in K \Leftrightarrow A_i g \equiv_{\Delta} A_i$ for all $i \Leftrightarrow \Delta$ -rank $(A_i g \cap A_i) = \Delta$ -rank(G) for all i. Since Δ -rank $(G) < \omega$, Δ -rank(G) = n for some $n < \omega$. For each i, Δ -rank $(A_i g \cap A_i) = n$ is equivalent to the consistency of some countable theory, so is $g \in K$. By compactness, it suffices to check countably many finite subtheories. Hence K is a countable intersection of definable subsets of G. Since $G/K \simeq \rho[G]$ is finite, $[G : K] < \aleph_0$. Also, G is \aleph_1 -saturated by assumption. Therefore, by Lemma 40, K is definable in G.

$38/40 \rightarrow 34$

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

- G is connected.
- **2** G is Δ -indecomposable for any finite invariant Δ .
- So For any finite Δ₀, there is a finite Δ ⊃ Δ₀ such that Δ is invariant and G is Δ-indecomposable.

Proof.

We have proved $(2) \Rightarrow (3) \Rightarrow (1)$. Now we proceed to prove $(1) \Rightarrow (2)$. Assume *G* is connected, we can further assume that *G* is \aleph_1 -saturated. By Corollary 38, *K* is a definable subgroup of *G*, so K = G by connectedness. For all $g \in G$, $i \in [1, m]$, $A_ig \equiv_{\Delta} A_i$. For any finite $F \subset G$, $\bigcap_{g \in F} A_ig \equiv_{\Delta} A_i$ so $\bigcap_{g \in F} A_ig \neq \emptyset$. By compactness, the theory $T^* = CD(G) \cup \{cc_g \in A_1 : g \in G\}$ is consistent, with a new constant *c*.

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

- G is connected.
- **2** G is Δ -indecomposable for any finite invariant Δ .
- So For any finite Δ₀, there is a finite Δ ⊃ Δ₀ such that Δ is invariant and G is Δ-indecomposable.

Proof continued.

Let $G^* \models T^*$ with $G \leq G^* \upharpoonright L(T)$, $a^* = c^{G^*}$ and A_i^* defined in G^* by the same formula as A_i . Then $a^*G \subset A_1^*$. $a^*A_i \subset A_1^* \cap a^*A_i^* \subset A_1^*$. Since $a^*A_i^*$ are disjoint, so are a^*A_i . Δ -rank $(a^*A_i) = \Delta$ -rank (A_i) because Δ is invariant (Lemma 31). Also, Δ -rank $(A_i) = \Delta$ -rank (A_i^*) by elementarity $= \Delta$ -rank (A_1^*) . However A_1^* is Δ -indecomposable, so i = 1. $34 \rightarrow 35$

Theorem (34)(The Indecomposability Theorem)

Let G be a stable group. The following are equivalent:

- G is connected.
- **2** G is Δ -indecomposable for any finite invariant Δ .
- So For any finite Δ₀, there is a finite Δ ⊃ Δ₀ such that Δ is invariant and G is Δ-indecomposable.

Theorem (35)

Let \cdot and + be two binary operations of a stable structure M; X, Y be definable in M such that

- $(M \setminus X, +)$ and $(M \setminus Y, \cdot)$ are groups;
- For every finite Δ₀, there is Δ ⊃ Δ₀ finite and invariant with respect to both · and + such that X, Y are Δ-small.

Then $(M \setminus X, +)$ is connected iff $(M \setminus Y, \cdot)$ is connected.

$34 \rightarrow 35$

Proof.

We establish the following equivalences:

- (*M*X,+) is connected.
- For any finite Δ_0 , there is a finite $(\cdot, +)$ -invariant $\Delta \supset \Delta_0$ such that $M \setminus X$ and $M \setminus Y$ are both Δ -indecomposable.
- (M\Y, ·) is connected.

(b) \Rightarrow (a),(c): ($M \setminus X$, +) and ($M \setminus Y$, ·) are stable groups, so we can directly use Theorem 34(3) \Rightarrow (1).

(a) \Rightarrow (b): For any finite Δ_0 , by the second assumption of the theorem, there is a finite (\cdot , +)-invariant $\Delta \supset \Delta_0$ such that X, Y are Δ -small. By Theorem 34(1) \Rightarrow (2), ($M \setminus X$, +) is Δ -indecomposable. As X, Y are small, ($M \setminus Y, \cdot$) is also Δ -indecomposable. (c) \Rightarrow (b) is similar.

35+36→(6↔7)

Lemma (36)

Let $T \supset T_{rings}$, Δ be a finite subset of Fml(L(T)). For any $\phi(x; \bar{y}) \in \Delta$, define

$$\tilde{\phi}(x;\bar{y},z_1,z_2,z_3)=\phi(z_1\,x\,z_2+z_3;\bar{y})$$

Then $\tilde{\Delta} = \{\phi, \tilde{\phi} : \phi \in \Delta\} \supset \Delta$ is finite and invariant with respect to both \cdot and +.

Theorem $(6\leftrightarrow 7)$

If D is an infinite stable division ring, then the additive group of D is connected iff the multiplicative group of D is connected.

Proof.

Take $X = \emptyset$ and $Y = \{0\}$ in Theorem 35. The first assumption is satisfied. The second assumption follows from Lemma 36 and the fact that X, Y are finite, hence Δ -small.

Cherlin and Shelah (1980)

Main goal: Theorem 1

Any infinite superstable field is algebraically closed.

