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Abstract

In this thesis we study Ax-Schanuel type inequalities for abstract differ-
ential equations. A motivating example is the exponential differential
equation. The Ax-Schanuel theorem states positivity of a predimension
defined on its solutions. The notion of a predimension was introduced by
Hrushovski in his work from the 1990s where he uses an amalgamation-
with-predimension technique to refute Zilber’s Trichotomy Conjecture. In
the differential setting one can carry out a similar construction with the
predimension given by Ax-Schanuel. In this way one constructs a limit
structure whose theory turns out to be precisely the first-order theory of
the exponential differential equation (this analysis is due to Kirby (for
semiabelian varieties) and Crampin, and it is based on Zilber’s work on
pseudo-exponentiation). One says in this case that the inequality is ade-
quate.
Thus, by an Ax-Schanuel type inequality we mean a predimension in-
equality for a differential equation. Our main question is to understand
for which differential equations one can find an adequate predimension
inequality. We show that this can be done for linear differential equations
with constant coefficients by generalising the Ax-Schanuel theorem.
Further, the question turns out to be closely related to the problem of re-
covering the differential structure in reducts of differentially closed fields
where we keep the field structure (which is quite an interesting problem
in its own right). So we explore that question and establish some crite-
ria for recovering the derivation of the field. We also show (under some
assumptions) that when the derivation is definable in a reduct then the
latter cannot satisfy a non-trivial adequate predimension inequality.
Another example of a predimension inequality is the analogue of Ax-
Schanuel for the differential equation of the modular j-function due to
Pila and Tsimerman. We carry out a Hrushovski construction with that
predimension and give an axiomatisation of the first-order theory of the
strong Fraïssé limit. It will be the theory of the differential equation of j
under the assumption of adequacy of the predimension. We also show that
if a similar predimension inequality (not necessarily adequate) is known
for a differential equation then the fibres of the latter have interesting
model theoretic properties such as strong minimality and geometric triv-
iality. This, in particular, gives a new proof for a theorem of Freitag and
Scanlon stating that the differential equation of j defines a trivial strongly
minimal set.



Contents

1 Introduction 1
1.1 The main question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Differentially closed fields . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Differential algebraic curves . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Two theorems on dimension of algebraic varieties . . . . . . . . . . . 12
2.4 Pregeometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Trivial strongly minimal sets . . . . . . . . . . . . . . . . . . . . . . . 14

3 Predimensions and Hrushovski Constructions 16
3.1 Predimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Amalgamation with predimension . . . . . . . . . . . . . . . . . . . . 20
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Complex exponentiation . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Exponential differential equation . . . . . . . . . . . . . . . . 26

3.4 Predimensions in the differential setting . . . . . . . . . . . . . . . . . 27

4 Definability of Derivations in the Reducts of Differentially Closed
Fields 31
4.1 Setup and the main question . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Definable derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Model theoretic properties of the reducts . . . . . . . . . . . . . . . . 35
4.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Generic points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Further examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Connection to predimensions . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 Model completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.9 Pregeometry on differentially closed fields and reducts . . . . . . . . . 57

5 Ax-Schanuel for Linear Differential Equations 59
5.1 The exponential differential equation . . . . . . . . . . . . . . . . . . 59
5.2 Higher order linear differential equations . . . . . . . . . . . . . . . . 62

i



5.3 The complete theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Rotundity and freeness . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 The j-function 73
6.1 Background on the j-function . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Ax-Schanuel and weak modular Zilber-Pink . . . . . . . . . . . . . . 75
6.3 The universal theory and predimension . . . . . . . . . . . . . . . . . 76
6.4 Amalgamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Normal and free varieties . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Existential closedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7 The complete theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.8 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Ax-Schanuel Type Theorems and Geometry of Strongly Minimal
Sets in DCF0 94
7.1 Setup and main results . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 The modular j-function . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 104

ii



Chapter 1

Introduction

1.1 The main question
In [Lan66] Serge Lang mentions that Stephen Schanuel conjectured that for any Q-
linearly independent complex numbers z1, . . . , zn one has

tdQQ(z1, . . . , zn, e
z1 , . . . , ezn) ≥ n. (1.1)

This is now known as Schanuel’s conjecture. It generalises many results (e.g. the
Lindemann-Weierstrass theorem) and conjectures in transcendental number theory
and is widely open. For example, a simple consequence of Schanuel’s conjecture is
algebraic independence of e and π which is a long standing open problem.

Schanuel’s conjecture (and its real version) is closely related to the model theory
of the complex (real) exponential field Cexp = (C; +, ·, exp) (respectively, Rexp =
(R; +, ·, exp), see [MW96]). Most notably, Boris Zilber noticed that the inequality
(1.1) states the positivity of a predimension. The notion of a predimension was defined
by Ehud Hrushovski in [Hru93] where he uses an amalgamation-with-predimension
technique (which is a variation of Fraïssé’s amalgamation construction) to refute
Zilber’s Trichotomy Conjecture. More precisely, Schanuel’s conjecture is equivalent
to the following statement: for any z1, . . . , zn ∈ C the inequality

δ(z̄) = tdQQ(z̄, exp(z̄))− ldimQ(z̄) ≥ 0 (1.2)

holds, where td and ldim stand for transcendence degree and linear dimension re-
spectively. Here δ satisfies the submodularity law1 which allows one to carry out a
Hrushovski construction. In this way Zilber constructed pseudo-exponentiation on
algebraically closed fields of characteristic zero. He proved that there is a unique
model of that (non first-order) theory in each uncountable cardinality and conjec-
tured that the model of cardinality 2ℵ0 is isomorphic to Cexp. Since (1.2) holds for
pseudo-exponentiation (it is included in the axiomatisation given by Zilber), Zilber’s
conjecture implies Schanuel’s conjecture. For details on pseudo-exponentiation see
[Zil04b, Zil05, Zil02, Zil16, KZ14, Kir13].

1This is not quite right as we will see in Chapter 3. It will be explained there in what sense δ is
submodular.
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Zilber’s work also gave rise to a diophantine conjecture (Conjecture on Intersection
with Tori) which was later generalised by Pink and is now known as the Zilber-
Pink conjecture ([Zil02, KZ14, Pin05]). It generalises many diophantine conjectures
and theorems such as Mordell-Lang, Manin-Mumford, and André-Oort, and is being
actively studied by model theorists and number theorists.

Though Schanuel’s conjecture seems to be out of reach, James Ax proved its
differential analogue in 1971 ([Ax71]). It is now known as the Ax-Schanuel theorem
or inequality.

Theorem 1.1.1 (Ax-Schanuel). Let K = (K; +, ·,D, 0, 1) be a differential field with
field of constants C. If (x1, y1), . . . , (xn, yn) are non-constant solutions to the expo-
nential differential equation D y = yDx then

tdC C(x̄, ȳ)− ldimQ(x̄/C) ≥ 1, (1.3)

where ldimQ(x̄/C) is the dimension of the Q-span of x1, . . . , xn in the quotient vector
space K/C.

Here again we have a predimension inequality, which will be part of the first or-
der theory of the reduct KExp = (K; +, ·,Exp, 0, 1) of K where Exp(x, y) is a binary
predicate for the set of solutions of the exponential differential equation. Therefore a
natural question arises: if one carries out a Hrushovski construction with this predi-
mension and class of reducts, will one end up with a similar reduct of a (saturated)
differentially closed field? In other words, we can ask whether a Hrushovski construc-
tion will yield the theory TExp = Th(FExp), where F is a differentially closed field.
Zilber calls predimensions with this property adequate. Thus the question is whether
the Ax-Schanuel inequality is adequate.

Cecily Crampin studied the exponential differential equation in her DPhil thesis
[Cra06] and gave a criterion for a system of exponential differential equations to have
a solution (analogous to pseudo-exponentiation), known as existential or exponential
closedness (in fact, it is a special case of the full existential closedness property proved
by Kirby). She also considered the predimension function and proved some form of
strong existential closedness for reducts of differentially closed fields. Her results can
be used to show that Ax-Schanuel is adequate, though it is not explicit in her work
as she does not construct the strong Fraïssé limit.

Jonathan Kirby considered this problem in a much more general context. He
studied exponential differential equations of semiabelian varieties, observed that Ax-
Schanuel holds in that setting too and, using the amalgamation-with-predimension
construction, proved, in our terminology, that it is adequate, along with giving an ax-
iomatisation of the complete theory of the corresponding reducts (see [Kir06, Kir09]).
The axiomatisation is again very similar to pseudo-exponentiation (and adaptations
of many arguments and concepts from Zilber’s work are used in the analysis of the
exponential differential equations). An important property that shows adequacy of
Ax-Schanuel is strong existential closedness which means that saturated models of
TExp are existentially closed in strong extensions. This can be given an equivalent al-
gebraic formulation stating that certain varieties have generic exponential points. In
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other words, we can think of this property as an “exponential Nullstellensatz”. More
details on this, in particular an axiomatisation of TExp, will be presented in Section
5.1.

Once this is done, one naturally asks the question of whether something similar
can be done for other differential equations. In other words, one wants to find ade-
quate predimension inequalities for differential equations. Thus, by an Ax-Schanuel
type inequality we mean a predimension inequality. Adequacy gives us a good under-
standing of the model theoretic and geometric properties of the differential equation
under consideration. In particular, considering reducts of differentially closed fields
with the field structure and a relation for solutions of our equation (and possibly their
derivatives) one normally gets some criteria for a system of equations in the reduct
to have a solution. These criteria are dictated by the “strong existential closedness”
property. Then one obtains an axiomatisation of the (first-order) theory of the equa-
tion, i.e. of the corresponding reduct. Understanding which systems have a solution
is equivalent to asking which algebraic varieties contain a point that is a solution
(coordinate-wise) of our differential equation. In this regard the nature of the reduct
and its axiomatisation is geometric. These ideas will be illustrated on the example
of the exponential differential equation in Section 5.1. More details will be given in
Chapter 6 where we study the differential equation of the j-invariant, carry out a
Hrushovski construction with the predimension given by the Ax-Schanuel theorem
for j, and give an axiomatisation of the amalgam.

Thus, the main question of our interest is the following.

Question 1.1.2. Which differential equations satisfy an adequate predimension in-
equality?

This question is also important from a number theoretic point of view since Ax-
Schanuel type statements (often combined with o-minimality, a branch of model the-
ory) have interesting applications in number theory and in particular contribute to
our understanding of the corresponding number theoretic conjectures like Schanuel’s
conjecture ([BKW10, Pil15, Kir10]). In particular, the Ax-Schanuel theorem was
used by Zilber to establish a weak form of the CIT conjecture ([Zil02]) and by Kirby
to prove a weak version of Schanuel’s conjecture (in exponential fields) and to de-
duce from this that there are at most countably many “essential” counterexamples to
Schanuel’s conjecture ([Kir10]).

Apart from this, Ax-Schanuel type statements give information about algebraic
relations between the complex meromorphic solutions of a given differential equation.
This is useful from the point of view of the theory of differential equations, complex
functions and functional transcendence.

This thesis is constructed around the above question. We give some partial answers
which contribute to our understanding of the general picture.

1.2 Summary of the thesis
Now we give a summary of the thesis and indicate the main results of each chapter.
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In Chapter 2 we present basic definitions and results on differential fields and
strongly minimal sets that will be used throughout the thesis.

Chapter 3 gives an axiomatic approach to predimensions and Hrushovski style
amalgamation-with-predimension constructions. In particular, we define adequacy of
a predimension inequality. We also consider some examples and show how they fit
with the presented approach.

Question 1.1.2 turns out to be closely related to another interesting problem,
namely, recovering the differential structure in reducts of differentially closed fields.
The idea is that definability of a derivation would imply that there is no non-trivial
adequate predimension inequality for the given differential equation. So we study
the question of definability of a derivation in reducts of differentially closed fields in
Chapter 4. This is a natural problem to explore even outside the context of our main
question. Indeed, it is the differential analogue of the problem of recovering the field
structure from reducts of algebraically closed fields and from strongly minimal sets in
general, which is a well-studied problem in model theory of fields (see Section 4.1 for
more details and references). Note however that we will not study arbitrary reducts
but only those that have the field structure of the original differential field.

We obtain several criteria for definability of a derivation which we present below.
But first let us fix the setting. Let F = (F ; +, ·,D, 0, 1) be a sufficiently saturated
model of DCF0 (differentially closed fields of characteristic zero). Pick an element
t ∈ F with D t = 1 and add it to our language as a constant symbol. Then by definable
we mean definable without parameters in this new language. Fix some collection R of
definable sets in F and consider the reduct FR := (F ; +, ·, 0, 1, t, P )P∈R. In order to
distinguish between the same notions in the differentially closed field F and its reduct
FR we will add a subscript D or R respectively to their notations. For instance, MRD

stands for Morley rank in F while MRR means Morley rank in FR.
Fix a generic (over the empty set) element a in F . This means that MRD(a) = ω

or, equivalently, a is differentially transcendental over Q. Denote TR := ThFR and
T+
R := Th(F ; +, ·, 0, 1, t, a, P )P∈R. Let also k0 := Q(t). In Chapter 4 we will prove

the following theorem.

Theorem 4.6.11. For a generic point a ∈ F the following are equivalent:

1. D is definable in the reduct FR,

2. MRR(D a/a) < ω,

3. MRR(D a/a) = 0,

4. tpR(D a/a) forks over the empty set,

5. The set {Dn a : n ≥ 0} is not (forking) independent in FR,

6. dclR(a) = k0〈a〉(= dclD(a)),

7. dclR(a) ) k0(a),

8. aclR(a) = (k0〈a〉)alg(= aclD(a)),
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9. aclR(a) ) (k0(a))alg,

10. Every model of T+
R is the R-reduct (with canonical interpretation) of a differen-

tially closed field,

11. Every automorphism of FR fixes D (the graph of D) setwise.

Further, using these criteria (in fact, only the equivalence of 1 and 2 above suffices)
we establish the following result.

Theorem 4.8.2. If TR is inductive (i.e. ∀∃-axiomatisable) and defines D then TR is
model complete.

The contrapositive of this theorem states that if D is definable in a reduct of a dif-
ferentially closed field which is not model complete then it cannot be ∀∃-axiomatisable.
Model completeness of reducts is expected to be rare, so for reducts where D is de-
finable we should not expect an ∀∃-axiomatisation.

We can also consider another formulation of Theorem 4.8.2: if TR is not model
complete and is inductive, then it does not define D. As we said above, TR is not
expected to be model complete, so in inductive reducts definability of a derivation
is expected to be rare. This implies in particular that the exponential differential
equation does not define D since its first order theory is inductive and not model
complete (see Sections 4.8 and 5.1).

Theorem 4.8.2 will be used in Section 3.4 to justify our point that definability
of a derivation in a reduct of a differentially closed field implies that the reduct in
consideration cannot have a (strongly) adequate predimension inequality. We have
one more result in this direction.

Theorem 4.7.1. Assume the underlying fields of finitely generated structures from
our strong amalgamation class are algebraically closed of finite transcendence degree
over Q. Assume further that generic 1-types (in the sense of the pregeometry associ-
ated to the predimension) are not algebraic. If D is definable in FR and δ is strongly
adequate, then the reduct is model complete and hence δ is trivial.

Next, we study linear differential equations with constant coefficients (the expo-
nential differential equation being a special case of it) in Chapter 5. We generalise
Ax-Schanuel and thus establish predimension inequalities for those equations. We
also prove they are adequate and axiomatise the first-order theories of those equa-
tions. Our results (of Chapter 5) rely heavily on the aforementioned analysis of the
exponential differential equation by Kirby.

We formulate the main results of Chapter 5 below. For a differential field K and
a non-constant element x ∈ K define a derivation ∂x : K → K by ∂x = (Dx)−1 · D.
Then consider the differential equation

∂nxy + cn−1∂
n−1
x y + . . .+ c1∂xy + c0y = 0, (2.1)

where the coefficients are constants with c0 6= 0. Let λ1, . . . , λn be the roots of the
characteristic polynomial p(λ) = λn +

∑
0≤i<n ciλ

i. Then the Ax-Schanuel theorem
for (2.1) is as follows.
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Theorem 5.2.4. Let (xi, yi), i = 1, . . . ,m, be non-constant solutions to the equation
(2.1) in a differential field K such that yi, ∂xiyi, . . . , ∂n−1

xi
yi are linearly independent

over C for every i. Then

tdC C(x̄, ȳ, ∂x̄ȳ, . . . , ∂
n−1
x̄ ȳ) ≥ ldimQ(λ1x̄, . . . , λnx̄/C) + 1, (2.2)

where ∂jx̄ȳ := (∂jx1y1, . . . , ∂
j
xmym).

We work with reducts of differential fields with a relation En(x, y0, y1, . . . , yn−1)
which consists of all tuples (x, y, ∂xy, . . . , ∂

n−1
x y) where (x, y) is a solution to (2.1).

Then (2.2) can be axiomatised in a first-order way in the language of those reducts.
For a complete axiomatisation of these reducts we will need an important axiom
scheme called Existential Closedness. For a structure F in our language it can be
formulated as follows. (For the definition of En-Exp-rotundity see section 5.3).

EC’ For each irreducible En-Exp-rotund variety V ⊆ Fm(n+1) the intersection V (F )∩
Em
n (F ) is non-empty.

We will see that this axiom scheme along with the inequality (2.2) and some basic
axioms (which reveal the relationship between En and Exp) axiomatise the first order
theory TEn of reducts of differentially closed fields in the corresponding language.

In Theorem 5.5.2 we give a reformulation of Theorem 5.2.4 where we deal with
arbitrary solutions without assuming linear independence of yi, ∂xiyi, . . . , ∂n−1

xi
yi. This

allows us to rewrite (2.2) as a predimension inequality. Finally, we prove that it is
adequate (Theorem 5.5.4) using the adequacy of the Ax-Schanuel inequality for the
exponential differential equation.

Chapter 6 is devoted to the differential equation of the j-function. Starting with
the Ax-Schanuel inequality for j (established by Pila and Tsimerman in [PT16]), we
show that the class of models of a certain theory (which is essentially the universal
theory of reducts of differential fields with a relation for the equation of j) has the
strong amalgamation property. Then we construct the strong Fraïssé limit and give
an axiomatisation of its first-order theory. Thus, the given axiomatisation will be
a candidate for the theory of the differential equation of the j-function assuming
adequacy of the Pila-Tsimerman inequality. Note however that adequacy is still open
and we do not have an answer to that question.

Chapter 7 establishes some connections between predimension inequalities of a
certain type (similar to Ax-Schanuel for j) and strongly minimal sets in DCF0. As-
suming that a differential equation E(x, y) satisfies a predimension inequality of the
form “td− dim” where dim is a certain dimension of trivial type we deduce that the
fibre U := {y : E(t, y) ∧ D y 6= 0} (where t is an element with D t = 1) is strongly
minimal and geometrically trivial (we work in a differentially closed field K). Thus we
get a necessary condition for E to satisfy an Ax-Schanuel inequality of the given form.
This is a step towards the solution of our main problem. In particular it gives rise to
an inverse problem: given a one-variable differential equation which is strongly mini-
mal and geometrically trivial, can we say anything about the Ax-Schanuel properties
of its two-variable analogue? See Section 7.4 for more details.

Our main result of Chapter 7 is as follows.
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Theorem 7.1.7. Let K be a differentially closed field with field of constants C and
P be a non-empty collection of algebraic polynomials P (X, Y ) ∈ C[X, Y ]. Let also
E(x, y) be given by a differential equation f(x, y) = 0 with m := ordY f(X, Y ). As-
sume E satisfies the following Ax-Schanuel condition.

Let x1, . . . , xn, y1, . . . , yn be non-constant elements of K with f(xi, yi) = 0. If
P (yi, yj) 6= 0 for all P ∈ P and i 6= j then

tdC C(x1, y1, ∂x1y1, . . . , ∂
m−1
x1

y1, . . . , xn, yn, ∂xnyn, . . . , ∂
m−1
xn yn) ≥ mn+ 1.

Assume finally that the differential polynomial g(Y ) := f(t, Y ) is absolutely irre-
ducible. Then

• U := {y : f(t, y) = 0 ∧D y 6= 0} is strongly minimal with trivial geometry.

• If, in addition, P = {X − Y } then U is strictly disintegrated and hence it has
ℵ0-categorical induced structure.

We also obtain a characterisation of the induced structure on Cartesian powers
of U in terms of special subvarieties. Further, we prove some generalisations of the
above theorem. See Section 7.1 for more details.

A motivating example for this is the Ax-Schanuel inequality for the differential
equation of the j-function. It is a predimension inequality of the above form. Given
this, one can easily see that the theorem of Freitag and Scanlon [FS15], stating that
the differential equation of j defines a strongly minimal set with trivial geometry, is
a special case of Theorem 7.1.7.

1.3 Notations
In this section we fix some notations that will be used throughout the thesis.

• We use upper-case letters X, Y, . . ., possibly with subscripts, for indeterminates
of polynomials (whether differential or algebraic). Lower-case letters (with sub-
scripts and superscripts) will be used for elements of a set and for variables in
formulas (it will be clear from the context which one we mean). In particular
if f(X) is a (differential) polynomial then f(X) = 0 means that f is identically
zero, f(a) = 0 means that f vanishes at a and f(x) = 0 is a formula with a free
variable x.

• Upper-case letters are also used to denote sets or structures. Often structures
with domains A,B,M,N,K, F, . . . will be denoted by A,B,M,N ,K,F , . . . re-
spectively.

• The length of a tuple ā will be denoted by |ā|. For a set A and a tuple ā we
will sometimes write ā ∈ A or ā ⊆ A and mean that all coordinates of ā are in
A, i.e. ā ∈ A|ā|.
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• For two sets X, Y the notation X ⊆fin Y means X is a finite subset of Y . The
union X ∪ Y will sometimes be written as XY . The power set of X is denoted
by P(X).

• All fields considered in this work will be of characteristic zero. The algebraic
closure of a field is denoted by Kalg, and we use Kdif for the differential closure
of a differential field. The derivation of a differential field will be denoted by ′
or D. The field of constants of a differential field will normally be denoted by
C.

• If F is a differential field and A ⊆ F then we denote by 〈A〉 the differential
subfield generated by A. If K ⊆ F are differential fields and A ⊆ F then
K〈A〉 is the differential subfield generated by K and A. The algebraic subfield
generated by K and A is denoted by K(A). The ring of differential polynomials
of n variables over a differential field F is denoted by F{X1, . . . , Xn}. For a
non-constant point x ∈ F the differentiation with respect to x is a derivation
∂x : F → F defined by y 7→ y′

x′
, where ′ is the derivation of F .

• We write spanK(A) for the linear span of a subset A ⊆ V of a K-vector space
V . For the linear dimension of V over K we use the shorthand ldimK V .

• If K ⊆ F are fields, the transcendence degree of F over K will be denoted by
tdK F or td(F/K). When we work in an ambient algebraically closed field F
and V is a variety defined over F , we will normally identify V with the set of
its F -points V (F ). The algebraic locus (Zariski closure) of a tuple ā ∈ F over
K will be denoted by LocK(ā) or Loc(ā/K) (and identified with the set of its
F -points). By an irreducible variety we always mean absolutely irreducible.

• Given an algebraically closed field K and a variety V ⊆ Kn+m defined over Q,
let P be the projection of V onto the last m coordinates, and for p ∈ P let V (p)
(also denoted Vp) be the fibre of the projection above p ∈ P . Then we have
a parametric family of varieties (V (p))p∈P . For a subfield C ⊆ K the family
(V (p))p∈P (C) will be called a parametric family over C.

• Morley rank, U -rank and differential rank will be denoted by MR,U and DR
respectively.

• If M is a structure and ā ∈ Mn is a finite tuple, then the complete type
of ā in M over a parameter set A ⊆ M will be denoted by tpM(ā/A) while
qftpM(ā/A) stands for the quantifier-free type. We often omit the superscript
M if the ambient model is clear.

• We use the symbol |̂ for forking independence.

For convenience, we will recall some of the above notations throughout the thesis
when we use them.
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Chapter 2

Preliminaries

In this chapter we present some preliminary definitions and results that we will use
in the thesis. We assume the reader is familiar with basics of model theory, referring
to to [Mar02] and [TZ12] for a general introduction to the subject. For background
on algebra, Lang’s book [Lan02] is a very good reference, while for basics of algebraic
geometry that we will need the reader is referred to [Sha13].

2.1 Differentially closed fields
In this section we present basic definitions and facts about differential fields. For
more details and proofs of the results stated here we refer the reader to [Mar05b,
Poi00, Kap57, Pil01, Pil03, vdD07].

Throughout the thesis we assume all rings that we deal with are commutative
with identity and have characteristic zero.

The language of differential rings is LD = {+, ·, 0, 1,D} where D is a unary function
symbol for derivation of the ring1. In this language we can axiomatise the theory of
differential (rings) fields with the axioms of (rings) fields with two extra axioms stating
that D is additive and satisfies Leibniz’s rule, i.e. ∀x, y D(x + y) = Dx + D y and
∀x, y D(xy) = xD y + yDx. The theory of differential fields of characteristic zero is
denoted by DF0.

The field of constants of a differential field (F ; +, ·, 0, 1,D) is defined as the ker-
nel of the derivation, i.e. CF = {x ∈ F : Dx = 0}. This is always a relatively
algebraically closed subfield of F .

If F is a differential field then the ring of differential polynomials over F is a dif-
ferential ring extension defined as F{X} = F [X,D(X),D2(X), . . .] with D(Dn(X)) =
Dn+1(X). Thus, differential polynomials are of the form p(X,DX, . . . ,DnX) where
p(X0, . . . , Xn) ∈ F [X0, . . . , Xn] is an algebraic polynomial over F . A differential ra-
tional function over F is the quotient of two differential polynomials over F . The
field of all differential rational functions of X over F will be denoted by F 〈X〉. We
can also consider differential polynomials and rational functions in several variables,

1We will sometimes use the symbol ′ for derivation.
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which are defined analogously. If f(X1, X2, . . . , Xn) is a differential polynomial, then
f(x1, . . . , xn) = 0 is a differential equation over F .

Further, for F a differential field and A ⊆ F a subset we denote by 〈A〉 or
Q〈A〉 the differential subfield generated by A. If K ⊆ F are differential fields and
A ⊆ F then K〈A〉 is the differential subfield generated by K and A. The algebraic
subdfield generated by K and A is denoted by K(A). One can easily verify that
K〈A〉 = K({Dn a : a ∈ A, n ∈ N}).

The order of f(X), denoted ord(f), is the biggest n for which DnX occurs in f .
For n = ord(f) the greatest m for which (DnX)m occurs in f is the degree of f . In
the case of polynomials of several variables we will write ordXi

(f) for the order of f
with respect to Xi.

The theory DF0 has a model completion. It is called the theory of differentially
closed fields of characteristic zero. To axiomatise this theory we add the existential
closedness axiom scheme: a differential field (F ; +, ·,D, 0, 1) is differentially closed if
for any non-constant differential polynomials f(X) and g(X) over F with ord(g) <
ord(f) there exists x ∈ F such that f(x) = 0 and g(x) 6= 0. We let DCF0 denote
the theory of differentially closed fields of characteristic 0. In [PP98] D. Pierce and
A. Pillay give a geometric axiomatisation of DCF0. It immediately follows from the
definition that differentially closed fields are algebraically closed (in the field theoretic
sense). Hence, the field of constants is algebraically closed as well.

Suppose K ⊆ F are two models of DF0. For an element a ∈ F one defines
the differential rank (or dimension or order) of a over K, denoted DR(a/K) (or
dim(a/K) or ord(a/K)), as the transcendence degree of K〈a〉 over K. If it is finite,
say n, then there is a differential polynomial f(X) ∈ K{X} of order n with f(a) = 0.
If f is the simplest (i.e. of lowest order and degree) among such polynomials, then it
is called the minimal polynomial of a over K. This polynomial must be irreducible.
The elements a,D a, . . . ,Dn−1 a are algebraically independent, while a,D a, . . . ,Dn a
are algebraically dependent over K. In this case a is called differentially algebraic
over K, otherwise it is called differentially transcendental over K. In the latter case
DR(a/K) is defined to be ω.

In analogy with pure fields one can define the differential transcendence degree
of a differential field F over a differential subfield K. Elements x1, . . . , xn ∈ F are
called differentially independent over K if there is no non-zero differential polynomial
f(X1, . . . , Xn) ∈ K{X1, . . . , Xn} with f(x1, . . . , xn) = 0. The cardinality of a max-
imal differentially independent set is the differential transcendence degree of F over
K, denoted dif. tr. deg.(F/K). When we omit K, we mean the differential transcen-
dence degree over Q. This is well defined. In fact, differential independence defines a
pregeometry on models of DCF0.

The theory of differentially closed fields is model theoretically very nice. Namely,
it admits elimination of quantifiers, elimination of imaginaries, it is complete and
model complete. Further, DCF0 is ω-stable with Morley rank ω.

Suppose K |= DF0 and K ⊆ F is a differentially closed extension of K. Then for
any element a ∈ F the following inequality holds

U(a/K) ≤ MR(a/K) ≤ DR(a/K),
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where U(a/K) and MR(a/K) stand respectively for Morley rank and U-rank of a
over K. Moreover, a is differentially transcendental over K if and only if U(a/K) =
MR(a/K) = DR(a/K) = ω. In this case a is called generic over K (if we omit K then
it means a is generic over the empty set or, equivalently, over the prime differential
subfield).

There is a unique type of a differentially transcendental element (over a subfield
K) which is determined by formulas {f(x) 6= 0 : f(X) ∈ K{X}}. This is called the
generic type over K and has rank ω. The generic n-type is defined analogously and
has rank ω · n.

Every differential field K has a differential closure which is defined as the prime
model of DCF0 over K. It always exists and is unique up to isomorphism (over K)
in ω-stable theories. We will denote the differential closure of K by Kdif . Note that
differential closures may not be minimal nevertheless.

Let us also describe the model theoretic algebraic and definable closures of a set
in differentially closed fields. We will use these results later in Chapter 4.

Proposition 2.1.1. Suppose F |= DCF0 and A ⊆ F is a subset. Then

• The definable closure of A coincides with the differential subfield generated by
A, that is, dcl(A) = Q〈A〉.

• The model theoretic algebraic closure of A coincides with the field theoretic alge-
braic closure of the differential subfield generated by A, i.e. acl(A) = (Q〈A〉)alg.

At the end we present Seidenberg’s embedding theorem, which will be mentioned
and used several times in the thesis. For a proof, see [Mar05b], Appendix A.

Theorem 2.1.2 (Seidenberg’s embedding theorem). Every countable differential field
can be embedded into the field of germs of meromorphic functions at the origin.

2.2 Differential algebraic curves
Now we define differential curves and make some easy observations about them that
will be used in Chapter 4.

Definition 2.2.1. A differential algebraic curve E in a differential field K is a set
in K2 defined by a differential equation of two variables, i.e. E = {(x, y) ∈ K2 :
f(x, y) = 0} for some f(X, Y ) ∈ K{X, Y }. For brevity we will sometimes say
differential curve instead of differential algebraic curve.

It makes sense to consider curves not only in K2 (those are in fact plane curves)
but also in Kn for any integer n ≥ 1 (those can be defined as Kolchin closed sets of
“dimension” 1, i.e. with Morley rank at least ω and less than ω · 2). However, we do
not need that generality in this work.

Note also that by an algebraic curve we mean a set defined by an algebraic equation
of two variables. Let D := {(x,Dx) : x ∈ K} be the graph of D in K. This is an
example of a differential curve.
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Further, we note that DCF0 has minimality properties. By this we mean that
MD(x = x) = 1, where MD stands for Morley degree (as we have already mentioned
MR(x = x) = ω). As in algebraically closed fields “small” means finite, in differentially
closed fields small means of finite rank (any of the ranks mentioned above). Thus any
definable set is either small or co-small, i.e. its complement is small.

Definition 2.2.2. A (differential) curve in general sense or an almost curve in K
is a definable subset of K2 the generic fibres of which are of finite Morley rank. In
contrast to this we will sometimes use the nomenclature proper (differential) curve
for a differential algebraic curve.

Thus a definable set E ⊆ K2 is a curve in general sense if for any generic points
a, b ∈ K the fibres Ea = {y ∈ K : (a, y) ∈ E} and Eb = {x ∈ K : (x, b) ∈ E}
are small. Clearly any proper differential curve is a curve in general sense. On the
other hand it is easy to notice that any curve in general sense must be contained in
a proper differential curve. This means it must be defined by a formula of the form
ϕ(x, y) = [f(x, y) = 0 ∧ ψ(x, y)] where f is a differential polynomial and ψ is any
formula. In this case the Morley rank of generic fibres of E is uniformly bounded (by
the number max(ordX(f), ordY (f))).

We could alternatively define curves in general sense to be definable sets of Morley
rank less than ω · 2. One can also require MR(E) to be at least ω in order to avoid
any degeneracies like Dx = 0 ∧D y = 0 (which correspond to finite sets in ACF0).

2.3 Two theorems on dimension of algebraic varieties
Here we formulate two classical results from algebraic geometry which will be used
several times throughout the thesis. We refer the reader to [Sha13] for proofs.

Theorem 2.3.1 (Dimension of intersection). Let U be a smooth irreducible algebraic
variety and V,W ⊆ U be subvarieties. Then any non-empty component X of the
intersection V ∩W satisfies

dimX ≥ dimV + dimW − dimU.

The inequality is equivalent to codimX ≤ codimV + codimW (codimensions in
U).

Definition 2.3.2. Let U, V,W be as above. A non-empty component X of V ∩W is
said to be typical if dimX = dimV + dimW − dimU and atypical otherwise.

The following fact is the “additive formula for fibres”.

Theorem 2.3.3. Let f : V → W be a surjective regular map between irreducible
varieties. If n = dimV, m = dimW then n ≥ m, and

(i) dimX ≥ n−m for any w ∈ W and any component X of the fibre f−1(w),

(ii) there is a non-empty open subset U ⊆ W such that dim f−1(w) = n − m for
any w ∈ U .
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2.4 Pregeometries
Definition 2.4.1. A pregeometry is a pair (X, cl) where X is a non-empty set and
cl : P(X) → P(X) is a map satisfying the following conditions for all A ⊆ X and
a, b ∈ X:

(i) (Reflexivity) A ⊆ cl(A),

(ii) (Finite character) cl(A) =
⋃
A0⊆finA

cl(A),

(iii) (Transitivity) cl(cl(A)) = cl(A),

(iv) (Exchange) a ∈ cl(Ab) \ cl(A)⇒ b ∈ cl(Aa).

If cl satisfies the first three conditions then it is called a closure operator. A vector
space with linear closure and an algebraically closed field with algebraic closure are
basic examples of pregeometries.

In this section (X, cl) will always be a pregeometry.

Definition 2.4.2. A subset A ⊆ X is said to be

(i) independent, if a /∈ cl(A \ a) for all a ∈ A,

(ii) a generating set if X = cl(A),

(iii) a basis if it is an independent generating set.

For a subset Y ⊆ X we can define a pregeometry on Y , called the restriction
(to Y ) and denoted clY , by clY (A) = cl(A) ∩ Y for A ⊆ Y . The relativisation is a
pregeometry (X, clY ) defined by clY (A) = cl(A ∪ Y ).

All bases of a pregeometry have the same cardinality called the dimension of X
and denoted by d(X) or dim(X). The dimension of a subset Y is the dimension of
the pregeometry (Y, clY ). The relative dimension d(X/Y ) is defined as the dimension
of (X, clY ).

The dimension function of a pregeometry is submodular, that is, for any A,B ⊆ X
we have

d(AB) + d(A ∩B) ≤ d(A) + d(B).

If equality holds for all closed A,B then the pregeometry is called modular, while
if equality holds for all closed A,B with d(A ∩ B) > 0 then it is said to be locally
modular.

A pregeometry is called trivial if cl(A) =
⋃
a∈A cl(a) for all A ⊆ X.

Example 2.4.3.

• An infinite set with no structure is a trivial pregeometry (cl({x}) = {x} for all
x ∈ X). The dimension of a set is equal to its cardinality.
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• A vector space with linear closure is a modular, non-trivial pregeometry. The
dimension is the linear dimension.

• An algebraically closed field with algebraic closure is a non-locally modular
pregeometry. Its dimension is equal to the transcendence degree over the prime
subfield.

The above examples are three standard examples of pregeometries. More gener-
ally, a strongly minimal set with (model theoretic) algebraic closure is a pregeometry.
Zilber’s famous Trichotomy Conjecture states that all strongly minimal sets must
be similar to one of those, i.e. they must be either trivial, or “vector space-like”, or
“field-like”. The conjecture was refuted by Hrushovski in 1993 (see [Hru93]).

2.5 Trivial strongly minimal sets
In this section we define some standard properties of strongly minimal sets that will
be used throughout Chapter 7. We also prove that geometric triviality of a strongly
minimal set does not depend on the set of parameters over which it is defined. It
is of course a well known classical result, but we sketch a proof here since we use it
in the proof of Corollary 7.1.8. For a detailed account of strongly minimal sets and
geometric stability theory in general we refer the reader to [Pil96].

As it was said in the previous section, algebraic closure defines a pregeometry on
a strongly minimal set. More precisely, if X is a strongly minimal set in a structure
M defined over A ⊆M then the operator

cl : Y 7→ acl(AY ) ∩X, for Y ⊆ X,

is a pregeometry.

Definition 2.5.1. Let M be a structure and X ⊆ M be a strongly minimal set
defined over a finite set A ⊆M .

• We sayX is geometrically trivial (over A) if whenever Y ⊆ X and z ∈ acl(AY )∩
X then z ∈ acl(Ay) for some y ∈ Y . In other words, geometric triviality means
that the closure of a set is equal to the union of closures of singletons.

• X is called strictly disintegrated (over A) if any distinct elements x1, . . . , xn ∈ X
are independent (over A).

• X is called ℵ0-categorical (over A) if it realises only finitely many 1-types over
AY for any finite Y ⊆ X. This is equivalent to saying that acl(AY )∩X is finite
for any finite Y ⊆ X.

Note that strict disintegratedness implies ℵ0-categoricity and geometric triviality.

Theorem 2.5.2. Let M be a model of an ω-stable theory and X ⊆ M be as above.
If X is geometrically trivial over A then it is geometrically trivial over any superset
B ⊇ A.
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Proof. By expanding the language with constant symbols for elements of A we can
assume that X is ∅-definable. Also we can assume B = {b1, . . . , bn} is finite. Let
z ∈ acl(BY ) for some finite Y ⊆ X. By stability tp(b̄/X) is definable over a finite
C ⊆ X and we may assume that C ⊆ acl(B) ∩ X. Therefore z ∈ acl(CY ). By
geometric triviality of X (over ∅) we have z ∈ acl(c) for some c ∈ C or z ∈ acl(y) for
some y ∈ Y . This shows geometric triviality of X over B.

As we saw in the proof, all definable subsets of Xm over B are definable over
acl(B)∩X (which is the stable embedding property). The same argument shows that
ℵ0-categoricity does not depend on parameters (see also [NP16]). Of course this is
not true for strict disintegratedness but a weaker property is preserved. Namely if X
is strictly disintegrated over A then any distinct non-algebraic elements over B are
independent over B.
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Chapter 3

Predimensions and Hrushovski
Constructions

In this chapter we define predimensions and strong embeddings and observe several
standard facts about them. Then we give a brief account of Hrushovski’s amalgamation-
with-predimension construction. It is the uncollapsed version of a full Hrushovski
construction [Hru93, Hru92]. This will be used to define adequacy of a predimen-
sion inequality. The Ax-Schanuel inequality for the exponential differential equation
(Ax [Ax71]) and its analogue for the differential equation of the modular j-function
(Pila-Tsimerman [PT16]) are our main examples.

We will observe the close relationship between triviality of an adequate predimen-
sion inequality and model completeness of the corresponding strong Fraïssé limit.
This will be used to prove that if a derivation is definable from a differential equation
then the latter cannot satisfy any non-trivial adequate predimension inequality (as-
suming ∀∃-axiomatisability). We will also see that adequate predimensions of certain
kind do not allow definability of a derivation without any assumptions on the theory
of the reduct.

We mainly follow Wagner [Wag94] and Baldwin [Bal02] in defining predimensions
and related notions. They give an axiomatic approach to Hrushovski constructions.
Wagner works in a relational language, while Baldwin’s setting does not have this
restriction. We need that generality since we always have a field structure in our
examples. Note that Baldwin imposes stronger definability conditions for the pred-
imension than we do. The reason is that the Ax-Schanuel predimension does not
satisfy his definability axioms. Our approach is motivated by Kirby’s analysis of the
exponential differential equations [Kir09] and Zilber’s approach to complex exponen-
tiation and Schanuel’s conjecture.

Hrushovski invented the aforementioned constructions in order to produce struc-
tures with “exotic” geometry and refute some conjectures on categorical theories and
answer some questions. Most notably, he refuted Zilber’s Trichotomy Conjecture
[Zil84a, Zil84b] stating that any uncountably categorical and non-locally modular
theory is bi-interpretable with an algebraically closed field, and Lachlan’s conjecture
[Lac74] stating that any stable ℵ0-categorical theory is totally transcendental. Later
on Hrushovski’s techniques were adapted and used in various settings to construct in-

16



teresting structures. The reader is referred to [Hru92, Hru93, Wag94, Wag09, Bal02,
BH00, Zil04b] for details on Hrushovski constructions and examples of “exotic” struc-
tures (theories) that can be obtained by those constructions.

3.1 Predimensions
Let L be a countable language and C be a collection of L-structures closed under
isomorphism and intersections. The latter can be understood in a category theoretic
sense, but for us it will be enough to assume that if Ai ∈ C, i ∈ I, are substructures
of some A ∈ C then

⋂
i∈I Ai ∈ C. We will also assume that C has the joint embedding

property, i.e. for any A,B ∈ C there is C ∈ C such that A and B can be embedded
into C. Assume further that C contains a smallest structure S ∈ C, that is, S can be
embedded into all structures of C.

Definition 3.1.1. For B ∈ C and X ⊆ B the C-closure of X inside B (or the
C-substructure of B generated by X) is the structure1

〈X〉B :=
⋂

A∈C:X⊆A⊆B

A.

A structure A ∈ C is finitely generated if A = 〈X〉A for some finite X ⊆ A. The
collection of all finitely generated structures from C will be denoted by Cf.g..

Note that in general finitely generated in this sense is different from being finitely
generated as a structure. We will assume however that finitely generated structures
are countable.

Since S is the smallest structure in C, it is in fact generated by the empty set, i.e.
S = 〈∅〉. So, by abuse of notation, we will normally write ∅ instead of S.

For A,B ∈ C by A ⊆f.g. B we mean A is a finitely generated substructure of
B. When we have two structures A,B ∈ C we would like to have a notion of a
structure generated by A and B. However, this cannot be well-defined without em-
bedding A and B into a bigger C. Given such a common extension C, we will denote
ABC := 〈A ∪ B〉C . Often we will drop the subscript C meaning that our statement
holds for every common extension C (or it is obvious in which common extension we
work). This remark is valid also when we write A ∩ B which should be understood
as the intersection of A and B after identifying them with their images in a common
extension.

In general a substructure of a finitely generated structure may not be finitely
generated. However, in our examples this does not happen. So we make the following
assumption.

Assumption 3.1.2. Assume C satisfies the following condition.
1In the differential setting the notation 〈A〉 is used to denote the differential subfield generated

by a set A. The meaning of this notation will be clear from the context. In particular it is used only
for C-closure in this chapter.
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FG If A ∈ C, B ∈ Cf.g. with A ⊆ B then A ∈ Cf.g..

Definition 3.1.3. A predimension on Cf.g. is a function δ : Cf.g. → Z with the
following properties:

P1 δ(∅) = 0,

P2 If A,B ∈ Cf.g. with A ∼= B then δ(A) = δ(B),

P3 (Submodularity) For all A,B ∈ Cf.g. and C ∈ C with A,B ⊆ C we have

δ(AB) + δ(A ∩B) ≤ δ(A) + δ(B). (1.1)

If, in addition, such a function is monotonic, i.e. A ⊆ B ⇒ δ(A) ≤ δ(B), and
hence takes only non-negative values, then δ is called a dimension.

Definition 3.1.4. Given a predimension δ, for a finite subset X ⊆fin A ∈ C one
defines

δA(X) := δ(〈X〉A).

The following is Hrushovski’s ab initio example from [Hru93].

Example 3.1.5. Let C be the class of all structures (M ;R) in a language L = {R}
consisting of one ternary relation R. Then Cf.g. is the collection of all finite L-
structures. For A ∈ Cf.g. define

δ(A) := |A| − |R(A)|.

Then δ is a predimension.

Other examples of predimensions, which are more relevant to our work, will be
given in Section 3.3.

Now we define the relative predimension of two structures, which depends on
a common extension of those structures (so we work in such a common extension
without explicitly mentioning it).

Definition 3.1.6. The relative predimension is defined as follows.

• For A,B ∈ Cf.g. define δ(A/B) := δ(AB)− δ(B).

• For X ∈ Cf.g. and A ∈ C define δ(X/A) ≥ k for an integer k if for all Y ⊆f.g. A
there is Y ⊆ Y ′ ⊆f.g. A such that δ(X/Y ′) ≥ k. Also, δ(X/A) = k if δ(X/A) ≥ k
and δ(X/A) � k + 1.

In the next definition B is the ambient structure that we work in.

Definition 3.1.7. Let A ⊆ B ∈ C. We say A is strong (or self-sufficient) in B,
denoted A ≤ B, if for all X ⊆f.g. B we have δ(X/A) ≥ 0. One also says B is a strong
extension of A. An embedding A ↪→ B is strong if the image of A is strong in B.

18



It is easy to notice that the above definition will not change if we take a finite set
X instead of a finitely generated structure X.

Lemma 3.1.8. Let A,B ∈ C. Then A ≤ B if and only if for all X ⊆f.g. B we have
δ(X ∩ A) ≤ δ(X).

Proof. Let A ≤ B and X ⊆f.g. B. Choose Y = X ∩ A ⊆f.g. A. Then by definition
there is Y ⊆ Y ′ ⊆f.g. A such that δ(XY ′) ≥ δ(Y ′). Now by submodularity

δ(X ∩ A) = δ(Y ) = δ(X ∩ Y ′) ≤ δ(X) + δ(Y ′)− δ(XY ′) ≤ δ(X).

Conversely, assume the condition given in the lemma holds. We need to prove
that A ≤ B. Let X ⊆f.g. B and Y ⊆f.g. A. Choose Y ′ = XY ∩ A ⊇ Y . Then

δ(XY ′) = δ(XY ) ≥ δ(XY ∩ A) = δ(Y ′)

as XY ⊆f.g. B.

Definition 3.1.9. For B ∈ C and X ⊆ B we define the self-sufficient closure of X
in B by

dXeB :=
⋂

A∈C:X⊆A≤B

A.

It is easy to see that the intersection of finitely many strong substructures is
strong as well. This can be used to show that an arbitrary intersection of strong
substructures is strong. It follows from this that dXeB ≤ B. Note also that ≤ is
transitive.

Lemma 3.1.10. Let M ∈ C be saturated. If X, Y ⊆fin M (with some enumeration)
have the same type in M then 〈X〉M ∼= 〈Y 〉M and dXeM ∼= dY eM and hence δM(X) =
δM(Y ).

Proof. SinceM is saturated and tp(X) = tp(Y ), there is an automorphism that sends
X to Y . Now the lemma follows from P2.

From now on we assume δ(A) ≥ 0 for all A ∈ Cf.g.. In other words ∅ is strong in
all structures of C. Instead of assuming this we could work with the subclass C0 of all
structures with non-negative predimension. However, we find it more convenient to
assume δ is non-negative on Cf.g. since anyway this will be the case in our examples.

Lemma 3.1.11. If B ∈ C and X ⊆f.g. B then

• dXeB is finitely generated, and

• δ(dXeB) = min{δ(Y ) : X ⊆ Y ⊆f.g. B}.
Proof. Let A ⊆f.g. B be such that δ(A) = min{δ(A′) : X ⊆ A′ ⊆f.g. B}. We claim
that A ≤ B. Indeed, for any Y ⊆f.g. B we have

δ(A ∩ Y ) ≤ δ(A)− δ(AY ) + δ(Y ) ≤ δ(Y ).

Thus A ≤ B and hence dXeB is contained in finitely generated A and so is finitely
generated itself.

Further, dXeB ≤ A so δ(dXeB) ≤ δ(A). Now by minimality of δ(A) we conclude
that δ(dXeB) = δ(A).
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A predimension gives rise to a dimension in the following way.

Definition 3.1.12. For X ⊆f.g. B define

dB(X) := min{δ(Y ) : X ⊆ Y ⊆f.g. B} = δ(dXeB).

For X ⊆fin B set dB(X) := dB(〈X〉B).

It is easy to verify that d is a dimension function and therefore we have a natural
pregeometry associated with δ. More precisely, we define clB : P(B)→ P(B) by

clB(X) = {b ∈ B : dB(b/X) = 0}.

Then (B, clB) is a pregeometry and dB is its dimension function.
Self-sufficient embeddings can be defined in terms of d. Indeed, if A ⊆ B then

A ≤ B if and only if for any X ⊆fin A one has dA(X) = dB(X).

Definition 3.1.13. A predimension δ is trivial if all embeddings are strong. Equiva-
lently, δ is trivial if it is monotonic and hence equal to the dimension associated with
it.

Proposition 3.1.14. Let A,B ∈ C be saturated and A � B. Then A ≤ B.

Proof. If A � B then for some X ⊆f.g. B one has δ(X/A) < 0. This means that
there is Y ⊆f.g. A such that for all Y ⊆ Y ′ ⊆f.g. A we have δ(X/Y ′) < 0. Choose
Y ′ = dY eA. The latter is finitely generated by Lemma 3.1.11. Suppose X = 〈x̄〉B and
Y ′ = 〈ȳ〉A for some finite tuples x̄ and ȳ. Let z̄ be a realisation of the type tpB(x̄/ȳ)
in A. If Z = 〈z̄〉A then δ(Z/Y ′) < 0 (by Lemma 3.1.10) which means δ(Y ′Z) < δ(Y ′)
contradicting Lemma 3.1.11.

3.2 Amalgamation with predimension
Now we formulate conditions under which one can carry out an amalgamation-with-
predimension construction. Let C be as above and let δ be a non-negative predimen-
sion on Cf.g..

Definition 3.2.1. The class C is called a strong amalgamation class if the following
conditions hold.

C1 Every A ∈ Cf.g. has at most countably many finitely generated strong extensions
up to isomorphism.

C2 C is closed under unions of countable strong chains A0 ≤ A1 ≤ . . ..

SAP Cf.g. has the strong amalgamation property, that is, for all A0, A1, A2 ∈ Cf.g.
with A0 ≤ Ai, i = 1, 2, there is B ∈ Cf.g. such that A1 and A2 are strongly
embedded into B and the corresponding diagram commutes.
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Remark 3.2.2. Since δ(A) ≥ 0 for all A ∈ Cf.g., it follows that ∅ is strong in all
finitely generated structures and hence the strong amalgamation property implies the
strong joint embedding property.

The following is a standard theorem that follows in particular from the category
theoretic version of Fraïssé’s amalgamation construction due to Droste and Göbel
[DG92] (see [Kir09] for a nice exposition, without a proof though).

Theorem 3.2.3 (Amalgamation theorem). If C is a strong amalgamation class then
there is a unique (up to isomorphism) countable structure U ∈ C with the following
properties.

U1 U is universal with respect to strong embeddings, i.e. every countable A ∈ C
can be strongly embedded into U .

U2 U is saturated with respect to strong embeddings, i.e. for every A,B ∈ Cf.g.
with strong embeddings A ↪→ U and A ↪→ B there is a strong embedding of B
into U over A.

Furthermore, any isomorphism between finitely generated strong substructures of
U can be extended to an automorphism of U .

This U is called the generic model, strong amalgam, strong Fraïssé limit or Fraïssé-
Hrushovski limit of Cf.g.. It has a natural pregeometry associated with the predimen-
sion function as described in the previous section. Note that U2 is normally known
as the richness property in literature (we used the terminology of [DG92] above).

Remark 3.2.4. Since we have assumed ∅ is strong in all structures from C, the
property U2 implies U1. Indeed, for A ∈ Cf.g. we have ∅ ≤ A and ∅ ≤ U . Hence by
U2 there is a strong embedding A ↪→ U . Now since every countable structure in C is
the union of a strong chain of finitely generated structures, every such structure can
be strongly embedded into U . Thus, U2 determines the Fraïssé limit uniquely.

Now we consider a stronger amalgamation property known as the asymmetric
amalgamation property. However, in our examples the class Cf.g. does not have this
property, so we need to assume a subclass has that property.

Assumption 3.2.5. Assume there is a subclass Ĉ ⊆ C with the following properties2.

C3 Every structure A ∈ C has a unique (up to isomorphism over A) extension
Â ∈ Ĉ which is Ĉ-generated by A. If A ∈ Cf.g. then Â ∈ Ĉf.g..

C4 If A,B ∈ C with a strong embedding A ↪→ B then it can be extended to a
strong embedding Â ↪→ B̂.

C5 Ĉ is closed under unions of countable strong chains.

2Ĉf.g. denotes the collection of structures from Ĉ that are finitely Ĉ-generated.
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AAP (Asymmetric Amalgamation Property) If A0, A1, A2 ∈ Ĉf.g. with a strong em-
bedding A0 ≤ A1 and an embedding A0 ↪→ A2 (not necessarily strong), then
there is B ∈ Ĉf.g. with an embedding A1 ↪→ B and a strong embedding A2 ≤ B
such that the corresponding diagram commutes. Moreover, if A0 is strong in
A2 then A1 is strong in B.

Proposition 3.2.6. If Ĉ satisfies AAP then Cf.g. has the strong amalgamation prop-
erty.

Proof. Let A,B1, B2 ∈ Cf.g. with strong embeddings A ↪→ B1, A ↪→ B2. By our
assumptions we have strong extensions A ≤ Â, B1 ≤ B̂1, B2 ≤ B̂2 with Â, B̂1, B̂2 ∈ Ĉ.
Moreover, there are strong embeddings of Â into B̂1 and B̂2. Now we can use the
AAP property of Ĉ to construct a strong amalgam B′ of B̂1 and B̂2 over Â. Let B
be the substructure of B′ C-generated by B1 and B2. Clearly B ∈ Cf.g. and it is a
strong amalgam of B1 and B2 over A.

Notation. For A ∈ Ĉ and a subset X ⊆ A, the substructure of A C-generated by
X will be denoted by 〈X〉CA while 〈X〉ĈA stands for the substructure of A Ĉ-generated
by X. The same pertains to strong substructures generated by X in the two classes.
When no confusion can arise, we will drop the superscript.

Proposition 3.2.7. Under the assumptions C1-5, AAP, the classes Cf.g. and Ĉf.g.
are strong amalgamation classes and have the same strong Fraïssé limit.

Proof. Firstly, we show that Ĉ is a strong amalgamation class. For this we need
to prove that every countable A ∈ Ĉ has at most countably many strong finitely
generated extensions in Ĉ, up to isomorphism.

Let B ∈ Ĉf.g. be generated by b̄ over A as a Ĉ-structure. Denote B0 := dAb̄eCB.
Then B0 ≤ B and B = 〈B0〉ĈB which shows that B = B̂0. Since A ≤ B, we have
A ≤ B0 and so there are countably many choices for B0 and hence countably many
choices for B.

Let U be the strong Fraïssé limit of Ĉ. We will show that it satisfies U2 for Cf.g..
Let A,B ∈ Cf.g. with strong embeddings f : A ↪→ B and g : A ↪→ U . We can extend
f and g to strong embeddings Â ↪→ B̂ and Â ↪→ U over A. Therefore B̂ can be
strongly embedded into U over Â. The restriction of this embedding to B will be a
strong embedding of B into U over A.

Thus U is also strongly saturated for C, hence U is isomorphic to the Fraïssé limit
of C.

Proposition 3.2.8. Under the above assumption U has the following Asymmetric
Richness Property.

ARP If A ≤ B ∈ Ĉf.g. then any embedding A ↪→ U extends to an embedding B ↪→ U .
Moreover, if the former embedding is strong then so is the latter.

Proof. Let dAe ∈ Ĉf.g. be the self-sufficient closure of A in U (in the sense of Ĉ).
By AAP there is B′ ∈ Ĉf.g. with embeddings dAe ≤ B′ and B ↪→ B′ over A. Now
richness of U implies the desired result.
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The ARP property says that the amalgam U is existentially closed in strong
extensions, which is normally used to give a first-order axiomatisation of the amalgam.

In general U1 and U2 are not first-order axiomatisable, nor is ARP. Normally they
are Lω1,ω-axiomatisable provided the predimension has some definability properties
(which we specify below). In order to extract a first-order axiomatisation from this
Lω1,ω-axiomatisation, one normally approximates U1 and U2 by finitary axioms which
are first-order. Wagner considers this problem in [Wag94] and gives the appropriate
conditions under which it can be done, working in a relational language though. In
particular, if the language is finite and relational and Cf.g. consists of finite structures
then one can find a first-order axiomatisation of the amalgam. In general it is possible
to give a similar first-order axiomatisation of Th(U) imposing quite strong definability
conditions on δ. However it seems those conditions would fail for the Ax-Schanuel
predimension (see Section 3.3) and so we consider weaker definability conditions.

Let M ∈ C be an arbitrary structure.

Definition 3.2.9. We say δ is (infinitely) definable in M if for any n,m ∈ N the
set {ā ∈ Mn : δ(ā) ≥ m} is definable by a possibly infinite Boolean combination of
first-order formulas, i.e. an Lω1,ω-formula of the form∧

i<ω

∨
j<ω

ϕm,ni,j (x̄), (2.1)

where ϕm,ni,j (x̄) are first-order formulae. We say δ is universally definable if the for-
mulas ϕm,ni,j can be chosen to be equivalent to universal formulas in M .

Recall that we assumed δ is non-negative. This means, in particular, that

δ(x̄) ≥ 0 for all finite tuples x̄ ⊆M. (2.2)

Lemma 3.2.10. If M ∈ C is saturated and δ is definable then the inequality (2.2) is
first-order axiomatisable.

Proof. By (2.2) we know that for each i we have

M |= ∀x̄
∨
j<ω

ϕ0,n
i,j (x̄).

Since M is saturated, there is a positive integer Ni such that

M |= ∀x̄
∨
j<Ni

ϕ0,n
i,j (x̄).

Then (2.2) is axiomatised by the following collection of axioms:

∀x̄
∨
j<Ni

ϕ0,n
i,j (x̄), i < ω, n < ω.
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For a finite set ā ⊆ M we say ā is strong in M if 〈ā〉 ≤ M . Definability of δ
implies that for a finite set being strong in M is Lω1,ω-definable.

Lemma 3.2.11. Assume U is saturated and δ is universally definable in U . Then
Th(U) is nearly model complete, that is, every formula is equivalent to a Boolean
combination of existential formulas in U .

Proof. For a finite tuple ā ⊆ U its type (in U) is determined by the isomorphism type
of dāeU which is determined by finitely generated non-strong extensions of 〈ā〉 in U .
If ā and b̄ satisfy exactly the same existential formulae (and hence exactly the same
universal formulae), then for any non-strong extension of 〈ā〉 there is an isomorphic
non-strong extension of 〈b̄〉. Hence dāeU ∼= db̄eU . Thus, tp(ā) is determined by
existential formulae and their negations that are true of ā. Therefore Th(U) is nearly
model complete.

When one knows the first-order theory of U , one can normally understand whether
U is saturated or not. It is saturated in our main examples, i.e. the exponential
differential equation and the equation of the j-function (see Chapter 6). However,
in general, it is possible to have a non-saturated Fraïssé limit. Baldwin and Hol-
land [BH00] give a criterion (called separation of quantifiers) for saturatedness of U
(working under stronger definability conditions for δ though).

Definition 3.2.12. We say δ is trivial on Ĉ if all embeddings of structures from Ĉ
are strong.

Note that in general δ is not defined on Ĉ (nor on Ĉf.g.), so to be more precise
we could say that strong embeddings induced by δ are trivial on Ĉ. From now on,
triviality of δ should be understood in this sense.

Proposition 3.2.13. Assume U is saturated. If δ is non-trivial on Ĉ then Th(U) is
not model complete.

Proof. Non-triviality of the predimension means there are finitely generated A ⊆ B ∈
Ĉf.g. with A � B. By universality of U we know that there is a strong embedding
of A into U . Using the asymmetric amalgamation property we find a structure U ′ ∈
C which extends U and extends B strongly such that the corresponding diagram
commutes. This can be done since the amalgam U is the union of a countable strong
chain of finitely generated structures. So we can inductively use the asymmetric
amalgamation for each of these structures and take the union of amalgams obtained
in each step (these amalgams form a strong increasing chain). Then it is easy to see
that U � U ′. On the other hand, U ′ is countable and hence it can be embedded
into U . Thus we have embeddings U ↪→ U ′ ↪→ U and the first one is non-strong.
Therefore we have a non-strong embedding of U into itself. By Proposition 3.1.14
this embedding is not elementary which means Th(U) is not model complete.

Now we define what it means for the inequality (2.2) to be adequate.
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Definition 3.2.14. Let Ĉ ⊆ C be classes of structures closed under isomorphism and
intersections and such that ∅ ∈ C. Assume they satisfy FG, C1-5, AAP and δ is a
non-negative universally definable predimension on Cf.g.. Let M ∈ C be a countable
structure.

• We say that δ (or the inequality (2.2)) is adequate for M if U ≡M .

• We say δ is strongly adequate for M if M ∼= U .

In other words, adequacy of a predimension inequality means that Th(M) can be
obtained by a Hrushovski construction and strong adequacy means that the structure
M itself can be obtained by a Hrushovski construction. These notions will make more
sense in differential setting where M is always taken to be a reduct of a differentially
closed field. Note also that when M and U are saturated, adequacy of δ implies its
strong adequacy.

Note that we do not need definability of δ or AAP for some subclass Ĉ in order
to construct the strong Fraïssé limit U and define adequacy. However, these are
natural assumptions since in most cases (in differential setting) the properties FG,
C1-5 and definability of δ will be evident while strong amalgamation of Cf.g. will be
deduced from strong amalgamation of Ĉf.g., and in fact Ĉf.g. will have the asymmetric
amalgamation property. That is the reason that we included all those conditions in
the definition of adequacy. This will be illustrated in Chapter 6.

3.3 Examples
In this section we give examples of predimensions that are the main motivating factor
for this work.

3.3.1 Complex exponentiation

Let Cexp := (C; +, ·, 0, 1, exp) be the complex exponential field. Let E(x, y) be the
graph of the exponential function and consider the structure CE := (C; +, ·, 0, 1, E).
Note that it is not saturated and its first-order theory is not stable since Z is definable.

For complex numbers x1, . . . , xn and their exponentials y1, . . . , yn define

δ(x̄, ȳ) := tdQQ(x̄, ȳ)− ldimQ(x̄).

Schanuel’s conjecture states non-negativity of this function.
Consider the class C of all (field-theoretically) algebraically closed substructures of

CE. For a finitely generated (i.e. of finite transcendence degree over Q) substructure
A define

σ(A) := max{n : there are ai, bi ∈ A, i = 1, . . . , n, with ai’s
linearly independent over Q and A |= E(ai, bi)}

and
δ(A) := tdQ(A)− σ(A).
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Then σ is finite provided Schanuel’s conjecture holds and δ is a well-defined non-
negative predimension. However the inequality δ ≥ 0 is not first-order axiomatisable
even assuming the conjecture holds.

Schanuel’s conjecture is widely open and so we cannot say much about this ex-
ample. It is quite complicated from a model theoretic point of view. In particular, Z
is definable in CE. So its first order theory is quite difficult to study. In spite of this
Zilber discovered a nice way of treating the complex exponential field using infini-
tary logic. He considered algebraically closed fields with a relation which has some
of the properties of complex exponentiation. Then he took all those structure where
the analogue of Schanuel’s conjecture holds. By a Hrushovski style construction he
obtained a theory called pseudo-exponentiation. It is axiomatised in the language
Lω1,ω(Q) where Q is a quantifier for “there exist uncountably many”. This theory
(and its first-order part) is a natural candidate for the Lω1,ω(Q)-theory (respectively,
first-order theory) of CE. Nevertheless, all these questions seem to be out of reach
at the moment. We refer the reader to [Zil04b, KZ14, Zil02, Zil16, Zil15, Kir13]
for details. Note also that many ideas in the analysis of the exponential differential
equation (see below) originate in Zilber’s work on pseudo-exponentiation.

Remark 3.3.1. Submodularity does not hold for finite sets.3 Indeed, let a, b ∈ C
with δ(a) = δ(b) = 1, δ(a, b) = 0. Then taking A = {a, b}, B = {2a, b} we get

δ(A ∪B) + δ(A ∩B) = 0 + 1 > 0 + 0 = δ(A) + δ(B).

3.3.2 Exponential differential equation

LetK := (K; +, ·,′ , 0, 1) be a countable saturated differentially closed field with field of
constants C. Let Exp(x, y) be defined by the exponential differential equation y′ = yx′

and denote KExp := (K; +, ·,Exp, 0, 1). Fix the language LExp := {+, ·,Exp, 0, 1}.
Consider the following axioms for an LExp-structure F (Ga andGm denote the additive
and multiplicative groups of a field and Gn := Gn

a ×Gn
m).

A1 F is an algebraically closed field of characteristic 0.

A2 CF := {c ∈ F : F |= Exp(c, 1)} is a algebraically closed subfield of F .

A3 Exp(F ) = {(x, y) ∈ F 2 : Exp(x, y)} is a subgroup of G1(F ) containing G1(CF ).

A4 The fibres of Exp in Ga(F ) and Gm(F ) are cosets of the subgroups Ga(CF ) and
Gm(CF ) respectively.

AS For any xi, yi ∈ F, i = 1, . . . , n, if F |=
∧n
i=1 Exp(xi, yi) and tdCF

(x̄, ȳ/CF ) ≤ n
then there are integers m1, . . . ,mn, not all of them zero, such that m1x1 + . . .+
mnxn ∈ CF .

3Thanks to Felix Weitkamper for pointing this out.
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Note that AS can be given by a first-order axiom scheme (see Section 5.1).
Let T 0

Exp be the theory axiomatised by A1-A4, AS. The class C consists of all
countable models of T 0

Exp with a fixed field of constants C (which is a countable
algebraically closed field with transcendence degree ℵ0). For F ∈ C and X ⊆ F we
have 〈X〉 = C(X)alg with the induced structure from F . A structure A ∈ C is finitely
generated if and only if it has finite transcendence degree over C.

For finite tuples x̄, ȳ ∈ Kn with Exp(xi, yi) define

δ(x̄, ȳ) := tdC C(x̄, ȳ)− ldimQ(x̄/C).

The Ax-Schanuel theorem states positivity of this function (for non-constant tuples).
It is easy to see that δ is universally definable. We want to extend δ to Cf.g.. Following
[Kir09] for A ∈ Cf.g. define

σ(A) := max{n : there are ai, bi ∈ A, i = 1, . . . , n, with ai’s
linearly independent over Q mod C and A |= Exp(ai, bi)}

and
δ(A) := tdC(A)− σ(A).

Firstly note that σ is well defined and finite since the Ax-Schanuel inequality
bounds the number n in consideration by tdC C(ā, b̄) which, in its turn, is bounded
by tdC A.

Secondly, it is quite easy to prove that for any A,B ∈ Cf.g.

σ(A ∪B) ≥ σ(A) + σ(B)− σ(A ∩B).

This implies that δ is submodular. Invariance of δ under isomorphism is clear too.
Hence it is a predimension.

The Ax-Schanuel inequality is equivalent to saying that δ(A) ≥ 0 for all A ∈ Cf.g.
where equality holds if and only if A = C.

The class C satisfies the strong amalgamation property but not the asymmetric
amalgamation property. So we let Ĉ be the subclass of C consisting of full structures.
A structure A ∈ C is full if for every a ∈ A there are b1, b2 ∈ A with A |= Exp(a, b1)∧
Exp(b2, a). Then Ĉ has the AAP property and satisfies all the assumptions made in
previous sections.

Theorem 3.3.2 ([Kir09]). The Ax-Schanuel inequality is strongly adequate for KExp.

See Section 5.1 for a complete axiomatisation of Th(KExp). In Chapter 6 we study
the predimension given by the Ax-Schanuel inequality for the j-function and give full
details of construction and axiomatisation of the Fraïssé limit.

3.4 Predimensions in the differential setting
LetK := (K; +, ·,′ , 0, 1) be a countable saturated differentially closed field with field of
constants C. Suppose f(X, Y ) ∈ Q{X, Y } is a differential polynomial with ordY (f) =
m+ 1. Consider the differential equation

f(x, y) = 0. (4.1)
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Let E(x, y0, . . . , ym) be an (m+ 2)-ary relation defined by

f(x, y0) = 0 ∧
m−1∧
i=0

y′i = yi+1x
′.

We fix the language LE := {+, ·, E, 0, 1}. Let C be a class of LE-structures
satisfying all requirements set in Sections 3.1 and 3.2 (in particular, the existence of Ĉ
with the appropriate properties is assumed). Assume δ is a non-negative predimension
on Cf.g.. Normally C will consist of algebraically closed fields with a relation E
satisfying some basic universal axioms of E-reducts of differential fields. These axioms
will depend on functional equations satisfied by E. Most importantly, we should have
an axiom scheme for the inequality δ ≥ 0.

Definition 3.4.1. We say δ is (strongly) adequate (for the differential equation E)
if it is (strongly) adequate for the reduct KE := (K; +, ·, E, 0, 1).

Remark 3.4.2. It makes sense to consider just a binary relation for the set of solu-
tions of our differential equation, without including derivatives, and study predimen-
sions in that setting. More generally, we can do the same for an arbitrary reduct of
a differentially closed field and define adequacy as above.

Now we consider a special kind of predimension motivated by the Ax-Schanuel
inequality for the exponential differential equation and its analogue for the j-function.
Assume d is a modular dimension function on K. Suppose whenever (xi, yi) are
solutions of equation (4.1), the following inequality holds:

tdC C({xi, ∂jxiyi : i = 1, . . . , n, j = 0, . . . ,m})− (m+ 1)d(x̄, ȳ) ≥ 0. (4.2)

The inequality (4.2) is first-order axiomatisable provided that d is type-definable
in the algebraically closed field K, i.e. for each m and n the set {x̄ ∈ Kn : d(x̄) ≥ m}
is type definable (in the language of rings).

For A ∈ Cf.g. define

σ(A) := max{d(ā, b̄) : ai, bi ∈ A and there are b1
i , . . . , b

m
i ∈ A,

with A |= E(ai, bi, b
1
i , . . . , b

m
i )}

and
δ(A) := td(A/C)− (m+ 1) · σ(A).

It is easy to see that σ is finite and hence δ is well defined. On the other hand for
A,B ∈ Cf.g. one can easily prove (using modularity of d) that

σ(A ∪B) ≥ σ(A) + σ(B)− σ(A ∩B).

Thus, δ is submodular. In this manner we obtain a predimension on Cf.g. and it makes
sense to ask whether it is adequate or not.

The main question of our thesis is the following.
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Question 3.4.3. Which differential equations do satisfy a (strongly) adequate predi-
mension inequality?

As we have already mentioned adequacy means that the reduct KE is “geometric”
and the predimension governs its geometry. In our setting this intuitive idea can be
clarified a bit, based on the analysis of pseudo-exponentiation and the exponential
differential equation (and the differential equation of the j-function in Chapter 6).

In order to understand the structure of our differential equation, one has to un-
derstand which systems of equations in the language of the reduct KE do have a
solution. Then a predimension inequality (like (4.2)) implies that “overdetermined”
systems cannot have solutions. Adequacy means that this is the only obstacle: if
having a solution does not contradict our inequality then there is a solution. It is
not difficult to see that this question is equivalent to understanding which varieties
contain (generic enough) points that are solutions to our differential equation4 (we
call them E-points). This is in fact how one axiomatises the first-order theory of a
differential equation (i.e. the theory of the corresponding reduct) with an adequate
predimension inequality.

Indeed, as we noted in Section 3.2, one normally approximates the richness prop-
erty (which determines the strong Fraïssé limit uniquely up to isomorphism) by first-
order axioms in order to give an axiomatisation of Th(U). Richness of the strong
Fraïssé limit U implies that it is existentially closed in strong extensions. So if a va-
riety contains an E-point in a strong extension of U then such a point exists already
in U . When one tries to axiomatise this property, one normally proves that varieties
with certain properties always contain an E-point. However, according to the rich-
ness property, we need also make sure that when we work over a strong substructure
as a set of parameters then there exists an E-point in our variety which is strongly
embedded into U . So, our axioms should state that varieties with the appropriate
properties contain an E-point which cannot be extended to another point with lower
predimension. In this case the axiomatisation is ∀∃∀.

However, in our main examples, that is, the exponential differential equation and
the equation of the j-function, we end up with simpler axioms which are in fact
∀∃. Let us explain how one obtains those axioms. Suppose we work over a strong
substructure A ≤ U and V is a variety defined over A. If we know that V contains an
E-point b̄ and δ(b̄/A) > 0 then it is possible that b̄ is not strong in U . This can happen
if V has high dimension. In such a situation one uses the tool of intersecting varieties
with generic hyperplanes (see Lemma 6.6.4) and decreases the dimension of V , more
precisely, one replaces V with a subvariety V ′ defined over some A′ with A ≤ A′ ≤ U .
Now if dimV ′ is small enough then an E-point b̄ in V ′ satisfies δ(b̄/A′) = 0 which
shows that b̄ is strong in U (since A′ ≤ U). Thus, the existence of E-points in certain
varieties is enough to deduce the existence of E-points which are strong in U . Hence
one axiomatises the existential closedness property by saying that certain varieties
contain E-points. Then one normally ends up with an ∀∃ axiom scheme which, along

4We do not state precisely what we mean by this because we will see it in the case of the
exponential differential equation and the equation of j which will be enough to understand the
question in general.
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with the basic universal axioms (including an axiom scheme stating non-negativity of
δ), is expected to give a complete axiomatisation of the theory of the strong Fraïssé
limit. So, in this case the axiomatisation is expected to be ∀∃.

This observation justifies the condition of ∀∃-axiomatisability in Theorem 4.8.2.
Nevertheless, we recall once more that those speculations are based on the aforemen-
tioned examples, and in general we expect an ∀∃∀-axiomatisation rather than just
∀∃. On the other hand, the procedure described above and in particular the method
of intersecting varieties with generic hyperplanes is quite general and can be carried
out for various differential equations with a predimension inequality. So in “nice”
examples we hope to get an ∀∃ theory. In Chapter 6 we illustrate those ideas on the
example of the differential equation of the j-function. Finally, let us remark that get-
ting a first order axiomatisation for the Fraïssé limit is by no means “automatic” since
some technical issues may arise depending on the setting as we will see in Section 6.8.

Now we can show that if the reduct KE of K is not proper (in the sense that the
derivation of K is definable in KE) and has an ∀∃-axiomatisation then E cannot have
a non-trivial strongly adequate predimension inequality. This follows immediately
from Theorem 4.8.2 and Proposition 3.2.13.

In fact, we have one more result in this direction.

Theorem 4.7.1. Assume the underlying fields of finitely generated structures from
our strong amalgamation class are algebraically closed of finite transcendence degree
over Q. Assume further that generic 1-types (in the sense of pregeometry associated
to the predimension) are not algebraic. If D is definable in FR and δ is strongly
adequate, then the reduct is model complete and hence δ is trivial.

This cannot be applied to the exponential differential equation since finitely gen-
erated structures in C have infinite transcendence degree over Q. Instead, the result
mentioned above (Theorem 4.8.2) helps in that situation.

Thus, we know that under a natural assumption if we can recover the differential
structure (i.e. define the derivation) in the reductKE then we do not have a non-trivial
strongly adequate predimension inequality (in fact this holds for all reducts, not only
for differential equations). Therefore we need to understand when we can recover the
differential structure. This is one of the motivating factors for the next chapter. It
would be nice if we could prove a converse of this, i.e. if the derivation is not definable
in a reduct and the latter is ∀∃-axiomatisable (we can also add an assumption about
near model completeness) then we can find a non-trivial predimension inequality.
This problem, however, seems to be quite difficult at the moment to tackle.

Finally, we remark that Question 3.4.3 makes sense for any reduct and not only
for differential equations. If we want to restrict the question to differential equations
of two variables then it will make more sense to ask when there is an adequate
predimension of the form (4.2).
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Chapter 4

Definability of Derivations in the
Reducts of Differentially Closed
Fields

4.1 Setup and the main question
For a differentially closed field F = (F ; +, ·, 0, 1,D) we consider its reducts of the form
FR = (F ; +, ·, 0, 1, P )P∈R where R is some collection of definable sets in F . Our main
problem in this chapter is to understand when the derivation D is definable in FR.
Ideally, we would like to find a dividing line for definability of D like local modularity
in the problem of recovering the field structure in the reducts of algebraically closed
fields (see the discussion below).

Question 4.1.1. When is D definable in the reduct FR?

As we will see, when D is definable, it is in fact definable with using just one
parameter, namely an element t ∈ F with D t = 1. So it is more convenient to add t
to our language as a constant symbol and work in the reducts of F = (F ; +, ·, 0, 1, t,D)
(we do this starting from Section 4.4). We will assume for simplicity that the sets
from R are 0-definable in this language and also we will be interested in 0-definability
of D.

Note that we could ask a more general question: whether there is some derivation
definable in the reduct. But in that case such a derivation will also be definable in the
differentially closed field F . Since it is known that any such derivation is of the form
a ·D for some a ∈ F , i.e. it coincides with D up to a constant multiple (and coincides
absolutely with D if we add t to our language and require that a derivation takes the
value 1 at t), it is no loss of generality if we restrict our attention to definability of D
only. Another point is that we can assume without loss of generality that R is finite
since any possible definition of D can contain only finitely many relations from R.

This is by nature a classification problem. We do not have a comprehensive solu-
tion yet, but we give some partial answers to our question, and draw some conclusions
based on our analysis. We will not pose any explicit conjectures, but one may nev-
ertheless expect intuitively that definability of D is very rare, i.e. in most cases it is
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not definable. In other words, our general expectation is that for “generic” (in some
sense) reducts D is not definable.

The motivation to consider this kind of problem comes from two independent
sources. Firstly, the analogous problem for pure fields, that is, recovering the field
structure from reducts of algebraically closed fields or from non-locally modular
strongly minimal sets in general, is very important in model theory of fields and
Zariski geometries. It was initiated by Zilber’s famous “Trichotomy conjecture” and
is still not entirely resolved. It has been (and still is) a topic of active research during
the past few decades and proved to be very useful and important. Zariski geometries,
introduced by B. Zilber and E. Hrushovski, are structures where that theory works
ideally. For more details on this we refer the reader to [Zil09, Rab93, HS15, Mar05a].

Secondly, as we already mentioned in previous chapters, this problem turns out
to be related to the existence of a predimension inequality for a given differential
equation E(x, y) which is the main question considered in this work (in this case
we will work in the reduct FE = (F ; +, ·, 0, 1, E) with R = {E}). As we observed
in Section 3.4 we can use Theorem 4.8.2 (which is one of the main results of this
chapter) to show that definability of a derivation would imply that there is no non-
trivial strongly adequate predimension inequality for the given differential equation
(assuming the reduct is ∀∃-axiomatisable). Theorem 4.7.1 supports this viewpoint
too.

Now let us briefly outline the chapter. In Section 4.2 we show that the defin-
able derivations in models of DCF0 are the trivial ones. We study the reducts of
differentially closed fields from a general model theoretic point of view and establish
some properties of them in Section 4.3. In particular we will see that the reducts
always have rank ω and do not admit quantifier elimination unless R consists only of
algebraic relations only (assuming R is finite).

Section 4.4 will be devoted to an important example of a reduct that allows a
definition of D. Namely, we will see that if E is a differential curve containing the
graph of D then D is quantifier-free definable in FE. This example will be crucial for
the main results of this chapter.

Further, we show in Section 4.5 that only the behaviour of D at generic (differ-
entially transcendental) points is important for definability of D, that is, if we can
define D a from a for a generic element a then the whole of D is definable. We will
develop this idea further and prove that if for a generic element a the Morley rank (in
the reduct) of D a over a is finite then D is definable. Thus D a can be either generic
or algebraic (in fact, definable) over a in the reduct. This can trivially be given a
stability-theoretic reformulation (in terms of forking) which will be generalised later.

We use those criteria to give further examples of differential equations that define
D (Section 4.6). In particular, we will show that from an algebraic function of x and
its derivatives one can define Dx. This will be used to obtain a characterisation of
definable and algebraic closures in FR. Note, however, that those examples will not
be used in later sections. Theorem 4.6.11 sums up most of our results obtained up to
that point giving a list of conditions equivalent to definability of D in the reducts.

Using the results on generic points we will show that when D is definable, the
reduct cannot satisfy an adequate non-trivial predimension inequality of a certain
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form (Section 4.7).
Section 4.8 will be devoted to a result which shows that definability of D in reducts

is “rare” and partially justifies the above ideas about the relation of definability of
D and existence of an adequate predimension inequality. Namely, we will prove that
if D is definable and Th(FR) is inductive then this theory must in fact be model
complete. We have already discussed how this is related to adequate predimension
inequalities. In particular, it immediately implies that one cannot define D from the
equation D y = yDx.

Finally, in the last section we define the standard pregeometry (obtained by forking
the generic type) on reducts and see how it is related to the definability of D.

The results of this chapter constitute the material of the preprint [Asl16c].

4.2 Definable derivations
If D is a derivation on a field (F ; +, ·, 0, 1) then for any element a ∈ F the map a ·D
will be a derivation as well. If our field is differentially closed then it is differentially
closed with respect to this new derivation too. We show in this section that in a
differentially closed field all definable derivations are of that form.

This fact, though proved independently here, is actually well known. A proof
can be found for example in [Sue07] (in a general form for definable derivations in
differentially closed fields with several commuting derivations). We present our proof
here for completeness.

The following well-known result is a characterisation of definable functions in a
differentially closed field (see, for example, [Pil01] or [TZ12], Exercise 6.1.14).

Lemma 4.2.1. Let F be a differentially closed field and f : F k → F be a definable
(possibly with parameters) function in F . Then there is a partition of F k into a finite
number of definable subsets Ui such that f is given by a differential rational function
on each of them (this means, in particular, that each of these rational functions is
determined on the corresponding set).

Proof. Suppose φ(v̄, w) defines f . Consider the following set of formulae:

∆ := {¬(h(v̄) · f(v̄) = g(v̄) ∧ h(v̄) 6= 0) : g, h ∈ F{X}} ∪ EDiag(F),

where EDiag(F) is the set of all sentences with parameters from F that are true in
F .

Claim. ∆ is not satisfiable.

Proof. Suppose otherwise. Let L = (L; +, ·, 0, 1,D) be a differentially closed field
satisfying ∆, which implies F � L. Then the formula φ defines a function f̃ : Lk → L
which extends f . For any tuple ā ∈ Lk we must have f̃(ā) ∈ dcl(F, ā) = F 〈ā〉 due to
Proposition 2.1.1. This means that f̃(ā) is the value of a differential rational function
at ā. Hence, there are differential polynomials g and h over F such that h(ā) 6= 0

and f̃(ā) = g(ā)
h(ā)

. This is a contradiction.
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Thus, ∆ is not satisfiable. By compactness, a finite subset of ∆ is not satisfiable.
Therefore there is a finite number of differential polynomials g1, . . . , gn, h1, . . . , hn
such that

F |= ∀v̄
∨
i

(hi(v̄) · f(v̄) = gi(v̄) ∧ hi(v̄) 6= 0).

Now define Ui = {x̄ ∈ F k : hi(x̄) · f(x̄) = gi(x̄)∧ hi(x̄) 6= 0}. These sets are definable
and f is given by a differential rational function on each of them.

Lemma 4.2.2. Suppose D and D1 are derivations on a field (F ; +, ·, 0, 1) such that
there is t ∈ F with D t = 1. Let P (X0, . . . , Xn, Y ) be a non-zero polynomial over F
such that

P (X,DX, . . . ,DnX,D1X) = 0. (2.1)

Then D1 = a ·D, where a = D1 t.

Proof. For an element x ∈ F and an arbitrary rational number r one has P (x +
r,Dx, . . . ,Dn x,D1 x) = 0, hence

P (X,Dx, . . . ,Dn x,D1 x) = 0

(as a polynomial of X). Therefore all coefficients of this polynomial are zeros. Since
P (X0, . . . , Xn, Y ) is non-zero, if we consider it as a polynomial of X0, it will have
a non-zero coefficient that is a polynomial of X1, . . . , Xn, Y . It must vanish at
(Dx, . . . ,Dn x,D1 x). This is true for all x ∈ F .

Thus for a non-zero polynomial P1 we have

P1(DX, . . . ,DnX,D1X) = 0.

Again, fixing an element x ∈ F we see that for any rational r one has P1(Dx +
r,D2 x, . . . ,Dn x,D1 x+ ar) = 0 (we substitute X = x+ rt). This implies

P1(X,D2 x, . . . ,Dn x,D1 x− aDx+ aX) = 0.

Replacing X by a fixed element y ∈ F and taking x+ rt2 instead of x we get

P1(y,D2 x+ 2r,D3 x, . . . ,Dn x,D1 x− aDx+ ay) = 0.

Therefore
P1(y,X,D3 x, . . . ,Dn x,D1 x− aDx+ ay) = 0.

Arguing as above we show that for some non-zero polynomial P2 we have

P2(y,D3 x, . . . ,Dn x,D1 x− aDx+ ay) = 0

for all x, y ∈ F .
Proceeding this way one can prove that there is a non-zero polynomial Q(Z1, Z2) ∈

F [Z1, Z2] such that
Q(Y,D1X − aDX + aY ) = 0.

Now suppose for some u ∈ F we have D1 u 6= aDu. Then for any natural
number n one has D1(nu) 6= aD(nu). This means that for any y ∈ F the polynomial
Q(y, ay + Z) equals zero for infinitely many values of Z, hence, it is identically zero.
This yields Q(Y, Z) = 0. We arrived at a contradiction, therefore D = aD1.
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Theorem 4.2.3. Let F = (F ; +, ·, 0, 1,D) be a differentially closed field and D̃ be a
definable (possibly with parameters) derivation. Then there exists an element a ∈ F
such that D̃ = aD.

Proof. From Lemma 4.2.1 it follows that there are definable sets Ui ⊆ F such that
D̃ is given by a differential rational function on each Ui. Therefore there are dif-
ferential polynomials fi(X), gi(X) ∈ F{X} such that fi(x) · D̃(x) = gi(x) and
fi(x) 6= 0 for all x ∈ Ui. We know that fi(X) = Pi(X,DX, . . . ,DmX), gi(X) =
Qi(X,DX, . . . ,DmX) for some polynomials Pi and Qi over F . Form the polynomial

P (X0, . . . , Xm, Y ) =
∏
i

(Pi(X0, . . . , Xm) · Y −Qi(X0, . . . , Xm)).

This is a non-zero polynomial and

P (X,DX, . . . ,DmX, D̃X) = 0.

As F is differentially closed, there exists t ∈ F with D t = 1. Now Lemma 4.2.2
yields the desired result.

4.3 Model theoretic properties of the reducts
From now on we will work in a differentially closed field F = (F ; +, ·, 0, 1,D) which
we will assume to be sufficiently saturated. Thus, it will serve as a monster model
for us.

For a collection R of definable sets in (Cartesian powers of) F we define the
R-reduct FR of F to be the structure (F ; +, ·, 0, 1, P )P∈R in the language LR =
{+, ·, 0, 1} ∪ R (the elements of R are relation symbols in the language LR). We
will omit R and just say “reduct” whenever no confusion can arise. We will say that
R (or the reduct FR) is algebraic if all relations of R can be defined in the pure
field (F ; +, ·, 0, 1). If R consists of just one relation E then we will write FE for the
corresponding E-reduct.

In this section we examine basic model theoretic properties of the reducts FR.
Though we will sometimes assume R is finite, most of our results will be valid for an
arbitrary R. From the point of view of Question 4.1.1 the assumption of finiteness
of R is no loss of generality as a possible definition of D would anyway contain only
finitely many occurrences of relation symbols from R.

We start by introducing a piece of notation. In order to distinguish between the
same concepts in the differentially closed field F and in the reduct FR, we will add a
subscript D or R respectively to their notations. Thus MRD, MDD, tpD, dclD, aclD
stand for Morley rank, Morley degree, type, definable closure and algebraic closure
respectively in F while MRR, MDR, tpR, dclR, aclR stand for the same notions in
FR.

Also we will need to consider generic elements and types. By generic we will
always mean generic in the differentially closed field F (rather than in FR)
unless explicitly stated otherwise. If we do not specify over which set an element
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is generic then we mean over the empty set.

Finally, we turn to model theoretic properties of the reducts. Clearly FR is an
ω-stable structure. We show that its Morley rank is ω.

Proposition 4.3.1. FR has Morley rank ω unless R is algebraic.

Proof. First of all, since FR is a reduct of F , and the latter has Morley rank ω, we
have MR(FR) ≤ ω. So we need to prove MR(FR) ≥ ω.

It obviously suffices to prove this for R = {P} where P is a non-algebraic unary
relation which has finite Morley rank in the differentially closed field F . The case
P = C (the field of constants) is a well known example. In this case the reduct is
just an algebraically closed field with a unary predicate for an algebraically closed
subfield. Our proof below is an adaptation of a known proof for this special case (see,
for example, [Mar02], exercise 6.6.17, d).

As P is non-algebraic, it must be infinite and hence MRR(P ) ≥ 1. Also P has
finite Morley rank in F , so (Q(P ))alg 6= F . Now for an element x ∈ F \ (Q(P ))alg

define
Xn =

{
y ∈ F : ∃a0, . . . , an−1 ∈ P

(
y =

∑
aix

i
)}

.

The map π : P n+1 → Xn+1 given by (a0, . . . , an) 7→ a0 +a1x+ . . .+anx
n is a definable

bijection. Hence MRR(Xn) = MRR(P n) ≥ n. Therefore MRR(F ) = ω.

We will assume throughout this chapter that R is not algebraic and so FR has
Morley rank ω.

Remark 4.3.2. As we saw in the proof, if a ∈ F is a differentially transcendental
element then for each n < ω there is a definable (in FR) set Xn ⊆ F , defined over a,
such that n ≤ MRR(Xn) < ω.

Further, observe that FR has Morley degree 1. If ϕ(x) is a formula (of one variable)
in the language LR = {+, ·, 0, 1} ∪ R then in the language LD it is equivalent to a
quantifier-free formula. If it is an equation in conjunction with something else, then
MRR(ϕ) < ω otherwise MRR(ϕ) = ω. Also, MRR(ϕ) ≤ MRD(ϕ) and these ranks are
finite or infinite simultaneously. Indeed, if MRD(ϕ) = ω then MRD(¬ϕ) < ω, and so
MRR(¬ϕ) < ω. Therefore, MRR(ϕ) = ω since MRR(x = x) = ω as proven above.

There is a unique generic 1-type in FR given by

{ϕ(x) : ϕ ∈ LR, MRR(ϕ) = ω} = {¬ϕ(x) : ϕ ∈ LR, MRR(ϕ) < ω}.

Similarly, the unique generic n-type is given by formulas of Morley rank ω · n.
Now let us see whether FR can have quantifier elimination or not. First notice

that even when R = {D} (the graph of D), FR does not admit quantifier elimination
for y = D2 x is existentially definable but not quantifier-free definable. It turns out
that this is a general phenomenon.

Corollary 4.3.3. If R is non-algebraic and finite then the reduct FR does not admit
elimination of quantifiers.
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Proof. Suppose R is not algebraic but FR has quantifier elimination. Then any for-
mula with one free variable must be equivalent to a Boolean combination of algebraic
polynomial equations (in the language of rings) and formulas of the form

Q(p1(x), . . . , pn(x))

where Q ∈ R is an n-ary predicate and pi’s are algebraic polynomials. But clearly if
such a formula has finite Morley rank then the latter is uniformly bounded (remember
that R is finite). This contradicts Proposition 4.3.1.

One sees that although in the case R = {D} the reduct does not have quantifier
elimination, it is nevertheless model complete. In general it is true if D is existentially
definable. We show this below.

Lemma 4.3.4. Let M be a structure. If a function f : Mn → M is existentially
definable inM then it is also universally definable.

Proof. If φ(x̄, y) defines f then so does ∀z(z = y ∨ ¬φ(x̄, z)).

Proposition 4.3.5. If D is existentially definable in FR then TR := Th(FR) is model
complete.

Proof 1. Suppose that D is existentially definable. Take an arbitrary formula ϕ ∈
LR. In the language of differential rings it is equivalent to a quantifier-free formula,
i.e. to a Boolean combination of differential equations. Each differential equation
is existentially definable in the reduct and, by Lemma 4.3.4, it is also universally
definable. Substituting existential definitions in positive parts (i.e. equations) and
universal definitions in negative parts (inequations), we get an existential formula in
the language LR. Thus any formula in the language of the reduct is equivalent to an
existential formula. This is equivalent to model completeness.

Proof 2. Suppose ϕ(x, y) is an existential formula defining D. Let KR ⊆ LR be two
models of TR. Since D is definable, there are derivations DK and DL on K and L
respectively which are compatible with R (see the beginning of the next section).
Take any a, b ∈ K. Then KR |= ϕ(a, b) if and only if LR |= ϕ(a, b). This shows that
DK ⊆ DL which, with model completeness of DCF0, implies model completeness of
TR.

Thus, model completeness is the deepest possible level of quantifier elimination
that we can have for TR. As we will see in the last section, under a natural assumption,
definability of D will imply that TR is model complete.

4.4 An example
In this section we show that in a certain class of reducts D is definable. It will be
used later to establish some criteria for definability of D.

Choose an element t ∈ F with D t = 1 (it exists because our field is differentially
closed) and add it as a constant symbol to our language. Thus from now on we
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work in the language {+, ·,D, 0, 1, t} for differential fields, which by abuse of notation
we will again denote by LD. Correspondingly all reducts will be considered in the
language LR = {+, ·, 0, 1, t} ∪ R. Again abusing the nomenclatures we will call LD

the language of differential rings and LR the language of the reducts. This means
that we do not count t as a parameter in our formulas, i.e. we are free to use t in
formulas and declare that something is definable without parameters. Note that this
does not affect any of the results proved in the previous section. Let us also mention
that after adding t to our language (and requiring that a derivation takes the value 1
at t) the only candidate for a definable derivation can be D (see Theorem 4.2.3).

For a formula ϕ(x̄) in the language LR,D = LR ∪ LD and a tuple ā ∈ F we will
sometimes write F |= ϕ(ā). This is an abuse since in general ϕ is not in the language
of differential rings, but clearly F can be canonically made into an LR,D-structure.

In general, if the relations in R are defined with parameters and D is definable
then it will be definable with parameters as well. But in many cases we do not use
any extra parameters to define D. So for simplicity we will assume that R consists
of 0-definable relations in F , i.e. relations defined over k0 = Q(t) = dcl(∅). Thus
from now on by definable we will mean definable without parameters unless explicitly
stated otherwise.

We denote the theory of the reduct by TR := Th(FR). We will sometimes say
that there is a derivation DK on a model KR |= TR which is compatible with R. This
means that (K; +, ·,DK , 0, 1, t, P )P∈R ≡ (F ; +, ·,D, 0, 1, t, P )P∈R, i.e. the differential
field K = (K; +, ·,DK , 0, 1, t) is differentially closed with DK t = 1 and the sets from
R are defined by the same formulas as in F .

Throughout this chapter we let E be a differential curve (possibly in general
sense); as we noted above the corresponding reduct will be denoted FE. Recall also
that D = {(x,Dx) : x ∈ F} is the graph of D.

Now we prove an auxiliary result which will be used several times throughout this
chapter. It states that (Q(t))n is Kolchin-dense in F n for each n.

Lemma 4.4.1 (cf. [Mar05b], Lemma A.4). For any non-zero differential polynomial
f(X1, . . . , Xn) over Q(t) there are elements t1, . . . , tn ∈ Q[t] such that f(t1, . . . , tn) 6=
0.

Proof. First assume f is a polynomial of one variable X. Let ord(f) = n. Since F is
differentially closed, we can find an element u ∈ F with Dn+1 u = 0∧ f(u) 6= 0. Then
clearly

u = cnt
n + . . .+ c1t+ c0

for some constants c0, . . . , cn ∈ C.
Now for constants λ0, . . . , λn denote

p(t, λ̄) = λnt
n + . . .+ λ1t+ λ0.

Since t is transcendental over C, there are algebraic polynomials qi(X0, . . . , Xn) ∈
Q[X0, . . . , Xn], i = 1, . . . ,m, such that for all λ̄ ∈ Cn+1

f(p(t, λ̄)) = 0 iff
m∧
i=1

qi(λ̄) = 0.
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Let V ⊆ Cn+1 be the algebraic variety over Q defined by
∧m
i=1 qi(λ̄) = 0. Then as we

saw above V (C) 6= Cn+1, and hence V (Q) ( Qn+1. So there is a tuple r̄ ∈ Qn+1 with
r̄ /∈ V (Q). Therefore f(p(t, r̄)) 6= 0 and p(t, r̄) ∈ Q[t].

Now we prove the general case (when f has more than one variables) by induction
on n. If f = f(X1, . . . , Xn) with n > 1 then consider it as a differential polynomial
g(X1, . . . , Xn−1) of n − 1 variables over the differential ring Q(t){Xn}. Choose a
non-zero coefficient of g which will be a non-zero differential polynomial h(Xn) ∈
Q(t){Xn}. As we proved above there is tn ∈ Q[t] such that h(tn) 6= 0. Now the
polynomial f(X1, . . . , Xn−1, tn) is a non-zero polynomial of n− 1 variables over Q(t)
and we are done by the induction hypothesis.

Remark 4.4.2. The proof shows that we can choose t1, . . . , tn from Z[t] (and even
from N[t]).

Definition 4.4.3. Introduce the reverse lexicographical order on (n + 1)-tuples of
integers, that is, (α0, . . . , αn) < (β0, . . . , βn) if and only if for some j, αi = βi for
i > j and αj < βj. The multi-degree of an algebraic polynomial Q(X0, . . . , Xn) is the
greatest (with respect to this order) (n+1)-tuple (α0, . . . , αn) for which Xα0

0 · . . . ·Xαn
n

appears in Q with a non-zero coefficient. The multi-degree of a differential polynomial
f(X) = P (X,DX, . . . ,DnX) is defined as that of P .

Theorem 4.4.4. If E (a differential algebraic curve) contains the graph of D then D
is quantifier-free definable in FE.

Proof. 1 Let E be given by a differential equation f(x, y) = 0. We know that
f(X,DX) identically vanishes. Denote U := Y − DX and consider the differen-
tial polynomial g(X,U) := f(X,U + DX). Clearly g(X, 0) = 0.

First we intersect additive translates to “eliminate” x and define a differential
equation h(u) = 0 for some differential polynomial h(U). If g(X,U) depends on X
(i.e. g(X,U) ∈ k0{X,U} \ k0{U}) then we can find (see Lemma 4.4.1) p(t) ∈ Q[t]
such that g(X + p(t), U) 6= g(X,U). Clearly, U is invariant under the transformation
X 7→ X + p(t), Y 7→ Y + p′(t) where p′(Z) = ∂p

∂Z
. So consider the formula E(x, y) ∧

E(x + p(t), y + p′(t)). It is equivalent to g(x, u) = 0 ∧ g(x + p(t), u) = 0 which
implies g1(x, u) := g(x, u) − g(x + p(t), u) = 0. The leading terms of the differential
polynomials g(X,U) and g(X + p(t), U) in variable X (i.e. the sums of monomials in
these polynomials that have highest multi-degree in X) are the same and hence they
cancel out in the difference g1(X,U) := g(X,U)− g(X + p(t), U). On the other hand
g1(X,U) 6= 0 by our choice of p and the multi-degree of g1 in X is strictly less than
that of g. In other words, if the multi-degree of g in X is bigger than (0, . . . , 0) then
we can reduce it. Now if g1(X,U) depends on X then we do the same for g1. We
keep repeating this process and reduce the multi-degree of our differential polynomial
step by step until it becomes (0, . . . , 0). This means we get a curve h(u) = 0 for a
non-zero differential polynomial h, which contains a quantifier-free definable set in
our reduct. It is also clear that the latter contains the curve u = 0 (the graph of D).

1I am grateful to Ehud Hrushovski for detecting a gap in the initial version of the proof and
helping me to fix it.
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Now we use multiplicative translates to define the curve u = 0 (which is actually
y = Dx). Let p(t) ∈ Q[t]. When we substitute X 7→ p(t)X, Y 7→ p′(t)X+p(t)Y then
U is replaced by p(t)U . Then h(u) = 0 ∧ h(p(t)u) = 0 is implied by a quantifier-free
formula in the language of the reduct and implies h1(u) := p(t)αh(u)− h(p(t)u) = 0
for any positive integer α. If (α0, . . . , αn) is the multi-degree of h then taking α :=
α0 + . . .+αn the leading terms of the differential polynomials p(t)αh(U) and h(p(t)U)
will coincide and will cancel out in the difference h1(U) := p(t)αh(U) − h(p(t)U).
By an appropriate choice of p we can also guarantee that h1(U) is non-zero unless
h(U) = h(1) ·Uα. Indeed, if h(U) 6= h(1) ·Uα then the polynomial h(V ·U)−V α ·h(U)
is non-zero and hence there is p(t) ∈ Q[t] such that h(p(t) ·U) 6= p(t)α ·h(U), therefore
h1(U) 6= 0. Thus, if h(U) is not a homogeneous algebraic polynomial then h1 is non-
zero and its multi-degree is strictly less than that of h. Now if h1(U) is not algebraic
homogeneous then we repeat the above procedure for h1. Iterating this process we will
eventually obtain an equation uα = 0 for some positive integer α which is equivalent
to u = 0. Taking into account that all the sets defined this way contain u = 0 we see
that at the last step we have defined u = 0 which, in terms of x and y, is the curve
y = Dx.

Finally note that we only take conjunctions of atomic formulas here, hence the
definition is quantifier-free.

Remark 4.4.5. Strictly speaking, for the “quantifier-free” part of the theorem to
be true we need to pick p(t) ∈ N[t] each time. Alternatively, we could add unary
functions for multiplicative and additive inverses to our language.

Example 4.4.6. Suppose E is given by (D y−D2 x) ·Dx = 0. Then E(x+ t, y+1) =
[(D y − D2 x) · (Dx + 1) = 0]. The conjunction E(x, y) ∧ E(x + t, y + 1) implies
D y−D2 x = 0. Now we substitute x 7→ tx, y 7→ x+ty and get t(D y−D2 x)+y−Dx =
0. Subtracting the previous equation multiplied by t we get y − Dx = 0. Thus the
formula E(x, y) ∧ E(x+ t, y + 1) ∧ E(tx, x+ ty) ∧ E(tx+ t, x+ ty + 1) defines D.

Corollary 4.4.7. If E is a curve in general sense that contains D then D is quantifier-
free definable.

Proof. Being a curve in general sense, E is defined by a formula of the form f(x, y) =
0 ∧ ψ(x, y) for ψ a quantifier free formula in the language of differential fields. Now
for the curve E ′ given by the equation f(x, y) = 0 we have a definition of D. Suppose
it is given by the formula ϕ(x, y) in the reduct FE′ . We claim that the same formula
defines D in FE. Indeed, as we take only conjunctions to define D from E ′, the set
defined by ϕ(x, y) in FE will be contained in D. On the other hand it clearly contains
D. Therefore it defines D.

We will give further examples and non-examples (of differential equations defining
D) in Section 4.6, but first we need to establish some facts on generic points which
we do in the next section.
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4.5 Generic points
Recall that we work in a saturated differentially closed field F . From now on we fix
a generic (in the sense of DCF0, that is, differentially transcendental) point a ∈ F .
We first prove that if D a can be defined from a then we can recover the whole of D.

Proposition 4.5.1. Suppose a formula ϕ(x, y) ∈ LR defines D a from a, that is,

F |= ∀y(ϕ(a, y)↔ y = D a).

Then D is definable (without parameters). Moreover, if ϕ is existential then D is
existentially definable.

First proof. First of all observe that since the generic type is unique, for any differ-
entially transcendental element b ∈ F we have

F |= ∀y(ϕ(b, y)↔ y = D b).

Let A be the set defined by ϕ(x, y) and define

B := {(b,D b) : b generic in F} ⊆ A.

At generic points b the formula ϕ defines D b but we do not have any information
about non-generic points. So we need shrink the set A to a subset of D in order
to avoid any possible problems at non-generic points. The set A being a curve in
general sense must be defined by a formula f(x, y) = 0 ∧ ψ(x, y) (in the language
of differential rings). Then f(a,D a) = 0 and hence f(X,DX) = 0. Therefore D
can be defined from the differential curve f(x, y) = 0 by Theorem 4.4.4. Taking into
account that for a generic element b the elements b + p(t) and p(t)b are generic as
well for any p(t) ∈ Q[t] \ {0}, we see that the sets ϕ(x, y) ∧ ϕ(x+ p(t), y + p′(t)) and
ϕ(x, y)∧ϕ(p(t)x, p(t)y+p′(t)x) contain B. Arguing as in the proofs of Theorem 4.4.4
and Corollary 4.4.7, after taking sufficiently many conjunctions of such formulas we
will eventually define a set B′ such that it contains B and is contained in the graph
D of D. Note that B′ is 0-definable.

Treating D as an additive group we prove the following.

Claim. D = B′ +B′.

Clearly B′+B′ ⊆ D. Let us show that the converse inclusion holds. Any element
d ∈ F has a representation d = b1 + b2 with b1 and b2 generic. Indeed, take b1 to
be generic over d and choose b2 = d − b1. Hence (d,D d) = (b1,D b1) + (b2,D b2) ∈
B +B ⊆ B′ +B′.

This gives a definition of D without parameters. Moreover, if ϕ is existential then
we get an existential definition.

Remark 4.5.2. The group D is in fact a connected ω-stable group (its Morley degree
is one). Therefore the equality D = G+G holds for any definable subset G of D with
MR(G) = MR(D) (see, for example, [Mar02], Chapter 7, Corollary 7.2.7). We could
use this to show that D = B′ + B′ since MR(B′) = MR(D) = ω. In fact, the idea is
the same as in the above claim; one just passes to a saturated extension and uses the
above argument there.
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We will shortly give another proof to Proposition 4.5.1. For this we first observe
that if D is definable with independent parameters then it is also definable without
parameters.

Lemma 4.5.3. Suppose ψ(x, y, u1, . . . , un) ∈ LR and b1, . . . , bn are differentially in-
dependent elements in F . If the formula ψ(x, y, b̄) defines y = Dx then there are
0-definable elements t1, . . . , tn ∈ k0 = Q(t) such that ψ(x, y, t̄) defines D (and so D is
0-definable).

Proof. We have
F |= ψ(x, y, b̄)←→ y = Dx.

Therefore
q(z̄) := tpD(b̄) |= ψ(x, y, z̄)←→ y = Dx.

Since q(z̄) is the generic m-type in DCF0, it consists only of differential inequations.
Applying compactness and taking into account that conjunction of finitely many
inequations is an inequation as well, we conclude that there is a differential polynomial
f(Z1, . . . , Zm) over k0 such that

F |= ∀z̄(f(z̄) 6= 0 −→ ∀x, y(ψ(x, y, z̄)↔ y = Dx)).

By Lemma 4.4.1 we can find elements t1, . . . , tm ∈ k0 such that f(t1, . . . , tm) is
non-zero. Now we see that

F |= ψ(x, y, t̄)←→ y = Dx

and we are done.

Second proof of Proposition 4.5.1. Let (b1, b2) ∈ F 2 be a differentially independent
tuple. Then for every d ∈ F the differential transcendence degree of d, d + b1, d + b2

is at least 2. It is easy to deduce from this that the following formula defines D:

∃u1, u2(ϕ(b1, u1) ∧ ϕ(b2, u2) ∧ [(ϕ(x, y) ∧ ϕ(x+ b1, y + u1))

∨(ϕ(x, y) ∧ ϕ(x+ b2, y + u2)) ∨ (ϕ(x+ b2, y + u2) ∧ ϕ(x+ b1, y + u1))]).

Now Lemma 4.5.3 concludes the proof.

The idea that the behaviour of D at generic (differentially transcendental) points
determines its global behaviour as a function can be developed further. We proceed
towards this goal in the rest of this section.

Next we show that if D a is not generic over a (in the reduct) then it is in fact
definable and hence D is definable. Let p(y) := tpR(D a/a) be the type of D a over a
in FR.

Theorem 4.5.4. The derivation D is definable in FR if and only if p has finite Morley
rank (in FR).
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Proof. Obviously, if D is definable then p is algebraic and hence has Morley rank 0.
Let us prove the other direction.

Let ϕ(a, y) ∈ p be a formula of finite Morley rank. Trivially F |= ϕ(a,D a) and
ϕ(x, y) defines a curve in general sense. As in the proof of Proposition 4.5.1 we can
define a big subset ψ(x, y) of D, that is, a subset of Morley rank ω. This set certainly
contains the point (a,D a) and ψ(a, y) defines D a. Thus D a is definable over a and
Proposition 4.5.1 finishes the proof.

Remark 4.5.5. The proof shows that if ϕ(x, y) is an existential formula of rank
< ω · 2 which is true of (a,D a) then D is existentially definable.

Corollary 4.5.6. In the reduct, D a is either generic or algebraic (in fact, definable)
over a.

Lemma 4.5.7. If p is isolated then it has finite Morley rank (in the reduct).

Proof. The argument here is an adaptation of the proof of the fact that in differentially
closed fields the generic type is not isolated.

Suppose p is isolated but has rank ω, i.e. it is the generic type over a (in the
reduct). Then

p(y) = {¬ϕ(a, y) : ϕ ∈ LR, F |= ϕ(a,D a) and MRR(ϕ(a, y)) < ω}.

Suppose ¬ψ(a, y) isolates p. By Remark 4.3.2 there is a formula ϕ(a, y) for which
MRR(ψ(a, y)) < MRR(ϕ(a, y)) < ω. Then ϕ(a, y) ∧ ¬ψ(a, y) is consistent. A re-
alisation of this formula cannot be generic, for ϕ has finite Morley rank. This is a
contradiction.

As an immediate consequence one gets the following result.

Corollary 4.5.8. The derivation D is definable in FR if and only if p is isolated.

Remark 4.5.9. We can consider the quantifier-free type q(y) := qftp(D a/a). Then
D is quantifier-free definable if and only if this type is isolated, if and only if it has
finite Morley rank.

Notice that in stability-theoretic language we have proved that D is definable if
and only if tpR(D a/a) forks over the empty set. Indeed, MRR(D a) = ω (since it is
generic in the differentially closed field) and forking in ω-stable theories means that
Morley rank decreases, hence tpR(D a/a) forks over ∅ if and only if MRR(D a/a) < ω.

In terms of forking independence we have the following formulation: D is definable
if and only if a 6 |̂ D a in FR. This will be generalised in the next section.

Note that all the above results will remain true if we replace Morley rank every-
where with U-rank.

Now add a differentially transcendental element a to our language and consider
the reducts in this new language. Denote the theory of FR in this language by T+

R .
Assume that each model of T+

R comes from a differentially closed field, that is, each
model KR is the reduct of a differentially closed field K = (K; +, ·,DK , 0, 1, t, a) in
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which a is generic (differentially transcendental) and relations from R are interpreted
canonically (i.e. they are defined in K by the same formulas as in F). Then the type
p(y) will be realised by DK a in KR. The omitting types theorem now yields that p
must be isolated. Thus, we have established the following result.

Theorem 4.5.10. If each model of T+
R is the R-reduct (with canonical interpreta-

tion2) of a model of DCF0, then D is definable.

In other words, this means that if each model of T+
R is equipped with a derivation

which is compatible with R then D is definable. The converse of this holds as well
trivially.

This is similar to Beth’s definability theorem in spirit (see [Poi00]). Beth’s the-
orem in this setting means that if each model of T+

R has at most one derivation
compatible with R then D is definable. We showed that if each model has at least
one derivation then D is definable. Also it is worth mentioning that unlike Beth’s
definability theorem, this statement is not true in general for arbitrary theories.

4.6 Further examples
In this section we will see that there is another class of differential equations defining
D. It will be used to characterise definable and algebraic closures of generic elements
in the reducts. At the end of the section we will give two non-examples. Note that
the results of this section will not be used in further sections.

We will show first that differential rational functions define the derivation.

Proposition 4.6.1. If E(x, y) is given by g(x) · y = f(x) where f(X)
g(X)

is a differential
rational function which is not an algebraic rational function, then D is definable in
FE.

Lemma 4.6.2. Let D1 and D2 be derivations on a field K and t ∈ K be such that
D1 t = D2 t = 1. If there is a non-zero algebraic polynomial P (X0, . . . , Xn, Y1, . . . , Ym)
over K such that

P (X,D1X, . . . ,D
n
1 X,D2X, . . . ,D

m
2 X) = 0

then D1 = D2.

Proof. We can assume without loss of generality that n = m. As in the proof of
Lemma 4.2.2 we can show there is a non-zero polynomial P1(X̄, Ȳ ) such that

P1(X1, . . . , Xn,D2 Y −D1 Y +X1, . . . ,D
n
2 Y −Dn

1 Y +Xn) = 0.

Clearly D := D2−D1 is a derivation of K. The above identity implies that for
some non-zero polynomial Q we have

Q(DX,D2X, . . . ,DnX) = 0.

2Recall that this means that every relation from R is interpreted in the given model by the
appropriate differential equation (or formula in the language LD).
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If D1 6= D2 then D 6= 0 and there is an element b ∈ K with D b 6= 0. Dividing D
by D b we can assume that D b = 1. But then substituting X 7→ X + rbj for r ∈ Q
and j = 1, . . . , n, we see that Q = 0, which is a contradiction.

Proof of Proposition 4.6.1. Suppose

f(X) = P (X,DX, . . . ,DnX), g(X) = Q(X,DX, . . . ,DmX).

We will use Beth’s definability theorem to show that D is definable in TE := Th(FE).
Indeed, if we have two derivations D1 and D2 on a model KE |= TE that are compatible
with E (and K is differentially closed with either of these derivations and D1 t =
D2 t = 1), then

P (X,D1X, . . . ,D
n
1 X) ·Q(X,D2X, . . . ,D

m
2 X) =

P (X,D2X, . . . ,D
n
2 X) ·Q(X,D1X, . . . ,D

m
1 X).

Since f(X)/g(X) is not an algebraic rational function, the above identity shows that
the conditions of Lemma 4.6.2 are satisfied. Therefore D1 = D2.

Remark 4.6.3. Note that even in the simple cases y = D2 x and y = (Dx)2 the
differentiation is not definable without using t since we can not distinguish between
D and −D.

Remark 4.6.4. A special case of Proposition 4.6.1, when g(X) = 1, i.e. E is given
by a differential polynomial, can be proven straightforwardly. Indeed, let E be given
by y = f(x) where f is a differential polynomial of order at least one. Then, as in the
proof of Theorem 4.4.4, we consider polynomials of the form f(p(t)X)− (p(t))αf(X)
for an integer α. All these polynomials are definable and by an appropriate choice
of α we can reduce the multi-degree of f . Iterating this process, at some point we
are going to get an algebraic polynomial. One can see that in the previous step we
must have a differential polynomial of the form R1(X) · DX + R2(X) where R1, R2

are algebraic polynomials and R1 6= 0. From this we can easily define DX. Note that
in fact it is enough to take p(t) = t.

Now we prove that from an algebraic function of x,Dx, . . . ,Dn x one can define
Dx. But we need to exclude some trivial counterexamples like y ·Dx = 0.

Definition 4.6.5. A differential polynomial f(X, Y ) is said to be non-degenerate
if it cannot be decomposed into a product g(X)h(X, Y ) where g is a differential
polynomial and h is an algebraic polynomial. An irreducible non-algebraic polynomial
which depends on both variables is obviously non-degenerate.

Proposition 4.6.6. Suppose E(x, y) is defined by a non-degenerate equation f(x, y) =
0 where ordX(f) > 0 and ordY (f) = 0. Then D is definable in FE.

Proof. Pick a differentially transcendental element a ∈ F and let

f(a, Y ) =
k∏
i=1

fi(a, Y )ei
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be the irreducible factorisation of f(a, Y ) over k0〈a〉. Denote

g(a, Y ) :=
k∏
i=1

fi(a, Y ) =
m∑
i=0

gi(a) · Y i,

where gi(X) ∈ k0〈X〉 and gm 6= 0.
Consider the formula

ψ(x, z0, . . . , zm) = ∃y1, . . . , ym

(∧
i 6=j

yi 6= yj ∧
m∧
i=1

E(x, yi) ∧
m∧
i=1

m∑
j=0

zj · yji = 0

)
.

Clearly, E(a, y) holds if and only if g(a, y) = 0. The polynomial g(a, Y ) has m
different roots. Therefore ϕ(a, z0, . . . , zm) holds if and only if the roots of

∑m
i=0 zi ·Y i

are exactly the same as those of g(a, Y ) (as these two polynomials have the same
degree in Y ). This can happen if and only if

∑m
i=0 zi · Y i is equal to g(a, Y ) up to a

constant which depends on a. This means that

zi
zm

=
gi(a)

gm(a)
,

for all i. At least one of gi(X)
gm(X)

is not an algebraic rational function since otherwise
f would be degenerate. But then we can define D a from that differential rational
function by Proposition 4.6.1 and we are done.

Next, we will apply Proposition 4.6.6 to work out definable and algebraic closures
of generic points in the reducts. As before, let a ∈ F be a generic point. We will
show that the definable closure of a in FR coincides either with the definable closure
in the differentially closed field or with that in the pure algebraically closed field.

It is well known what the definable and algebraic closures of arbitrary sets in
differentially closed fields look like (Proposition 2.1.1). Taking into account the fact
that we have added t as a constant symbol to the language, we see that for a set A ⊆ F
the definable and algebraic closures in F are given by dclD(A) = k0〈A〉 and aclD(A) =
(k0〈A〉)alg, where k0 = Q(t) and k0〈A〉 is the differential subfield generated by (k0 and)
A. This immediately implies that in the reduct we have k0(A) ⊆ dclR(A) ⊆ k0〈A〉
and (k0(A))alg ⊆ aclR(A) ⊆ (k0〈A〉)alg.

We show that for generic elements one of these two extremal cases must happen.

Theorem 4.6.7. For a ∈ F a generic point exactly one of the following statements
holds:

• dclR(a) = k0(a); this holds if and only if aclR(a) = (k0(a))alg if and only if D is
not definable;

• dclR(a) = k0〈a〉; this holds if and only if aclR(a) = (k0〈a〉)alg if and only if D is
definable.
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Proof. It will be enough to show that if aclR(a) ) (k0(a))alg then D is definable. Thus,
let aclR(a) ) (k0(a))alg. Choose b ∈ (k0〈a〉)alg \ (k0(a))alg which is algebraic (in the
model theoretic sense) over a in FR. There is a formula ϕ(x, y) ∈ LR such that ϕ(a, b)
holds and ϕ(a, y) has finitely many realisations. Because ϕ(a, y) defines a finite set in
the differentially closed field F , it is equivalent to an algebraic polynomial equation
over k0〈a〉. The latter is clearly non-degenerate and is not defined over k0(a) since b is
its root. Applying Proposition 4.6.6 we define D a (over a). Hence D is definable.

Now using Proposition 4.6.1 we generalise Theorem 4.5.4.

Proposition 4.6.8. Let a ∈ F be a differentially transcendental element. If

MRR(a,D a, . . . ,Dn a) < ω · (n+ 1)

then D is definable.

Proof. We proceed to the proof by induction on n. The case n = 1 is done in Theorem
4.4.4. Assuming the theorem is true for all numbers less than n, we prove it for n.

There is a formula ϕ(x0, x1, . . . , xn) ∈ LR with MRR(ϕ) < ω · (n+ 1) and

FR |= ϕ(a,D a, . . . ,Dn a).

Since ϕ does not have “full” rank, we can assume without loss of generality it is given
by a differential equation f(x0, x1, . . . , xn) = 0 in the language of differential rings.
Since f(a,D a, . . . ,Dn a) = 0 and a is generic, f must be equal to g(X,U1, . . . , Un)
for some differential polynomial g with g(X, 0, . . . , 0) = 0 where X := X0, Ui :=
Xi − DiX. Further, applying the method of additive translates as in the proof of
Theorem 4.4.4, we can assume that g does not depend on the first variable, so we write
g(U1, . . . , Un). However, we cannot proceed as in Theorem 4.4.4 and use multiplica-
tive translates as there exist non-algebraic “homogeneous” differential polynomials of
several variables.

Claim. Dn a ∈ dclR(a,D a, . . . ,Dn−1 a).

Proof. The set defined by ϕ(a,D a, . . . ,Dn−1 a, y) contains Dn a. Moreover, that for-
mula is given by h(y −Dn a) = 0 where h(U) = g(0, . . . , 0, U). Consider the formula

ϕ
[
p(t)a,D(p(t)a), . . . ,Dn−1(p(t)a),Dn(p(t)a)− p(t) Dn a+ p(t)y

]
, (6.1)

for a non-zero polynomial p(t) ∈ Q[t].
It is easy to see that this is a formula in the language of reducts with parameters

a,D a, . . . ,Dn−1 a and it is true of y = Dn a. The formula (6.1) is equivalent to
h(p(t)(y − Dn a)) = 0. Taking the conjunction of ϕ(a,D a, . . . ,Dn−1 a, y) and the
formula (6.1) we get a formula in the language LR equivalent to3

h[y −Dn a] = 0 ∧ h[p(t)(y −Dn a)] = 0.

3Here we use square brackets for ease of reading. They do not have any special meaning.
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This contains the point Dn a since h(0) = 0 and is contained in sets defined by
h[p(t)(y−Dn a)]− (p(t))αh[y−Dn a] = 0 for α a positive integer. By an appropriate
choice of α we reduce the multi-degree of h and by a choice of p we make sure
the difference is not identically zero (see the proof of Theorem 4.4.4). This can be
done unless h is an algebraic homogeneous polynomial. Iterating this process we will
eventually reach a situation where h has been replaced by an algebraic homogeneous
polynomial in which case our formula defines Dn a.

We proved that there is a formula ψ(x̄) ∈ LR such that ψ(a,D a, . . . ,Dn−1 a, y) has
a unique solution which is Dn a. We can assume MRR(a,D a, . . . ,Dn−1 a) = ω ·n since
otherwise D is definable by the induction hypothesis. Let b1, . . . , bn−1 be differentially
independent elements over a. Then

tpR(a, b1, . . . , bn−1) = tpR(a,D a, . . . ,Dn−1 a) =: p(x0, . . . , xn−1).

Evidently ∃!yψ(x0, . . . , xn−1, y) ∈ p where “∃!” stands for “there is a unique” (it is
obviously first-order expressible). Therefore

FR |= ∃!yψ(a, b1 . . . , bn−1, y),

and the unique solution of ψ(a, b1 . . . , bn−1, y) is a differential rational function of
a, b1, . . . , bn−1. Denote it by r(a, b1, . . . , bn−1). If r is an algebraic rational function
then

ξ(x̄) := ∀y(ψ(x0, . . . , xn−1, y)↔ y = r(x0, . . . , xn−1))

is a formula in the language of reducts and is true of (a, b1, . . . , bn−1). Hence it must
be true of (a,D a, . . . ,Dn−1 a) too, which means Dn a = r(a,D a, . . . ,Dn−1 a) which is
impossible since a is differentially transcendental.

Thus, r is not algebraic. By a compactness argument (as in Lemma 4.5.3) we can
choose t1, . . . , tn−1 ∈ Q(t, a) such that F |= ξ(a, t1 . . . , tn−1) and r(a, t1, . . . , tn−1) ∈
Q(t)〈a〉 \ Q(t, a). This guarantees that the formula ψ(a, t1 . . . , tn−1, y) (which is in
the language of reducts) defines a non-algebraic (in the field theoretic sense) element
over a and so dclR(a) ) k0(a). So D is definable due to Theorem 4.6.7.

Recall that in a stable theory a set A (in the monster model) is called independent
(over B) if for any a ∈ A we have a |̂

B
A \ {a}.

Corollary 4.6.9. D is definable in FR if and only if the sequence a,D a,D2 a, . . . is
not independent (over the empty set) in FR.

Proof. If the sequence a,D a,D2 a, . . . is not independent then for some n the set
{a,D a, . . . ,Dn a} is not independent. Therefore MRR(a,D a, . . . ,Dn a) < ω · (n +
1).

As a common generalisation of Theorem 4.4.4 and Proposition 4.6.6 we prove the
following result.

Proposition 4.6.10. Suppose E (a curve in general sense) contains a differential
curve defined by a non-degenerate equation f(x, y) = 0 where ordX(f) > 0 and
ordY (f) = 0. Then D is definable in FE.
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Proof. Let g(X, Y ) = p(X,DX, . . . ,DnX, Y ) be an irreducible non-degenerate factor
of f(X, Y ). Furthermore, as ordX(f) > 0 we can assume that ordX(g) > 0. Consider
the formula

ϕ(x, y1, . . . , yn) := ∃z(E(x, z) ∧ p(x, y1, . . . , yn, z) = 0).

Clearly FE |= ϕ(a,D a, . . . ,Dn a). Further, if ϕ(a, b1, . . . , bn) holds then for some c
we have

p(a, b, c) = 0 ∧ E(a, c).

Since p is irreducible, a, b1, . . . , bn are algebraically dependent over c. Moreover,
ordX(g) > 0 implies that b1, . . . , bn are algebraically dependent over {a, c}. On the
other hand, c is differentially algebraic over a. Therefore a, b̄ are differentially depen-
dent and hence MRD(ϕ) < ω · (n+ 1). Now Proposition 4.6.8 finishes the proof.

One will certainly notice at this point that we found a number of conditions on
FR which are all equivalent to definability of D. We sum up all these conditions in
the following theorem.

Theorem 4.6.11. For a generic point a ∈ F the following are equivalent:

1. D is definable in the reduct FR without parameters,

2. MRR(D a/a) < ω,

3. MRR(D a/a) = 0,

4. tpR(D a/a) forks over the empty set,

5. The sequence (Dn a)n≥0 is not (forking) independent,

6. dclR(a) ) k0(a),

7. aclR(a) ) (k0(a))alg,

8. Every model of T+
R is the LR-reduct (with canonical interpretation) of a differ-

entially closed field,

9. Every automorphism of FR fixes D setwise.

Proof. We need only show 9⇒ 1. Take any automorphism σ of FR which fixes a. It
fixes D setwise, hence (σ(a), σ(D a)) ∈ D. This means σ(D a) = D(σa) = D a. Thus
any automorphism of FR fixing a fixes D a. Since FR is saturated, D a is definable
over a. Therefore D is definable.

We conclude this section by giving examples of differential equations that do not
define D.
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Example 4.6.12. We will show that unary relations cannot define D.
Let R consist of unary relations, i.e. definable subsets of F (by quantifier elimina-

tion of DCF0 we may assume R consists of sets of solutions of one-variable equations).
Then D is not definable in FR.

Consider the differential closure of k0 inside F , that is,

K = {d ∈ F : DR(d) < ω}.

This is obviously a differentially closed field. Take a generic element a ∈ F , i.e. an
element outside K. Let L ⊇ K be the differential closure of K〈a〉 inside F . Further,
denote ai = Di a, i ≥ 0 and let A be a transcendence basis of L over K containing
these elements (not differential transcendence basis, which would consist only of a).

Define a new derivation D1 on L as follows. Set D1 = D on K ∪ A \ {a0, a1} and
D1 a0 = a2, D1 a1 = a0. This can be uniquely extended to a derivation of L. The
field automorphism σ ∈ Aut(L/K) which fixes A \ {a0, a1} and swaps a0 and a1 is
in fact an isomorphism of differential fields L = (L; +, ·,D) and L1 = (L; +, ·,D1).
Therefore the latter is differentially closed.

Thus we have a field L equipped with two different derivations D and D1 and L is
a differentially closed field with respect to each of them. Further, K ⊂ L consists of
all differentially algebraic elements in L. Since L and L1 are isomorphic over K, the
differential closure of k0 in L1 is equal to K as well. Therefore the interpretations of
relation symbols for one-variable differential equations in L and L1 are contained in
K. But D and D1 agree on K and therefore those interpretations agree in L and L1.
This shows that D is not definable in the structure FR.
Example 4.6.13. Now we give a more interesting example.

Proposition 4.6.14. The exponential differential equation D y = yDx does not
define D.

We show first that for a differential equation E if D is definable in TE then E is
uniquely determined by TE.

Lemma 4.6.15. If D is definable in TE then for any differential equation E ′(x, y)

TE = TE′ ⇒ E = E ′.

Proof. Let E be given by the equation f(x, y) = 0. Since D is definable, the formula
∀x, y(E(x, y) ↔ f(x, y) = 0) (more precisely, its translation into the language of
the reducts) is in TE. In other words, the fact that E is defined by the equation
f(x, y) = 0 is captured by TE. Therefore if E ′ has the same theory as E it must be
defined by the same equation f(x, y) = 0.

Proof of Proposition 4.6.14. An axiomatisation of the complete theory of the expo-
nential differential equation is given in [Kir09] (see Section 5.1). One can deduce from
the axioms that the equation D y = 2yDx is elementarily equivalent to the exponen-
tial equation. But clearly those two equations define different sets in differentially
closed fields. Hence the previous lemma shows that D is not definable if E is given
by D y = yDx.

We will give another proof to Proposition 4.6.14 in Section 4.8.
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4.7 Connection to predimensions
As we have already mentioned, definability of D in a reduct should show that the
latter does not have any adequate predimension inequality. Now we prove a precise
result in this direction. The main result of the next section contributes to that idea
as well.

Let F be a countable saturated differentially closed field. Assume C is a collection
of structures in the language of reducts LR and δ is a predimension on Cf.g. satisfying
all necessary conditions given in Chapter 3. Let d be the dimension associated to
δ. Below by a d-generic type (over some parameter set A) we mean the type of an
element a with d(a/A) = 1.

Theorem 4.7.1. Assume the underlying fields of structures from Cf.g. are alge-
braically closed of finite transcendence degree over Q. Assume further that d-generic
1-types (over finite sets) are not algebraic. If D is definable in FR and δ is strongly
adequate, then the reduct is model complete and hence δ is trivial.

In general, it is possible that d-generic 1-type is not unique. Moreover, in some
trivial examples such a type may be algebraic. So our assumption excludes such
degenerate cases. In particular, if the free amalgamation property holds for Cf.g. then
d-generic types cannot be algebraic. Actually, it will suffice to assume that generic 1-
types have more than one realisation. In fact, we expect d-generic types to be generic
in the sense of the reduct of a differentially closed field. As we know those are unique
and have maximal rank.

Proof. Strong adequacy means that FR is the Fraïssé limit of Cf.g.. Let a ∈ F be
differentially transcendental. Denote A := dae (the strong closure of a in FR) and
A′ := da,D ae.

If d(D a/a) = 1 then by our assumption tpR(D a/a) (which is a d-generic type)
has more than one realisation which contradicts definability of D a over a. Thus,
d(D a/a) = 0 and so δ(A′) = d(a,D a) = d(a) = δ(A). Since A ⊆ A′, we have
δ(A′/A) = δ(A′) − δ(A) = 0. Let A′ be C-generated by (a,D a, ū). Extending
ū if necessary we can assume that A′ = Q(a,D a, ū)alg (here we use the fact that
td(A′/Q) < ℵ0).

If (v, w̄) is a realisation of the existential type etpR(D a, ū/a) then we claim that
v = D a. Indeed, in a differentially closed field the type of a (field-theoretically)
algebraic element is isolated by its minimal algebraic equation (and so all alge-
braic conjugates of that element have the same type), hence B := Q(a, v, w̄)alg ∼=
Q(a,D a, ū)alg = A′ where the isomorphism is in the sense of LR-structures (induced
from FR). Therefore B ∈ C and δ(B) = δ(A′). If d(a) = 0 then δ(A′) = 0 and so
δ(B) = 0. If d(a) = 1 then A = 〈a〉 is the structure C-generated by a. Since a ∈ B,
we must have A ⊆ B and δ(B/A) = δ(B) − δ(A) = δ(A′) − δ(A) = 0. In both
cases B ≤ FR. Now by homogeneity of the Fraïssé limit for strong substructures,
the above isomorphism between B and A′ extends to an automorphism of FR. This
implies tpR(D a, ū/a) = tpR(v, w̄/a) and so tpR(D a/a) = tpR(v/a). On the other
hand, D a is definable over a, hence we must have v = D a.
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Thus, for p(x, y, z̄) := etpR(a,D a, ū) we have

FR |= ∃z̄
∧

p(a, y, z̄)←→ y = D a.

A standard compactness argument shows that there is an (existential) ϕ(x, y, z̄) ∈
p so that

FR |= ∃z̄ϕ(a, y, z̄)←→ y = D a.

By Remark 4.5.5, D is existentially definable in FR.

The result will still hold if instead of assuming that finitely generated structures
have finite transcendence degree we assume δ is quantifier-free (infinitely) definable.
Nonetheless, we cannot apply these results to the exponential differential equation
since there finitely generated means of finite transcendence degree over C. However,
Theorem 4.8.2 helps in that situation.

4.8 Model completeness
In Section 4.5 we showed that if a formula ϕ(x, y) defines a small set which contains
the point (a,D a) for a differentially transcendental element a then D is definable.
Moreover, if ϕ is existential then D is existentially definable. Smallness of a set can
be verified as follows. If b is a generic (differentially transcendental) element over
a, that is, (a, b) is a generic pair (differentially independent), then ϕ(x, y) defines a
small set if and only if ¬ϕ(a, b). Thus, instead of working with formulas defining D
we can work with formulas ϕ(x, y) with ϕ(a,D a) ∧ ¬ϕ(a, b).

Definition 4.8.1. A formula ϕ(x, y) ∈ LR is a D-formula if F |= ϕ(a,D a)∧¬ϕ(a, b),
where (a, b) is a differentially independent pair.

Here we worked over the empty set. In particular, a is differentially transcendental
over the empty set and the definitions that we consider are again over the empty
set, i.e. without parameters. However, it is clear that we could in fact work over
any set A ⊆ F . In this case we should let a be differentially transcendental over
A. If ϕ(x, y) is a formula over A such that ϕ(a,D a) ∧ ¬ϕ(a, b) holds where b is
differentially transcendental over Aa (in this case we will say ϕ is a D-formula over
A), then certainly D is definable over A. Moreover, if ϕ(x, y) is existential then D is
existentially definable over A. In this section we use this fact to prove that under a
natural assumption, if D is definable then it is existentially definable.

As above a ∈ F is a differentially transcendental element and k0 = Q(t) = dclR(∅)
(recall that t is an element with D t = 1).

Theorem 4.8.2. If TR is inductive (i.e. ∀∃-axiomatisable) and defines D then it
defines D existentially and, therefore, TR is model complete.

As we saw in Section 3.4, this result can be used to show that if a derivation is
definable in a reduct which is ∀∃-axiomatisable then the latter cannot have a non-
trivial strongly adequate predimension. Recall also that as we observed in Lemma
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3.2.11, under reasonable definability assumptions on the predimension a Hrushovski
construction yields a nearly model complete theory. Theorem 4.8.2 shows that if we
also assume D is definable then we have a much stronger quantifier elimination result,
namely, model completeness.

We now establish an auxiliary result which will be used in the proof of Theorem
4.8.2.

Lemma 4.8.3. Let ϕ(x, ū) ∈ LR be a quantifier-free formula and p(X, Y, Ū) ∈
k0[X, Y, Ū ] be an algebraic polynomial which is monic in the Y variable. Denote

χ(x, y) := ∀ū(ϕ(x, ū)→ p(x, y, ū) = 0).

If ∃ūϕ(a, ū) and χ(a,D a) hold then D is existentially definable.

Proof. Let the tuple (b1, . . . , bm, e1, . . . , es) be of maximal differential transcendence
degree m over a such that FR � ϕ(a, b1, . . . , bm, e1, . . . , es) and assume that b1, . . . , bm
are differentially independent over a.

Consider the formula

ψ(x, y, z̄) = ∃v1, . . . , vs(ϕ(x, z̄, v̄) ∧ p(x, y, z̄, v̄) = 0).

Clearly ψ(a,D a, b̄) holds. Moreover, if ψ(a, d, b̄) holds then for some d1, . . . , ds we
have

FR � ϕ(a, b̄, d̄),

which implies that d1, . . . , ds have finite rank over {a, b1, . . . , bm}. Since p is monic as
a polynomial of Y and p(a, d, b̄, d̄) = 0, we conclude that d ∈ (k0(a, b̄, d̄))alg and hence
d is not generic over {a, b1, . . . , bm}.

Thus working over the parameter set B = {b1, . . . , bm} we see that a is generic
over B and ψ(x, y, b̄) is a D-formula over B. Hence we can make it into a proper
definition of D with parameters from B. Thus, we get an existential definition of D
with differentially independent parameters b1, . . . , bm. By Lemma 4.5.3 we have an
existential definition without parameters.

If we assume D has a universal definition then the proof of Theorem 4.8.2 can be
somewhat simplified. Though we will not work under this assumption, the following
lemma (combined with Lemma 3.2.11) shows that it would be a natural condition
from the point of view of adequate predimension inequalities.

Lemma 4.8.4. If there is a D-formula which is a Boolean combination of existential
formulas then there is a universal D-formula.

Proof. Assume D is not existentially definable. Let

δ(x, y) =
∨
i

(ϕi(x, y) ∧ ψi(x, y))

be a D-formula where ϕi is universal and ψi is existential. Since δ(a,D a) holds, there
is some i0 for which ϕi0(a,D a)∧ψi0(a,D a) holds. If ψi0 is small then D is existentially
definable. Therefore ϕi0 is small and it is a universal D-formula.

53



Now we are ready to prove our main theorem.

Proof of Theorem 4.8.2. Let δ(x, y) be a formula defining D. We assume that D is
not existentially definable, hence δ is not existential. The main idea of the proof is
that unless one says explicitly that ∀x∃yδ(x, y), one cannot guarantee that δ defines a
function. In other words we will prove that ∀x∃yδ(x, y) (which is not an ∀∃-sentence)
is not implied by the ∀∃-part of TR, as otherwise we will be able to find an existential
definition of D. This will contradict our assumption of inductiveness.

Let T be the ∀∃-part of TR, i.e. the subset of TR consisting of ∀∃-sentences. In
other words

T = {∀x̄∃ȳϕ(x̄, ȳ) : ϕ is a quantifier-free formula in LR, FR |= ∀x̄∃ȳϕ(x̄, ȳ)}.

Denote Φ := {ϕ(x̄, ȳ) : ∀x̄∃ȳϕ(x̄, ȳ) ∈ T}.
By our assumption T is an axiomatisation of TR. However, we will get a con-

tradiction to this by showing that T has a model in which ∀x∃yδ(x, y) does not
hold. The construction of that model will go as follows. We start with the field
k = Q(t, a) = k0(a) and add solutions of the formulas ϕ ∈ Φ step by step (for
ϕ(x̄, ȳ) ∈ Φ we think of x̄ as coefficients and of ȳ as solutions). We also make sure
that we do not add D a in any step. If the latter is not possible then we show that D
is existentially definable.

In order to implement this idea, we expand the language by adding constant4
symbols for solutions of all ϕ ∈ Φ. First, take C0 = {a}. We will inductively add
new constant symbols to C0 countably many times.

If Cl is constructed then Cl+1 is the expansion of Cl by new constant symbols as
follows. For each ϕ(x̄, ȳ) ∈ Φ with |x̄| = m, |ȳ| = n and for all c̄ ∈ Cm

l add new
constant symbols d1

ϕ,c̄, . . . , d
n
ϕ,c̄. After adding these new constants for all ϕ ∈ Φ we

get Cl+1. Finally set C =
⋃
l Cl. This is a countable set.

Now consider the following sets of sentences in the expanded language LR ∪ C.
First, denote

Γ(C) := {ϕ(c1, . . . , cm, d
1
ϕ,c̄, . . . , d

n
ϕ,c̄) : ϕ(x̄, ȳ) ∈ Φ, |x̄| = m, |ȳ| = n, c̄ ∈ Cm}.

Further, let
∆(C) := {¬δ(a, c) : c ∈ C}.

Finally we set
Σ(C) := TR ∪ tpR(a) ∪ Γ(C) ∪∆(C).

Claim. Σ := Σ(C) is satisfiable.

Proof. If it is not satisfiable, then a finite subset Σ0 ⊆ Σ is not satisfiable. Denote
the set of constants from C that occur in sentences from Σ0 by {a, e1, . . . , en} (if
necessary, we can assume a occurs in Σ0 inessentially). We are going to give a its

4In this proof we use the word “constant” for constant symbols only and not for constants in the
sense of differential algebra. In particular, the interpretations of those constant symbols may not be
constants in the differential sense.
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canonical interpretation in F and this is the reason that we separated it from the other
constant symbols. Let ψ(a, e1, . . . , en) :=

∧
(Σ0 ∩ Γ). The formula ψ(x, u1, . . . , un) is

clearly quantifier-free and without parameters.
Thus

TR ∪ tpR(a) ∪ {ψ(a, e1, . . . , en)} ∪ {¬δ(a, ei) : i = 1, . . . , n}
is inconsistent. This means that in particular we cannot find interpretations for
e1, . . . , en in FR which will make the latter into a model of Σ0. As already mentioned
above, a is interpreted canonically in F , i.e. its interpretation is the element a ∈ F .

Therefore

FR 2 ∃u1, . . . , un

[
ψ(a, ū) ∧

∧
i

¬δ(a, ui)

]
.

This means

FR � ∀ū

[
ψ(a, ū) −→

∨
i

ui = D a

]
.

Note that evidently FR � ∃ūψ(a, ū), i.e. the implication above does not hold
vacuously. So the formula

χ(x, y) := ∀ū

[
ψ(x, ū) −→

n∏
i=1

(y − ui) = 0

]
satisfies the conditions of Lemma 4.8.3. Hence, D is existentially definable. This
contradiction proves the claim.

Thus Σ is satisfiable. Take a model M of Σ and inside this model consider the
subset K consisting of interpretations of the constant symbols from C. We claim that
K is closed under addition and multiplication and contains 0, 1, t. This is because
the sentence ∀x, y∃z, w(x + y = z ∧ x · y = w), being ∀∃, belongs to T . So, by
our construction of C, for each c1, c2 ∈ C we have elements d1, d2 ∈ C such that
the sentences c1 + c2 = d1, c1 · c2 = d2 are in Σ. Similarly 0, 1, t ∈ K since the
sentences ∃x(x = 0), ∃x(x = 1), and ∃x(x = t) are in T . Therefore K is a structure
in the language of rings. In fact it is an algebraically closed field (containing k) since
ACF0 is ∀∃-axiomatisable. Hence K is a structure KR = (K; +, ·, 0, 1, t, P )P∈R in the
language of the reducts (with the induced structure fromM). By the choice of Σ we
know that KR is a model of T .

If we chose M to be saturated of cardinality |F | (such a model exists due to
stability) then we can identify it with FR.5 In that case KR is a substructure obtained
by starting with k0(a) and inductively adding solutions to formulas from Φ.

Suppose for a moment that δ is universal in order to illustrate what we are going
to do next. Let

δ(x, y) = ∀v̄ρ(x, y, v̄)

with ρ quantifier-free. Since FR |= ¬δ(a, s) for any s ∈ K, there is a witness l̄s ∈ F
such that FR |= ¬ρ(a, s, l̄s). However this witness may not be in K. So we add all

5Note that this is not essential, but it helps to understand how the proof works.
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those witnesses to K and then repeat the above procedure to make it a model of T .
We also make sure we never add D a, which is possible as above (otherwise D would
be existentially definable). Iterating this process countably many times and taking
the union of all the constructed substructures we end up with a structure NR in the
language of reducts which is a model of T and contains witnesses for each of the
formulas ∃v̄¬ρ(a, s, v̄) where s ∈ N . Thus, NR |= ¬∃yδ(a, y) which means that T is
not an axiomatisation of TR. This contradiction proves the theorem.

Now we consider the general case. Let δ be of the form

δ(x, y) = ∀v̄1∃w̄1∀v̄2 . . . ∀v̄n∃w̄nρ(x, y, v̄1, . . . , v̄n),

where ρ is quantifier-free (the tuples v̄1 and w̄n can be empty). Then

¬δ(x, y) = ∃v̄1∀w̄1∃v̄2 . . . ∃v̄n∀w̄n¬ρ(x, y, v̄1, . . . , v̄n).

We add new constant symbols as follows. Firstly, for each s ∈ C we add a tuple of
constants l̄1s of the same length as v̄1. Then for each i and each tuple c̄ ∈ C |w̄i| we add
new constants l̄i+1

c̄ with |l̄i+1
c̄ | = |v̄i+1|. Denote this extension of C by C ′. Then we add

new constant symbols to C ′ for solutions of all formulas ϕ ∈ Φ as above. We denote
this set by C1. Then we iterate this procedure by adding new constants to witness
¬δ(a, s) (for each s from the set of constants already constructed) and then adding
new constants for solutions of ϕ ∈ Φ. Thus, we get a chain C ⊆ C1 ⊆ C2 ⊆ . . .. Let
C̃ be their union.6

For A ⊆ C̃ denote

Ξ(A) := {¬ρ(a, s, l̄1s , c̄1, l̄
2
c̄1
, . . . , l̄nc̄n−1

, c̄n) : s ∈ A, c̄i ∈ A|w̄i|}.

For any s ∈ K we know that FR |= ¬δ(a, s), therefore Σ(C) ∪ Ξ(C) is satisfiable
(note that this collection of sentences contains parameters from C ′). The proof of the
above claim shows that Σ(C1)∪Ξ(C) is satisfiable and so Σ(C1)∪Ξ(C1) is satisfiable
too. Proceeding inductively we see that Σ(Ci) ∪ Ξ(Ci) is satisfiable for each i < ω.
Hence, by compactness, Σ(C̃) ∪ Ξ(C̃) is satisfiable.

The interpretation of C̃ in a model of Σ(C̃) ∪ Ξ(C̃) gives a structure NR in the
language of reducts which is a model of T and contains witnesses for each of the for-
mulas ∃v̄1∀w̄1∃v̄2 . . . ∃v̄n∀w̄n¬ρ(a, s, v̄1, . . . , v̄n) where s ∈ N . Hence NR |= ¬∃yδ(a, y)
which means that T is not an axiomatisation of TR, which is a contradiction.

As an immediate application of Theorem 4.8.2 we give another proof to Propo-
sition 4.6.14 which states that if E is the exponential differential equation, i.e. it is
given by D y = yDx, then D is not definable in FE.7 Indeed, we will see in Sec-
tion 5.1 that the first-order theory of the exponential differential equation has an

6In this construction for an element s ∈ C (and for tuples c̄i) we add one l̄1s in each step. Though
this does not cause any problems, at each step we can add the corresponding sets of constants only
for new constant symbols. In particular, after adding one l̄1s we do not add any such tuple for the
same s any more. Alternatively, we could just require all those different tuples for the same element
s to be equal by adding the appropriate formulas stating their equality.

7Note that Kirby [Kir09] gives yet another proof of this fact by considering a lattice of reducts
for exponential differential equations of some collections of semiabelian varieties, and showing that
each of these can be expanded properly inside DCF0.
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∀∃-axiomatisation ([Kir09]). It is not model complete however, hence D cannot be
definable due to Theorem 4.8.2. Of course it is the Ax-Schanuel inequality that is
responsible for this. As Kirby proved it is an adequate predimension inequality.

4.9 Pregeometry on differentially closed fields and
reducts

Working in a model F of DCF0 we can define a closure operator clD : P(F )→ P(F )
as follows: for a subset A ⊆ F set

clD(A) := {a ∈ F : MRD(a/A) < ω}.

Thus, clD(A) is just the set of all differentially algebraic elements over A. It is
obviously a differentially closed field.

It is quite easy to see that clD defines a pregeometry on F . We observe that the
same is valid for reducts FR. Indeed, define the R-closure on F by

clR(A) := {a ∈ F : MRR(a/A) < ω}.

We show below that this is a pregeometry. In fact it is a classical result and is true
in a much more general setting, when one associates a pregeometry with a regular
type (see [Pil83], Proposition 9.34, or [PT11], Theorem 1).

Proposition 4.9.1. The operator clR defines a pregeometry.

Proof. Reflexivity and finite character are evident. Exchange follows from symmetry
of forking independence. Indeed, if b ∈ clR(Aa) \ clR(A) then b 6 |̂

A
a. Hence a 6 |̂

A
b

and so a ∈ clR(Ab).
Transitivity is a bit harder to prove. We need to show that clR(clR(A)) = clR(A).

We are going to work with U-rank rather than Morley rank.8
Suppose b ∈ clR(clR(A)). Then there are a1, . . . , an ∈ clR(A) such that b ∈ clR(ā).

By Lascar’s inequality we have

UR(b, ā/A) = UR(b/Aā) + UR(ā/A) < ω.

Note that the equality above holds since both ranks on the right hand side are finite.
Now we deduce that UR(b/A) < ω and hence b ∈ clR(A).

The following result is a direct consequence of Theorem 4.5.4.

Theorem 4.9.2. The derivation D is definable in the reduct FR if and only if clD =
clR.

8It is not difficult to see that in reducts of differentially closed fields finiteness of Morley rank is
equivalent to finiteness of U-rank
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It will be more interesting to prove that isomorphism of those two pregeometries
implies definability of D. If that can be proven then one can hope that an intrinsic
property of clR can characterise definability of D. Accomplishing this would lead to
a deeper problem, namely, interpreting a differential field in a topological structure
(the topology of which is similar to the Kolchin topology) with a pregeometry which
should be understood as the abstract version of clR. This is the differential analogue
of the well known problem of recovering the field structure in Zariski geometries solved
by Hrushovski and Zilber [HZ96, Zil09]. It seems to be quite a difficult problem and
we do not study it here.
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Chapter 5

Ax-Schanuel for Linear Differential
Equations

This chapter is devoted to the analysis of linear differential equations with constant
coefficients. We show that the Ax-Schanuel theorem can be generalised to such differ-
ential equations of any order. Using results on the exponential differential equation
by Kirby [Kir06, Kir09] and Crampin [Cra06] we give a complete axiomatisation of
the first order theories of linear differential equations and show that the generalised
Ax-Schanuel inequalities are adequate for them.

The preprint [Asl16a] consists of the material of this chapter.

5.1 The exponential differential equation
In this section we give an axiomatisation of the theory of the exponential differential
equation. We will work in the language LExp := {+, ·, 0, 1,Exp} where Exp is a binary
predicate which will be interpreted in a differential field K = (K; +, ·, 0, 1,D) as the
set {(x, y) ∈ K2 : D y = yDx}. In this case the reduct of K to the language LExp

will be denoted by KExp. For a differentially closed field K we denote the complete
first-order theory of KExp by TExp. For an LExp-structure FExp

1 and for a natural
number n we let

Expn(F ) := {(x̄, ȳ) ∈ F 2n : FExp |= Exp(xi, yi) for each i}.

As we already mentioned, an axiomatisation of TExp has been given by Kirby
[Kir06, Kir09] and partially by Crampin [Cra06] (Kirby’s work is much more general,
he studies exponential differential equations of semiabelian varieties). The original
idea of such an axiomatisation is due to Zilber in the context of pseudo-exponentiation
[Zil04b]. We refer the reader to [Kir09, BK16, Zil04b, Cra06] for details and proofs
of the results presented in this section.

Throughout the chapter K = (K; +, ·,D, 0, 1) will be a differential field.
1We will normally add a subscript Exp in the notations of LExp-structures to emphasise the fact

that they are LExp-structures and to distinguish them from LEn -structures considered later. It does
not mean that they are reducts of some differential fields unless we explicitly state that they are.
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Theorem 5.1.1 ([Ax71], Theorem 3). For any xi, yi ∈ K, i = 1, . . . , n, if K |=∧n
i=1 Exp(xi, yi) and tdC C(x̄, ȳ) ≤ n then there are integers m1, . . . ,mn, not all of

them zero, such that m1x1 + . . .+mnxn ∈ C or, equivalently, ym1
1 · . . . · ymn

n ∈ C.

This can be given a geometric formulation. For a field we let Ga be its additive
group and Gm be the multiplicative group. Also for a natural number n we denote
Gn := Gn

a ×Gn
m. Thus, as varieties, Gn(F ) = F n× (F×)n for a field F . Observe that

for a differential field K the set Exp(K) ⊆ K2 is a subgroup of Gn(K). Notice that∏
ymi
i = c ∈ C means that (y1, . . . , yn) lies in a C-coset of the subgroup of Gn

m(K)
defined by

∏
ymi
i = 1. The analogous fact holds for xi’s and the additive group Gn

a .
The tangent space ofGn

m at the identity can be identified withGn
a . For an algebraic

subgroup H of Gn
m its tangent space at the identity, denoted TeH, is an algebraic

subgroup of Gn
a . Following [Kir06] we denote it by LogH. The tangent bundle of H

will be denoted by TH. Also, for an integer n we let Expn(K) := {(x̄, ȳ) ∈ K2n :
K |=

∧n
i=1 Exp(xi, yi)}.

These observations allow one to reformulate Theorem 5.1.1 in a geometric lan-
guage.

Theorem 5.1.2 (Ax-Schanuel - version 2). Let V ⊆ Gn(K) be an algebraic variety
defined over C with dim(V ) ≤ n. If (x̄, ȳ) ∈ V (K) ∩ Expn(K) then there is a proper
algebraic subgroup H of Gn

m such that (x̄, ȳ) lies in a C-coset of TH, that is, ȳ ∈ γH
and x̄ ∈ γ′ + LogH for some constant points γ ∈ Gn

m(C) and γ′ ∈ Gn
a(C).

If V is a variety as above and V (K) ∩ Expn(K) 6= ∅ then we say V has an expo-
nential point. The Ax-Schanuel theorem can be thought of as a necessary condition
for a variety to have an exponential point. We will shortly present the existential
closedness statement, which is a sufficient condition for this. But for now we consider
some basic axioms for an LExp-structure FExp.

A1 F is an algebraically closed field of characteristic 0.

A2 C := CF = {c ∈ F : FExp |= Exp(c, 1)} is an algebraically closed subfield of F .

A3 Exp(F ) = {(x, y) ∈ F 2 : Exp(x, y)} is a subgroup of G1(F ) containing G1(C).

A4 The fibres of Exp in Ga(F ) and Gm(F ) are cosets of the subgroups Ga(C) and
Gm(C) respectively.

AS For any xi, yi ∈ F, i = 1, . . . , n, if FExp |=
∧n
i=1 Exp(xi, yi) and tdC C(x̄, ȳ) ≤ n

then there are integers m1, . . . ,mn, not all of them zero, such that m1x1 + . . .+
mnxn ∈ C.

NT F ) C.

Note that AS can be given by an axiom scheme. A compactness argument gives
a uniform version of AS. That is, given a parametric family of varieties V (c̄) over
C, there is a finite number N , such that if for some c̄ we have (x̄, ȳ) ∈ V (c̄) and
dimV (c̄) ≤ n then m1x1 + . . .+mnxn ∈ C for some integers mi with |mi| ≤ N .
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These axioms basically constitute the universal part of TExp with the exception
that A1 is ∀∃ and NT is existential. Models of the theory A1-A4,AS will be called
Exp-fields.

Now we turn to existential closedness. For a k×n matrix M of integers we define
[M ] : Gn(F ) → Gk(F ) to be the map given by [M ] : (x̄, ȳ) 7→ (u1, . . . , uk, v1, . . . , vk)
where

ui =
n∑
j=1

mijxj and vi =
n∏
j=1

y
mij

j .

Definition 5.1.3. An irreducible variety V ⊆ Gn(F ) is Exp-rotund if for any 1 ≤
k ≤ n and any k× n matrix M of integers dim[M ](V ) ≥ rankM . If for any non-zero
M the stronger inequality dim[M ](V ) ≥ rankM + 1 holds then we say V is strongly
Exp-rotund.

The definition of (Exp-)rotundity is originally due to Zilber though he initially
used the word normal for these varieties [Zil04b]. The term rotund was coined by
Kirby in [Kir09].

Strong Exp-rotundity fits with the Ax-Schanuel inequality in the sense that it is a
sufficient condition for a variety defined over C to contain a non-constant exponential
point. More precisely, if F is differentially closed and V ⊆ Gn(F ) is a strongly
Exp-rotund variety defined over the constants, then the intersection V (F )∩Expn(F )
contains a non-constant point.

Nevertheless, the existential closedness axiom we will use for the axiomatisation
of TExp is slightly different. One needs to consider varieties that are not necessarily
defined over C.

The existential closedness property for an Exp-field FExp is as follows.

EC For each irreducible Exp-rotund variety V ⊆ Gn(F ) the intersection V (F ) ∩
Expn(F ) is non-empty.

As noted above, V is not necessarily defined over C and the point in the intersection
may be constant.

Exp-rotundity of a variety is a definable property. This allows one to axiomatise
the above statement by a first-order axiom scheme. Reducts of differentially closed
fields satisfy EC and it gives a complete theory together with the axioms mentioned
above.

Theorem 5.1.4 ([Kir09]). The theory TExp is axiomatised by the following axioms
and axiom schemes: A1-A4, AS, EC, NT.

We also define free varieties ([Kir09, Zil04b]) and present a result from [Kir09]
below. Although this is not essential for our main results, we will use it to establish a
similar fact for linear differential equations of higher order (Section 5.4) which gives
us a better understanding of the general picture.
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Definition 5.1.5. An irreducible variety V ⊆ Gn(K) (defined over C) is Exp-free if
it does not have a generic (over C) point (ā, b̄) for which∑

miai ∈ C or
∏

ykii ∈ C

for some integers mi and ki (not all of them zero).

Note that this notion corresponds to absolute freeness in [Kir06, Kir09].

Proposition 5.1.6 ([Kir06, Kir09]). Let V be an Exp-free variety defined over C. If
V has a generic (over C) exponential point then it is strongly Exp-rotund.

Finally let us make an easy observation which will be useful later.

Lemma 5.1.7. Let K be a differentially closed field. If V ⊆ Gn(K) is Exp-rotund
then for any constant c ∈ C× there is a point (ā, b̄) ∈ V (K) such that KExp |=
Exp(cai, bi) for all i.

Proof. Let L : K2n → K2n be the map (x̄, ȳ) 7→ (cx̄, ȳ). It is easy to check that
V ′ := L(V ) is Zariski closed and Exp-rotund. Therefore there is a point (ū, v̄) ∈
V ′(K) ∩ Expn(K). If ai = c−1ui, bi = vi, then (ā, b̄) ∈ V (K) and Exp(cai, bi)
holds.

5.2 Higher order linear differential equations
In this section we will use some facts and notions from the theory of abstract linear
differential equations in differential fields (see [Mar05b], Section 4).

Let us start with a motivating example which will make it clear which differential
equations we should consider. If x(t) and y(t) are complex analytic functions with
y(t) = exp(x(t)) then they satisfy the differential equation d

dt
y(t) = y(t) · d

dt
x(t).

Since we are interested in non-constant solutions, this equation can be written as
dy
dx

=
d
dt
y

d
dt
x

= y. Now if we replace d
dt

with D, we will obtain the abstract exponential

differential equation D y
Dx

= y. Here we could also argue as follows. In the differential
equation dy

dx
= y replace differentiation with respect to x, that is, d

dx
with 1

Dx
· D to

get D y
Dx

= y. If x ∈ K is a non-constant element then ∂x = 1
Dx
· D is a derivation of

K and the exponential differential equation can be written as ∂x(y) = y. Here ∂x can
be thought of as abstract differentiation with respect to x.

Now we want to generalise this to higher order linear differential equations with
constant coefficients. Consider the equation

dny

dxn
+ cn−1

dn−1y

dxn−1
+ . . .+ c1

dy

dx
+ c0y = 0. (2.1)

Its solutions are linear combinations of exponential functions. We want to form
the corresponding abstract differential equations whose solutions will be analogues of
those combinations. As above we replace d

dx
by ∂x to obtain the equation

∂nxy + cn−1∂
n−1
x y + . . .+ c1∂xy + c0y = 0.
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The left hand side of this equation is a differential rational function with denominator
(Dx)2n−1. We multiply through by this factor to make the left hand side into a
polynomial. It will also allow us to define the field of constants. Thus we consider
the abstract differential equation

∆(x, y) := (D x)2n−1
[
∂nxy + cn−1∂

n−1
x y + . . .+ c1∂xy + c0y

]
= 0 (2.2)

in a differential field K. The coefficients are supposed to be constants.
Note that ∂ix above is the i-th iterate of the map ∂x : K → K. The notation ∂x

may misleadingly suggest that x is fixed in the equation (2.2) which is not the case.
It should be considered as a two-variable equation. We prefer this way of writing our
equation since otherwise it would be cumbersome. Note however that ∆(x, y) is not
linear as a two-variable differential polynomial, it is linear with respect to y only. We
will assume that c0 6= 0 in order to avoid any possible degeneracies (like D y = 0).

Observe that by introducing new variables z0, . . . , zn we can write (2.2) as the
following system of equations

zn + cn−1zn−1 + . . .+ c1z1 + c0z0 = 0,

z0 = y,

D zi = zi+1 Dx, i = 0, . . . , n− 1.

(2.3)

Let p(λ) = λn + cn−1λ
n−1 + . . . + c0 be the characteristic polynomial of (2.2).

Let λ1, . . . , λn be its roots and let µ1, . . . , µk be its different roots with multiplicities
n1, . . . , nk respectively. Since we have assumed c0 is non-zero, λi’s are also non-zero.

Now we establish some auxiliary results which will be used in the proof of the
Ax-Schanuel theorem for the equation (2.2). Since it is a universal statement, we
can assume without loss of generality that K is differentially closed. This is not very
important but makes our arguments easier as we do not have to worry about the
existence of solutions of differential equations.

Lemma 5.2.1. Let x be a non-constant element of K and let yi ∈ K \ {0} be such
that ∂xyi = µiyi for i = 1, . . . , k. Then

⋃k
i=1{yi, xyi, . . . , xni−1yi} forms a fundamental

system of solutions2 to ∆(x, y) = 0.

Though the proof is very similar to that in the complex setting (see, for example,
[BR78]), we nevertheless present it here for completeness.

Proof. Since x is non-constant, the equation (2.2) can be written as p(∂x)y = 0. The
operator p(∂x) can be factored as

p(∂x) =
k∏
i=1

(∂x − µi)ni .

It is easy to see that for any 0 ≤ l < ni

(∂x − µi)ni(xlyi) = 0.

2This means that those solutions form a C-linear basis for the space of all solutions.
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Hence we have p(∂x)(xlyi) = 0 and thus we have n solutions to ∆(x, y) = 0. Now we
prove they are linearly independent.

Assume
k∑
i=1

ni−1∑
j=0

aijx
jyi = 0 (2.4)

for some constants aij. Let i be such that there is a non-zero coefficient aij. Let t be
the biggest number with ait 6= 0. Consider the operator

q(∂x) = (∂x − µi)t
∏
s 6=i

(∂x − µs)ns .

Clearly

q(∂x)(x
jyr) =

{
0, if r 6= i or j < t,

t! ·
∏

s 6=i(µi − µs)ns · yi 6= 0, if r = i, j = t.

Now applying q(∂x) to (2.4) we get ait = 0, a contradiction.
Thus, we found n linearly independent solutions. Since the order of the equation

is n, the set of solutions is an n-dimensional C-vector space, therefore the above
solutions form a basis for that vector space.

If y1, . . . , yk are as in Lemma 5.2.1, then for any non-zero constants aij the set⋃k
i=1{ai0yi, ai1xyi, . . . , ai,ni−1x

ni−1yi} is a fundamental system of solutions to our equa-
tion. This kind of fundamental systems will be called canonical. There is a unique
such system up to multiplication by constants. Note also that we will treat canonical
fundamental systems as ordered tuples, rather than as sets. Thus if we say v1, . . . , vn
is a canonical fundamental system, then we mean that the first n1 elements coin-
cide (up to constants) with y1, xy1, . . . , x

n1−1y1 respectively, and so on. Of course we
assume a certain ordering µ1, . . . , µk of different eigenvalues is fixed.

Definition 5.2.2. Given a non-constant x ∈ K, let v1, . . . , vn be a canonical funda-
mental system and let y ∈ K be such that ∆(x, y) = 0. Then y (or the pair (x, y))
is said to be a proper solution if y =

∑
aivi with ai ∈ C×, that is, if y is not in the

linear span of a proper subset of {v1, . . . , vn}.

A solution is proper if and only if it does not satisfy a linear differential equation
of lower order.

Lemma 5.2.3. A pair (x, y) ∈ K2 is a proper solution to (2.2) if and only if
y, ∂xy, . . . , ∂

n−1
x y are C-linearly independent.

Proof. Let v1, . . . , vn be as above and y =
∑
aivi. Since v1, . . . , vn are C-linearly

independent, the Wronskian W (v̄) = det(∂lxvi) is non-zero. It is easy to check that
∂lx(vi) = fli(x)vi where fli is a rational function over Q(µ1, . . . , µk). Furthermore,
none of the fli(x) is zero (as x is non-constant). Let Hx be the n × n matrix with
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entries fli(x). Then W (v̄) = det(Hx) ·
∏m

i=1 vi. Consider the following system of
equations with respect to v’s:

∂lx(y) =
m∑
i=1

aifli(x)vi, l = 0, . . . , n− 1.

Its determinant is det(Hx) ·
∏m

i=1 ai which is non-zero if and only if none of the ai’s is
zero. This finishes the proof.

Let (x, y) be a proper solution. Then we can assume y = v1 + . . .+ vn. Let Hx be
as in the proof and denote its rows by H l

x. It is an invertible linear transformation of
Kn. Let Lx be its inverse with coordinate functions (rows) Lix : Kn → K. Thus

∂lx(y) = H l
x(v1, . . . , vn) and vi = Lix(y, ∂xy, . . . , ∂

n−1
x y).

It is also worth mentioning that when p(λ) does not have multiple roots, Hx and Lx
do not depend on x, they depend only on λi’s. Note also that if ∆(x, y) = 0 and x
is non-constant then ∆(x, ∂xy) = 0. In particular, if (x, y) is a proper solution then
y, ∂xy, . . . , ∂

n−1
x y form a fundamental system of solutions. These considerations will

be useful in Section 5.4.
Now we are ready to prove the Ax-Schanuel inequality for (2.2).

Theorem 5.2.4. Let (xi, yi), i = 1, . . . ,m, be proper solutions to the equation (2.2)
in K. Then

tdC C(x̄, ȳ, ∂x̄ȳ, . . . , ∂
n−1
x̄ ȳ) ≥ ldimQ(λ1x̄, . . . , λnx̄/C) + 1, (2.5)

where ∂jx̄ȳ = (∂jx1y1, . . . , ∂
j
xmym)

In particular, if we assume λ1x̄, . . . , λnx̄ are Q-linearly independent modulo C
then tdC C(x̄, ȳ, ∂x̄ȳ, . . . , ∂

n−1
x̄ ȳ) ≥ mn + 1. This is possible only if λ1, . . . , λn are

linearly independent over Q. In fact we can always assume it is the case; otherwise
both the transcendence degree and the linear dimension will decrease and we will be
reduced to the same inequality for a smaller n. Note also that the case n = 1 is
exactly Ax’s theorem for the exponential differential equation.

Proof of Theorem 5.2.4. For each i let vij ∈ K×, j = 1, . . . , n, be a canonical fun-
damental system of solutions to ∆(xi, y) = 0. Then for every i the C-linear span
of vi1, . . . , vin is the same as that of yi, ∂xiyi, . . . , ∂n−1

xi
yi, for (xi, yi) is a proper solu-

tion. In particular, the field C(x̄, ȳ, ∂x̄ȳ, . . . , ∂
n−1
x̄ ȳ) is equal to the field extension of

C generated by x̄ and all the vij. Therefore

tdC C(x̄, ȳ, ∂x̄ȳ, . . . , ∂
n−1
x̄ ȳ) = tdC C(µ1x̄, . . . , µkx̄, v̄1, . . . , v̄n)

≥ ldimQ(µ1x̄, . . . , µkx̄/C) + 1

= ldimQ(λ1x̄, . . . , λnx̄/C) + 1

where v̄j is the tuple (v1j, v2j, . . . , vmj). The inequality follows from Ax’s theorem
applied to the tuple (µ1x̄, . . . , µkx̄) taking into account that (v̄1, . . . , v̄n) contains a
solution yij for each of the equations Exp(µixj, yij).
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Let us also note that one can prove (with a similar argument) an analogue of
Theorem 5.2.4 for fields with several commuting derivations (using the corresponding
version of Ax’s theorem). Nevertheless, we prefer working in differential fields with a
single derivation and do not consider a multi-derivative version of the above theorem.

5.3 The complete theory
Having established a predimension inequality (see Section 5.5) for higher order linear
differential equations, we want to find an appropriate existential closedness property
and thus give an axiomatisation of the complete theory of the corresponding reducts.

First, let us see which language we should work in. An obvious option would
be simply taking a binary predicate for the solutions of the equation (2.2). But the
inequality (2.5) cannot be written as a first order statement (axiom scheme) in this
language. This is because derivatives of yi’s are involved in (2.5). Therefore we need
to take a predicate of higher arity which will have variables for the derivatives of y’s
as well. Thus we will work in the language LEn = {+, ·,En, 0, 1, λ1, . . . , λn} where
λ1, . . . , λn are constant symbols for the eigenvalues and En(x, z0, z1, . . . , zn−1) is an
(n+ 1)-ary predicate. It will be interpreted in a differential field K as the set{

(x, z̄) ∈ Kn+1 : ∃zn

[
zn +

n−1∑
i=0

cizi = 0 ∧
n−1∧
i=0

D zi = zi+1 Dx

]}
.

Note that since λ1, . . . , λn are in the language, the coefficients c0, . . . , cn−1 are ∅-
definable. The theory of reducts of differentially closed fields to the language LEn

will be denoted by TEn . Also the field of constants can be defined as C = {c :
En(c, 0, 1, 0, . . . , 0)}.

Observe that Exp can be defined in an En-reduct of a differential field. Namely,

K |= Exp(λix, y)↔ En(x, y, λiy, . . . , λ
n−1
i y)

for any i ∈ {1, . . . , n}. Indeed, if Exp(λix, y) holds then by Lemma 5.2.1 ∆(x, y) =
0 and ∂jxy = λjiy for each j and so (x, y, λiy, . . . , λ

n−1
i y) ∈ En. Conversely, if

(x, y, λiy, . . . , λ
n−1
i y) ∈ En then y can be written as a C-linear combination of the fun-

damental system of solutions. Moreover, we must have ∂jxy = λjiy for j = 0, . . . , n−1.
This system of equations implies that ∂xy = λiy and so Exp(λix, y) holds.

In fact Exp and En are interdefinable. So we can just translate the axiomatisation
for the exponential differential equation to the language LEn and get an axiomatisation
of TEn . However we want an axiomatisation based on the Ax-Schanuel inequality
proved in Section 5.2. In other words, we want to understand which systems of
equations in LEn-reducts of differentially closed fields have solutions, and prove that
(2.5) is an adequate predimension inequality.

Notation. If ∂xyi = µiyi then let gijl(X) be the algebraic polynomial (over Q(µi))
for which ∂lx(xjyi) = gijl(x)yi. In particular gi0l = µli. Also denote Ni := 1 +

∑
j<i nj.
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Now we formulate a number of axioms and axiom schemes for an LEn-structure
FEn . In such a structure we let Exp(x, y) be the relation defined by the formula
En(λ−1

1 x, y, λ1y, . . . , λ
n−1
1 y).

A1’ F is an algebraically closed field.

A2’ C := {c ∈ F : FEn |= En(c, 1, 0, . . . , 0)} is an algebraically closed subfield of F
and λ1, . . . , λn are non-zero elements of C satisfying the appropriate algebraic
relations. In particular λNi

= λNi+1 = . . . = λNi+ni−1 =: µi for every i.

A3’ En(x, z0, . . . , zn−1) holds if and only if there are y1, . . . , yk ∈ F× with Exp(µix, yi)
and elements aij ∈ C such that

zl =
k∑
i=1

ni−1∑
j=0

aijgijl(x)yi,

for l = 0, . . . , n− 1.

A4’ Exp(F ) = {(x, y) ∈ F 2 : Exp(x, y)} is a subgroup of G1(F ) containing G1(C).

A5’ The fibres of Exp in Ga(F ) and Gm(F ) are cosets of the subgroups Ga(C) and
Gm(C) respectively.

AS’ Let xi, zij ∈ F \ C, 1 ≤ i ≤ m, 0 ≤ j < n, be such that zi0, . . . , zi,n−1 are
C-linearly independent and

FEn |=
∧
i

En(xi, zi0, . . . , zi,n−1).

Then for each 1 ≤ d ≤ mn if ldimQ(λ1x̄, . . . , λnx̄/C) ≥ d then

tdC C(x̄, z̄0, z̄1, . . . , z̄n−1) ≥ d+ 1.

NT’ F ) C.

As in the case of AS, a compactness argument can be used here as well to show
that AS’ can be expressed as a first-order axiom scheme.

Definition 5.3.1. An En-field is a model of A1’-A5’,AS’.

Lemma 5.3.2. Let FEn be a model of A1’-A5’. Then it satisfies AS’ iff the relation
Exp(x, y) satisfies AS.

Proof. Let x1, . . . , xm ∈ F beQ-linearly independent modulo C. Then µ1x1, . . . , µ1xm
are such as well. Denote µsxi =: um(s−1)+i for i = 1, . . . ,m, s = 1, . . . , k. If
ldimQ(u1, . . . , umk/C) = d ≥ m then assume without loss of generality that u1, . . . , ud
are linearly independent over the rationals modulo C. Let vi ∈ F be such that
FEn |= Exp(ui, vi). Then AS’ implies that

tdC C(x1, . . . , xm, v1, . . . , vmk) ≥ d+ 1.
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For each i > d there are integersmi,mi1, . . . ,mid such thatmiui+mi1u1+. . .+midud =
c ∈ C.

Denote v = vmi
i

∏d
j=1 v

mij

j . By A4’ we have Exp(c, v). But also Exp(c, 1) holds
and using A5’ we deduce that v ∈ C. Hence v1, . . . , vd, vi are algebraically dependent
over C. Therefore

tdC C(x̄, v1, . . . , vd) ≥ d+ 1.

Now we can easily deduce that tdC C(x̄, v1, . . . , vm) ≥ m+ 1 and we are done.
The converse follows from the proof of Theorem 5.2.4.

Notation. Let prj : Km(n+1) → K2m be defined as

prj : (x̄, v̄0, . . . , v̄n−1) 7→ (x̄, v̄j),

where v̄j = (v1j, . . . , vmj).
Also we will denote the set {(x̄, z̄0, . . . , z̄n−1) ∈ Fm(n+1) : FEn |=

∧m
i=1 En(xi, z̄

i)}
by Em

n (F ) where z̄i = (zi0, . . . , zi,n−1).

Definition 5.3.3. An irreducible variety V ⊆ Km(n+1) is called En-Exp-rotund if
V1 := pr1(V ) ⊆ Gm(K) is Exp-rotund and

(x̄, ȳ) ∈ V1 =⇒ (x̄, ȳ, µ1ȳ, . . . , µ
n−1
1 ȳ) ∈ V. (3.1)

We could of course replace µ1 in (3.1) by any µi. As Exp-rotundity is a definable
property, so is En-Exp-rotundity.

Now we formulate the existential closedness property for an En-field FEn .

EC’ For each irreducible En-Exp-rotund variety V ⊆ Fm(n+1) the intersection V (F )∩
Em
n (F ) is non-empty.

This statement can be given by a first-order axiom scheme, for En-Exp-rotundity
is a first-order property.

Lemma 5.3.4. If K is a differentially closed field then KEn satisfies EC’.

Proof. Let V ⊆ Km(n+1) be an En-Exp-rotund variety. Then V1 = pr1(V ) is an Exp-
rotund variety. So by Theorem 5.1.4 and Lemma 5.1.7 there is a point (x̄, ȳ) ∈ V1

such that KEn |= Exp(µ1xi, yi) for each i = 1, . . . ,m. By definition we have

(x̄, ȳ, µ1ȳ, . . . , µ
n−1
1 ȳ) ∈ V.

It is also clear that
KEn |= En(x̄, ȳ, µ1ȳ, . . . , µ

n−1
1 ȳ)

and we are done.

Lemma 5.3.5. If FEn satisfies A1’-A5’, AS’, EC’ then Exp(x, y) satisfies EC.
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Proof. Suppose W ⊆ Gm(F ) is an Exp-rotund variety defined over a set A ⊆ F .
Let F ⊇ F be a saturated algebraically closed field and pick (ā, b̄) ∈ F2n a generic
point of W . Let V ⊆ Fm(n+1) be the algebraic locus of (µ−1

1 ā, b̄, µ1b̄, . . . , µ
n−1
1 b̄)

over Aµ1. Then V is En-Exp-rotund and hence V (F ) ∩ Em
n (F ) 6= ∅. By our

construction of V we also know that a point in that intersection must be of the
form (µ−1

1 x̄, ȳ, µ1ȳ, . . . , µ
n−1
1 ȳ). Then (x̄, ȳ) ∈ W and by A3’ FEn |= Exp(x̄, ȳ). So

W (F ) ∩ Expn(F ) 6= ∅.

Finally, we can deduce that the given axioms form a complete theory.

Theorem 5.3.6. The axioms and axiom schemes A1’-A5’, AS’, EC’, NT’ axiomatise
the complete theory TEn.

Proof. Indeed, Lemmas 5.3.2, 5.3.4 and 5.3.5 show that an LEn-structure FEn satisfies
A1’-A5’, AS’, and EC’ if and only if the relation Exp(x, y) satisfies the axioms A1-A4,
AS, and EC. The latter collection of axioms axiomatises the theory TExp by Theorem
5.1.4. Now the desired result follows as the relations Exp and En are interdefinable
due to A3’.

5.4 Rotundity and freeness
Though EC’ is an appropriate existential closedness property for En-fields, our defi-
nition of En-Exp-rotundity is not that natural. Indeed, the inequality given by AS’
is not reflected in it and also the notion of En-Exp-rotundity is far from being a nec-
essary condition for a variety to intersect En. As we saw, En-Exp-rotund varieties
have a very special En-point, which is essentially (made of) an exponential point. For
these reasons we define another notion of rotundity (and strong rotundity) which will
be more intuitive and natural. (That definition will not be as simple as Definition
5.3.3 though.) We will see in particular that strongly rotund varieties will contain
proper En-points.

Recall that µ1, . . . , µk are the different eigenvalues of our differential equation.
As before, for zij, i = 1, . . . ,m, j = 0, . . . , n − 1, denote z̄i = (zi0, . . . , zi,n−1) and
z̄j = (z1j, . . . , zmj). Define the map

L̃ : Km(n+1) → Km(n+1)

by

L̃ : (x̄, z̄0, . . . , z̄n−1) 7→ (x̄, L1
x1

(z̄1), . . . , L1
xm(z̄m), . . . , Lnx1(z̄

1), . . . , Lnxm(z̄m)),

where Ljxi is as in Section 5.2. Let H̃ be its inverse map. Recall that for 1 ≤ i ≤ k we
denoted Ni = 1 +

∑
j<i nj. Define maps R : Fm(n+1) → Fm(k+1) and R̃ : Fm(n+1) →

F 2km as follows:
R : (x̄, v̄1, . . . , v̄n) 7→ (x̄, v̄N1 , . . . , v̄Nk

),

R̃ : (x̄, v̄1, . . . , v̄n) 7→ (µ1x̄, . . . , µkx̄, v̄N1 , . . . , v̄Nk
).
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Definition 5.4.1. An irreducible variety V ⊆ Fm(n+1) is called (strongly) En-rotund
if V ′ := R̃ ◦ L̃(V ) ⊆ Gkm(F ) is (strongly) Exp-rotund and V ′′ := R(L̃(V )) satisfies
the following property:

(x̄, ȳ1, . . . , ȳk) ∈ V ′′ ⇒ H̃(x̄, ȳ1, xȳ1, . . . , x
n1−1ȳ1, . . . , ȳk, xȳk, . . . , x

nk−1ȳk) ∈ V.

One can use this notion of rotundity to formulate an appropriate existential closed-
ness statement (that is, the above EC’ but for En-rotund varieties instead of En-Exp-
rotund ones) which, with A1’-A5’ and AS’, axiomatises TEn . The following result
shows that this notion of rotundity fits better with our differential equation.

Proposition 5.4.2. Let K be a differentially closed field. If V ⊆ Km(n+1) is a strongly
En-rotund variety defined over C then V (K) has a proper En-point.

Proof. Indeed strong Exp-rotundity of V ′ implies that it has a non-constant Exp-
point. This point obviously gives rise to a proper En-point on V .

In sufficiently saturated models of TEn every (strongly) En-rotund variety contains
a generic (proper) En-point. The converse holds for “free” varieties: (strong) En-
rotundity is a necessary condition for a free variety to have a generic (proper) En-
point. We give precise definitions below.

For simplicity we assume in the rest of this section that µ1, . . . , µk are linearly
independent over Q. Otherwise we would have to take a basis and thus introduce
new notations which is not desirable.

Definition 5.4.3. An irreducible variety V ⊆ Fm(n+1) is called En-free if V ′ :=
R̃ ◦ L̃(V ) ⊆ Gkm(F ) is Exp-free.

Note that if we do not require µ1, . . . , µk to be linearly independent over Q then
the above definition would not make sense. Of course in that case we could just
change the definition of the map R appropriately and get the same notion of freeness.
The following result follows from Proposition 5.1.6 and some obvious observations on
generic points. It can also be proven using Theorem 5.2.4.

Proposition 5.4.4. Suppose V ⊆ Fm(n+1) is an irreducible and free variety defined
over C. If V has a proper generic (over C) En-point then it must be strongly En-
rotund.

5.5 Adequacy
We denote by T 0

Exp the LExp-theory given by the axioms A1-A4, AS. Similarly, T 0
En

is
the LEn-theory consisting of the axioms A1’-A5’, AS’. The results of Section 5.3 show
that T 0

Exp and T 0
En

(as well as TExp and TEn) are essentially the same theory given
in two different languages. In particular, every model FEn of T 0

En
(or TEn) can be

canonically made into a model FExp of T 0
Exp (respectively TExp) and vice versa. This

relationship allows us to deduce that the “predimension” inequality (2.5) is adequate.
We proceed towards this goal in this section.
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We will first prove that an embedding of En-fields is the same as an embedding
of Exp-fields and thus establish the isomorphism of categories of En-fields and Exp-
fields. Then we will define the predimension function on the class of En-fields and see
that it is equal to the predimension on corresponding Exp-fields. It will allow us to
deduce strong adequacy of that predimension from Theorem 3.3.2 proven by Kirby
in [Kir06, Kir09].

We saw that Exp is quantifier-free definable in an En-field and that En is existen-
tially definable in an Exp-field. The following lemma implies immediately that En is
also universally definable in an Exp-field. For an En-field (or Exp-field) FEn we let
CF be its field of constants.

Lemma 5.5.1. Let KEn and FEn be two En-fields with an embedding of fields f :
K ↪→ F . Then f : KEn ↪→ FEn is an embedding of En-fields if and only if it is an
embedding of Exp-fields f : KExp ↪→ FExp.

Proof. Since Exp is quantifier-free definable in an En-field, we only need to show
that an embedding of Exp-fields is also an embedding of the corresponding En-fields.
Identifying K with f(K) we can assume KExp ⊆ FExp. Let a, b0, . . . , bn−1 ∈ K be
such that

FExp |= En(a, b0, . . . , bn−1).

We shall show that
KExp |= En(a, b0, . . . , bn−1).

We can assume that a is non-constant. By A3’ we know that there are e1, . . . , ek ∈
F× with Exp(µia, ei) and elements aij ∈ CF such that

bl =
k∑
i=1

ni−1∑
j=0

aijgijl(a)ei,

for l = 0, . . . , n − 1 (here gijl is as in Section 5.3). If Exp(u, v) holds for some u, v
then Exp(u, cv) holds as well for any constant c. Hence we can assume without loss
of generality that aij is either 0 or 1. As gijl(X) ∈ CK [X], we can express all ei’s with
ai0 = 1 in terms of gijl(a) and bl (this is because the corresponding determinant does
not vanish). Hence ei ∈ K and we are done by A3’ again.

This lemma shows that the category of En-fields with morphisms being embed-
dings is isomorphic to the category of Exp-fields again with embeddings as morphisms.

In order to define the predimension we first observe that Theorem 5.2.4 can be
reformulated to give a lower bound for transcendence degree not only for proper so-
lutions but for arbitrary ones. Recall that µ1, . . . , µk are all the different eigenvalues
of our equation with multiplicities n1, . . . , nk respectively. Let v1, . . . , vn be a canon-
ical fundamental system of solutions of ∆(x, y) = 0. For a solution (x, y) (with x
non-constant) we have a unique representation y = c1v1 + . . .+ cnvn with ci ∈ C. For
1 ≤ i ≤ k we define

εi(y) :=

{
1, if for some j with Ni ≤ j < Ni+1 we have cj 6= 0,

0, otherwise.
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Then set ε(y) := (ε1(y), . . . , εk(y)) and denote ε(y)x := (ε1(y)µ1x, . . . , εk(y)µkx).
Now it is easy to see that Theorem 5.2.4 is equivalent to the following.

Theorem 5.5.2. Let (xi, yi), i = 1, . . . ,m, be solutions to the equation (2.2) in K
with xi ∈ K \ C. Then

tdC C(x̄, ȳ, ∂x̄ȳ, . . . , ∂
n−1
x̄ ȳ)− ldimQ(ε(y1)x1, . . . , ε(ym)xm/C) ≥ 1. (5.1)

Now we define the predimension. Fix a countable algebraically closed field C with
td(C/Q) = ℵ0 and let C be the collection of all En-fields with field of constants C.

For KEn ∈ Cf.g. (with domain K) define

σ(KEn) := max{ ldimQ(ε1a1, . . . , ε
mam/C) : where εi ∈ {0, 1}k, ai ∈ K such that

there are b0
i , . . . , b

n−1
i ∈ K with ε(b0

i ) = εi and
KEn |= En(ai, b

0
i , . . . , b

n−1
i ), i = 1, . . . ,m}

and
δ(KEn) := tdC(KEn)− σ(KEn).

Then the inequality (5.1) states precisely that δ(KEn) ≥ 0 for all KEn ∈ Cf.g. and
equality holds if and only if KEn = C.

Lemma 5.5.3. For an En-field KEn ∈ Cf.g. we have

σ(KEn) = σ(KExp), δ(KEn) = δ(KExp).

Hence an embedding of En-fields KEn ↪→ FEn is strong if and only if it is strong as an
embedding of the corresponding Exp-fields KExp ↪→ FExp. Furthermore, the category
of En-fields with morphisms being strong embeddings is isomorphic to the category of
Exp-fields with strong embeddings.

Proof. We only need to show that σ(KEn) = σ(KExp). It is quite easy to see.
Let m = σ(KExp) and (a1, . . . , am) ∈ Km be linearly independent over Q mod
C such that for some b1, . . . , bm ∈ K× we have KExp |= Exp(µ1ai, bi) for each i.
Then KEn |= En(ai, bi, µ1bi, . . . , µ

n−1
1 bi). Clearly, ε(bi) = 1 only for i = 1. Hence

ldimQ(ε1a1, . . . , ε
mam/C) = m and so σ(KEn) ≥ m = σ(KExp). A similar argument

shows that σ(KExp) ≥ σ(KEn).

Now Theorem 3.3.2 implies adequacy of (5.1).

Theorem 5.5.4. The inequality (5.1) is strongly adequate for En.
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Chapter 6

The j-function

In this chapter we will study the Ax-Schanuel inequality for the j-function established
by Pila and Tsimerman. Adequacy of that inequality is still open and we do not
answer that question here. However, we show that the models of a theory (which is
essentially the universal theory of appropriate reducts of differential fields) have the
strong amalgamation property (along with all other necessary properties), construct
the strong Fraïssé limit U and give an axiomatisation of its first-order theory. Thus,
the given axiomatisation will be a candidate for the theory of the differential equation
of the j-function if we believe the predimension inequality is adequate. We will also
see that U is saturated and hence adequacy of the predimension inequality implies
strong adequacy.

The definitions and results of this chapter are analogous to their exponential
counterparts. Many proofs are adapted from [Kir09] and [BK16]. However, we should
note that some things are simpler for j while others are subtler and more complicated.

6.1 Background on the j-function
We do not need to know much about the j-function itself, nor need we know its
precise definition. Being familiar with some basic properties of j will be enough for
this chapter. We summarise those properties below referring the reader to [Lan73,
Ser73, Mas03, Sil09] for details.

Let GL2(C) be the group of 2 × 2 matrices with non-zero determinant. This
group acts on the complex plane (more precisely, Riemann sphere) by linear fractional

transformations. Namely, for a matrix g =

(
a b
c d

)
∈ GL2(C) we define

gz =
az + b

cz + d
.

This action is obviously the same as the action of the subgroup SL2(C) consisting
of matrices with determinant 1 (to be more precise, the action of GL2(C) factors
through SL2(C)).

The function j is a modular function of weight 0 for the modular group SL2(Z),
which is defined and analytic on the upper half-plane H := {z ∈ C : Im(z) > 0}. It is
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SL2(Z)-invariant. Moreover, by means of j the quotient H/ SL2(Z) is identified with
C (thus, j is a bijection from the fundamental domain of SL2(Z) to C).

The j-function is often called the j-invariant as the j-invariant of an elliptic curve
determines its isomorphism class. Given a point τ ∈ H we let Λ(τ) be the lattice
Z + τZ. Then Eτ := C/Λ(τ) is an elliptic curve with j-invariant j(τ). It is known
that for τ1, τ2 ∈ H the elliptic curves Eτ1 and Eτ2 are isomorphic if and only if τ2 = gτ1

for some g ∈ SL2(Z). This happens if and only if j(τ1) = j(τ2).
In fact, the j-invariant of an elliptic curve can be defined in terms of the coefficients

of its algebraic equation. Indeed, every elliptic curve can be embedded into the
projective plane as an algebraic curve, defined by a cubic equation of the form

y2z = 4x3 − axz2 − bz3.

Then its j-invariant is defined as 1728a
3

∆
where ∆ := a3−27b2 6= 0 is its discriminant.

This can be used to give a definition of the j-function.
Let GL+

2 (R) be the subgroup of GL2(R) consisting of matrices with positive de-
terminant1. Let GL+

2 (Q) be its subgroup of matrices with rational entries. For
g ∈ GL+

2 (Q) we let N(g) be the determinant of g scaled so that it has relatively
prime integral entries. For each positive integer N there is an irreducible polynomial
ΦN(X, Y ) ∈ Z[X, Y ] such that whenever g ∈ GL+

2 (Q) with N = N(g), the function
ΦN(j(z), j(gz)) is identically zero. Conversely, if ΦN(j(x), j(y)) = 0 for some x, y ∈ H
then y = gx for some g ∈ GL+

2 (Q) with N = N(g). The polynomials ΦN are called
modular polynomials. It is well known that Φ1(X, Y ) = X − Y and all the other
modular polynomials are symmetric. For w = j(z) the image of the GL+

2 (Q)-orbit
of z under j is called the Hecke orbit of w. It obviously consists of the union of
solutions of the equations ΦN(w,X) = 0, N ≥ 1. Two elements w1, w2 ∈ C are
called modularly independent if they have different Hecke orbits, i.e. do not satisfy
any modular relation ΦN(w1, w2) = 0. This definition makes sense for arbitrary fields
(of characteristic zero) as the modular polynomials have integer coefficients.

The j-function satisfies an order 3 algebraic differential equation over Q, and none
of lower order (i.e. its differential rank over C is 3). Namely, F (j, j′, j′′, j′′′) = 0 where

F (y0, y1, y2, y3) =
y3

y1

− 3

2

(
y2

y1

)2

+
y2

0 − 1968y0 + 2654208

2y2
0(y0 − 1728)2

· y2
1.

Thus
F (y, y′, y′′, y′′′) = Sy +R(y)(y′)2,

where S denotes the Schwarzian derivative defined by Sy = y′′′

y′
− 3

2

(
y′′

y′

)2

and R(y) =

y2−1968y+2654208
2y2(y−1728)2

.
The following result is well known (see, for example, [FS15], Lemma 4.2).

1This group acts on the upper half-plane and in fact it is the biggest subgroup of GL2(C) with
this property. In fact, PSL2(R) = SL2(R)/{±I} is the group of automorphisms of H as a complex
manifold.
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Lemma 6.1.1. All functions j(gz) with g ∈ SL2(R) satisfy the differential equation
F (y, y′, y′′, y′′′) = 0 and all solutions (defined on H) are of that form. If we allow
functions not necessarily defined on H, then all solutions will be of the form j(gz)
where g ∈ SL2(C).

6.2 Ax-Schanuel and weak modular Zilber-Pink
Theorem 6.2.1 (Ax-Schanuel for j, [PT16]). Let (K; +, ·,′ , 0, 1) be a differential field
and let zi, ji ∈ K \ C, j(1)

i , j
(2)
i , j

(3)
i ∈ K×, i = 1, . . . , n, be such that

F
(
ji, j

(1)
i , j

(2)
i , j

(3)
i

)
= 0 ∧ j′i = j

(1)
i z′i ∧

(
j

(1)
i

)′
= j

(2)
i z′i ∧

(
j

(2)
i

)′
= j

(3)
i z′i.

If the ji’s are pairwise modularly independent then

tdC C
(
z̄, j̄, j̄(1), j̄(2)

)
≥ 3n+ 1. (2.1)

Corollary 6.2.2 (Ax-Schanuel without derivatives). If zi, ji are non-constant ele-
ments in a differential field K with F (ji, ∂ziji, ∂

2
zi
ji, ∂

3
zi
ji) = 0, then

tdC C(z̄, j̄) ≥ n+ 1,

unless for some N, i, k we have ΦN(ji, jk) = 0.

This theorem implies in particular that the only algebraic relation between the
functions j(z) and j(gz) for g ∈ SL+

2 (R) are the modular relations (corresponding to
g ∈ GL+

2 (Q)).
A consequence of the Ax-Schanuel theorem is a weak form of the modular Zilber-

Pink conjecture. Below K is an algebraically closed field.

Definition 6.2.3. A special variety is an irreducible component of a Zariski-closed
set defined by some modular equations. Note that we allow a modular equation of
the form ΦN(xi, xi) = 0 which is equivalent to allowing equations of the form xi = c
where c is a special point (the image of a quadratic number under j).

Definition 6.2.4. Let V ⊆ Kn be an algebraic variety. An atypical subvariety of V
is an irreducible component W of some V ∩ S, where S is a special subvariety, such
that

dimW > dimV + dimS − n.
An atypical subvariety W of V is said to be strongly atypical if it is not contained in
any hyperplane of the form xi = a for some a ∈ K (i.e. no coordinate is constant on
W ).

The following is an analogue of Zilber’s conjecture on intersection with tori (see
[KZ14, Zil02]).

Conjecture 6.2.5 (Modular Zilber-Pink). Every algebraic variety contains only finitely
many maximal atypical subvarieties.
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Definition 6.2.6. When V ⊆ Kn+m is a variety defined over Q, and A ⊆ Km is its
projection onto the last m coordinates (A is a constructible set), for each ā ∈ A we
let V (ā) (or Vā) be the fibre of the projection above ā. The family (V (ā))ā∈A is called
a parametric family of varieties.

The following theorem is a weak version of Zilber-Pink and follows from Ax-
Schanuel with a compactness argument. Pila and Tsimerman [PT16] give an o-
minimality proof, again using Ax-Schanuel.

Theorem 6.2.7 (Weak modular Zilber-Pink). Given a parametric family of algebraic
varieties (Vā)ā∈A in Kn, there is a finite collection of proper special varieties (Si)i≤N
in Kn such that for every ā ∈ A, every strongly atypical subvariety of Vā is contained
in one of Si.

For simplicity, we are going to work with Ax-Schanuel without derivatives. How-
ever, most of our results remain true in the general setting as well, and in the last
section we will formulate definitions and main results in that generality, pointing out
an issue related to weak modular Zilber-Pink “with derivatives”.

6.3 The universal theory and predimension
Let (K; +, ·,′ , 0, 1) be a differential field and let F (y, y′, y′′, y′′′) = 0 be the differential
equation of the j-function. Consider its two-variable version2

f(x, y) := F
(
y, ∂xy, ∂

2
xy, ∂

3
xy
)

= 0. (3.2)

We prove several lemmas about this differential equation. Below C denotes the
field of constants of K.

Lemma 6.3.1. Given a1, a2, b ∈ K \ C, if f(a1, b) = 0 then f(a2, b) = 0 iff a2 = ga1

for some g ∈ SL2(C).

Proof. We can assume without loss of generality that a1 = t (recall that t satisfies
t′ = 1). For simplicity denote a2 = a. Let also S∂a be the Schwarzian derivative with
respect to ∂a. Then we know that Sb + R(b)(b′)2 = 0, and so S∂ab + R(b)(∂ab)

2 = 0
if and only if (a′)2 · S∂ab = Sb. However, straightforward calculations show that
(a′)2 ·S∂ab = Sb−Sa. Hence, f(a, b) = 0 iff Sa = 0 iff a = gt for some g ∈ SL2(C).

Lemma 6.3.2. If f(z, j1) = 0 for some non-constants z, j1, and j2 satisfies ΦN(j1, j2) =
0 for some modular polynomial ΦN then f(z, j2) = 0.

Proof. Embedding our differential field into the field of germs of meromorphic func-
tions, we can assume C = C and j1, j2 are complex meromorphic functions of variable
z. But then by Lemma 6.1.1 j1 = j(g1z) for some g1 ∈ SL2(C) where j : H → C is
the j-invariant. Now the identity ΦN(j1(z), j2(z)) = 0 implies j2(z) = j(g2z) where
g2 = gg1 for some g ∈ GL+

2 (Q). Applying Lemma 6.1.1 again we see that j(g2z)
satisfies the differential equation of j(z).

2Recall that for a non-constant x we define ∂x : y 7→ y′

x′ .
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We consider a binary predicate E∗j (x, y) which will be interpreted in a differential
field as

∃y1, y2, y3

(
y2

1y
2(y − 1728)2F (y, y1, y2, y3) = 0 ∧ y′ = y1x

′ ∧ y′1 = y2x
′ ∧ y′2 = y3x

′) .
Here we multiplied F by y2

1y
2(y−1728)2 in order to make it a differential polynomial.

Observe that any pair (a, c), where c is a constant, is in E∗j . In order to simplify our
arguments, we remove all points (a, c) with a /∈ C, c ∈ C, and define Ej(x, y) by

Ej(x, y)←→
[
E∗j (x, y) ∧ ¬(x′ 6= 0 ∧ y′ = 0)

]
.

Actually, Ej can be defined from E∗j (without using the derivation) as C is definable
by E∗j (0, y). The formula Ej(0, y) defines the field of constants as well. One can also
notice that for non-constant x and y the relation Ej(x, y) is equivalent to f(x, y) = 0.

Definition 6.3.3. The theory T 0
j consists of the following first-order statements

about a structure K in the language Lj := {+, ·, Ej, 0, 1}.

A1 K is an algebraically closed field.

A2 C := CK = {c ∈ K : Ej(0, c)} is an algebraically closed subfield. Further,
C2 ⊆ Ej(K) and if (z, j) ∈ Ej(K) and one of z, j is constant then both of them
are constants.

A3 If (z, j) ∈ Ej then for any g ∈ SL2(C), (gz, j) ∈ Ej. Conversely, if for some j
we have (z1, j) , (z2, j) ∈ Ej then z2 = gz1 for some g ∈ SL2(C).

A4 If (z, j1) ∈ Ej and ΦN(j1, j2) = 0 for some j2 and some modular polynomial
ΦN(X, Y ) then (z, j2) ∈ Ej.

AS If (zi, ji) ∈ Ej, i = 1, . . . , n, with

tdC C (z̄, j̄) ≤ n,

then ΦN(ji, jk) = 0 for some N and some 1 ≤ i < k ≤ n, or ji ∈ C for some i.

Remark 6.3.4. A3 and A4 (the functional equations) imply that if Ej(zi, ji), i =
1, 2, and j1, j2 are modularly dependent then z1 and z2 have the same SL2(C)-orbit.
However, the converse is not true: if z2 = gz1 for some g then this does not impose a
relation on j1, j2 (they can be algebraically independent).

A compactness argument shows that AS can be written as a first-order axiom
scheme. Indeed, AS holds in all differential fields K. The compactness theorem can
be applied to deduce that, given a parametric family of varieties (Wc̄)c̄∈C ⊆ K2n,
there is a natural number N(W ) such that if c̄ ∈ C satisfies dimWc̄ ≤ n, and if
(z̄, j̄) ∈ Ej(K)∩Wc̄(K) and ji /∈ C for all i, then ΦN(ji, jk) = 0 for some N ≤ N(W )
and some 1 ≤ i < k ≤ n. This can clearly be written as a first-order axiom scheme.
Thus, AS should be understood as the uniform version of Ax-Schanuel.
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Definition 6.3.5. An Ej-field is a model of T 0
j . If K is an Ej-field, then a tuple

(z̄, j̄) ∈ K2n is called an Ej-point if (zi, ji) ∈ Ej(K) for each i = 1, . . . , n. By abuse of
notation, we let Ej(K) denote the set of all Ej-points in K2n for any natural number
n (which will be obvious from the context). The subfield CK is called the field of
constants of K.

The above lemmas show that reducts of differential fields to the language Lj are
Ej-fields.

Let C be an algebraically closed field with td(C/Q) = ℵ0 and let C consist of all
Ej-fields K with CK = C. Note that C is an Ej-field with Ej(C) = C2 and it is
the smallest structure in C. From now on, by an Ej-field we understand a member
of C. Note that for some X ⊆ A ∈ C we have 〈X〉A = C(X)alg (with the induced
structure from A) and Cf.g. consists of those Ej-fields that have finite transcendence
degree over C.

Definition 6.3.6. For A ⊆ B ∈ Cf.g. an Ej-basis of B over A is an Ej-point b̄ = (z̄, j̄)
from B of maximal length satisfying the following conditions:

• ji and jk are modularly independent for all i 6= k,

• (zi, ji) /∈ A2 for each i.

We let σ(B/A) be the length of j̄ in an Ej-basis of B over A (equivalently, 2σ(B/A) =
|b̄|). When A = C we write σ(B) for σ(B/C). Further, for A ∈ Cf.g. define the
predimension by

δ(A) := tdC(A)− σ(A).

Note that the Ax-Schanuel inequality for j implies that σ is finite for finitely
generated structures. It is easy to see that for A ⊆ B ∈ Cf.g. one has σ(B/A) =
σ(B)− σ(A). Moreover, for A,B ⊆ D ∈ Cf.g. the inequality

σ(AB) ≥ σ(A) + σ(B)− σ(A ∩B)

holds. Hence δ is submodular (so it is a predimension) and the Pila-Tsimerman
inequality states exactly that δ(A) ≥ 0 for all A ∈ Cf.g. with equality holding if and
only if A = C. The dimension associated with δ will be denoted by dj or simply d.
We will add a superscript if we want to emphasise the model that we work in.

Observe also that for A ⊆ B ∈ Cf.g.

δ(B/A) = δ(B)− δ(A) = td(B/A)− σ(B/A).

6.4 Amalgamation
Definition 6.4.1. A structure A ∈ C is said to be full if for every j ∈ A there is
z ∈ A such that A |= Ej (z, j). The subclass Ĉ consists of all full Ej-fields.
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Lemma 6.4.2. Every A ∈ C has a unique (up to isomorphism over A) strong full
extension Â ∈ Ĉ which is generated by A as a full structure. In particular, if A ∈ Cf.g.
then Â ∈ Ĉf.g.. Furthermore, if f : A ↪→ B is a strong embedding then f extends to a
strong embedding f̂ : Â ↪→ B̂.

Proof. Let A ∈ C. Choose an element j ∈ A for which A |= ¬∃xEj(x, j) (if there
is such). Pick z transcendental over A (in a big algebraically closed field). Let
A1 := A(z)alg. Extend the relation Ej to A1 by adding the tuple (z, j) to Ej and
closing the latter under the functional equations given by axioms A3 and A4. It
is easy to see that A ≤ A1. Repeating this construction we will get a strong chain
A ≤ A1 ≤ A2 ≤ . . . the union of which, A1 :=

⋃
iAi, contains a solution of the formula

Ej(x, j) for each j ∈ A. Now we can iterate this construction and get another strong
chain A ≤ A1 ≤ A2 ≤ . . . such that for every j ∈ Ai the formula Ej(x, j) has a
solution in Ai+1. The union Â :=

⋃
iA

i will be the desired strong and full extension
of A. It is also clear that Â is generated by A as a full Ej-field.

Now we show that if B̂ ∈ Ĉ is a strong extension of A then there is a strong
embedding Â ↪→ B̂ over A. Let j ∈ A be such that A |= ¬∃xEj(x, j) and let w ∈ B̂
satisfy Ej(w, j). Since w /∈ A, it must be transcendental over A. We claim that A1 (as
constructed above) is isomorphic to B1 := A(w)alg ⊆ B̂ (with the induced structure).
Indeed, A ≤ B̂ implies that (w, j) is an Ej-basis of B1 over A. Similarly, (z, j) is
an Ej-basis of A1 over A. Hence, any isomorphism between the algebraically closed
fields A1 and B1 that fixes A pointwise and sends z to w is actually an isomorphism
of Ej-fields A1 and B1. Moreover, B1 ≤ B̂ since δ(B1/A) = 0. We can inductively
construct similar partial isomorphisms from Â into B̂ the union of which will give
a strong embedding Â ↪→ B̂. Furthermore, if B̂ is generated by A as a full Ej-field
then we get an isomorphism Â ∼= B̂.

Proposition 6.4.3. The class Ĉ has the asymmetric amalgamation property.

Proof. Let A,B1, B2 ∈ Ĉ with an embedding A ↪→ B1 and a strong embedding
A ↪→ B2. Let B be the free amalgam of B1 and B2 over A as algebraically closed
fields. More precisely, B is the algebraic closure of the extension of A by the disjoint
union of the transcendence bases of B1 and B2 over A. Identifying A,B1, B2 with
their images in B we have B1∩B2 = A. Define Ej on B as the union Ej(B1)∪Ej(B2).

We show3 that B1 ≤ B. By our definition of Ej(B), a non-constant element b ∈ B
satisfies B |= ∃xEj(x, b) if and only if b ∈ B1∪B2. For a finitely generated X ⊆f.g. B
denote X1 := X ∩ B1, X2 := X ∩ B2, X0 := X ∩ A. From the above observation it
follows that σ(X) = σ(X ∩ B1) + σ(X ∩ B2) − σ(X ∩ A). Further, X1 and X2 are
algebraically independent over X0 and so

td(X/C) ≥ td(X1/C) + td(X2/C)− td(X0/C).

Therefore

δ(X) = td(X/C)− σ(X) ≥ δ(X ∩B1) + δ(X ∩B2)− δ(X ∩ A) ≥ δ(X ∩B1),

3Evidently, B satisfies A1-A4 but we are still to prove that AS holds in B too. So we do not know
yet that B is an Ej-field. However, δ is well defined on B and it makes sense to say that B1 ≤ B.
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where the last inequality holds as A ≤ B2. Thus, B1 ≤ B.
This shows in particular that δ(X) ≥ 0. If δ(X) = 0 then δ(X ∩ B1) = 0 and

so X ∩ B1 ⊆ C. But then X ∩ A ⊆ C which implies δ(X ∩ A) = 0. Therefore
δ(X ∩ B2) = 0 and X ∩ B2 ⊆ C. So X \ C is disjoint from B1 ∪ B2. But then
δ(X) > 0 unless X ⊆ C.

So, B satisfies the AS axiom scheme. Hence we can extend it strongly to a full
Ej-field. The symmetric argument shows that if A ≤ B1 then B2 ≤ B.

Lemma 6.4.4. Let A ∈ C and let B be a strong extension of A finitely generated over
A. Then B is determined up to isomorphism by the locus LocA(b̄) for an Ej-basis b̄
of B over A and the number n = td(B/A(b̄)). Hence for a given A there are at most
countably many strong finitely generated extensions of A, up to isomorphism.

Proof. Let B1 and B2 be two strong extensions of A, finitely generated over A. Let
also b̄i := (z̄i, j̄i) be an Ej-basis of Bi over A, and denote Ai := A(b̄i) (i = 1, 2).
Assume LocA(b̄1) = LocA(b̄2) and td(B/A1) = td(B/A2). The map that fixes A and
sends b̄1 to b̄2 extends uniquely to a field isomorphism between A1 and A2, which
respects the Ej-field structure. Any extension of this field isomorphism to Aalg

1 and
Aalg

2 is actually an isomorphism of Ej-fields. Since b̄i is an Ej-basis of Bi over A,
Ej(Bi) = Ej(A

alg
i ) for i = 1, 2. Therefore any extension of the above map to a field

isomorphism of B1 and B2 (which exists as td(B/A1) = td(B/A2)) is an Ej-field
isomorphism over A.

For the second part of the lemma we just notice that there are countably many
choices for LocA(b̄) and the number n.

Theorem 6.4.5. The classes C and Ĉ are strong amalgamation classes with the same
strong Fraïssé limit U .

Proof. Proposition 3.2.6 shows that C has the strong amalgamation property. Then
C and Ĉ are strong amalgamation classes and have the same strong Fraïssé limit by
Proposition 3.2.7.

Note that Cf.g. does not have the asymmetric amalgamation property.

6.5 Normal and free varieties
Definition 6.5.1. Let n be a positive integer, k ≤ n and 1 ≤ i1 < . . . < ik ≤ n.
Denote ī = (i1, . . . , ik) and define the projection map prī : Kn → Kk by

prī : (x1, . . . , xn) 7→ (xi1 , . . . , xin).

Further, define (by abuse of notation) prī : K2n → K2k by

prī : (x̄, ȳ) 7→ (prī x̄, prī ȳ).

It will be clear from the context in which sense prī should be understood (mostly
in the second sense).
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Definition 6.5.2. Let K be an algebraically closed field. An irreducible algebraic
variety V ⊆ K2n is normal if and only if for any 0 < k ≤ n and any 1 ≤ i1 < . . . <
ik ≤ n we have dim prī V ≥ k. We say V is strongly normal if the strict inequality
dim prī V > k holds.

For a subfield A ⊆ K we say a variety V defined over B ⊆ K is (strongly) normal
over A (regardless of whether V is defined over A) if, for a generic (over A∪B) point
v̄ of V , the locus LocA(v̄) is (strongly) normal. In other words, if a projection of V
is defined over A then it is strongly normal over A.

Normality is an analogue of rotundity. However, the term “rotundity” is not
suitable in the context of this chapter since it refers to the group structure of expo-
nentiation. Note that normality was the original term used by Zilber (rotundity was
coined by Kirby).

Remark 6.5.3. It may seem strange that, in contrast to the exponential case, the
functional equations of the j-function are not reflected in the definition of normality.
The reason is that those functional equations are of “trivial” type. Indeed, one would
expect the following additional condition to be present: if v̄ := (z̄, j̄) ∈ V (K) is a
generic point of V then we have not only td(prī v̄) ≥ k but also if we replace z’s by
arbitrary elements in their SL2(C)-orbits and j’s by arbitrary elements in their Hecke
orbits, then the transcendence degree of images of all those tuples under prī must be
at least k. However, it is obvious that the first condition already implies this because
when we change the tuple in this manner, we do not change the transcendence degree
(over C).

Remark 6.5.4. Normality is a first-order definable property. This follows from the
facts that irreducibility and algebraic dimension are definable in algebraically closed
fields. More generally, Morley rank is definable in strongly minimal theories.

Rotundity (in the exponential case) is first-order definable as well but it is not
obvious since in its definition there are infinitely many conditions.

Definition 6.5.5. An algebraic variety V ⊆ K2n (with coordinates (x̄, ȳ)) is free if
it is not contained in any variety defined by an equation ΦN(yi, yk) = 0 for some
modular polynomial ΦN and some indices i, k.

This definition makes sense for an arbitrary field K. However, when K is an Ej-
field and A ⊆ K is an Ej-subfield, we say V ⊆ K2n is free over A if it is free and it
is not contained in a hyperplane defined by an equation of the form yi = a (for some
i) where a ∈ A with A |= ∃zEj(z, a).

We could require in the definition of freeness that V is not contained in any
variety defined by an equation of the form yi = b for some b ∈ K. This would be
more standard definition and in fact it would be a definable property of the variety
due to weak modular Zilber-Pink (but we will not need this result). Nevertheless, we
find it more convenient to work with the notion of freeness (over A) defined above
since it allows us to simplify some arguments slightly.

Lemma 6.5.6. If A ≤ B ∈ Cf.g. and b̄ ∈ B2n is an Ej-basis of B over A then the
locus LocA(b̄) is normal and free over A, and strongly normal over C.
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Proof. Follows obviously from definitions.

Lemma 6.5.7. Let A = C(ā)alg be an Ej-field and V be a normal irreducible variety
defined over A. Then there is a strong extension B of A which contains an Ej-point
of V generic over ā. Furthermore, if V is normal, free over A and strongly normal
over C then we can choose B so that V (B) ∩ Ej(B) contains a point generic in V
over A.

Proof. First, we prove the “furthermore” clause. Take a generic point of V over A, say,
b̄ := (z̄, j̄) and let B := 〈Ab̄〉 = A(b̄)alg. Extend Ej by declaring (zi, ji) an Ej-point
for each i and close it under functional equations (axioms A3 and A4). The given
properties of V make sure that B is a model of T 0

j and is a strong extension of A.
Now we prove the first part of the lemma. If for some i1 < i2 < . . . < ik the

projection W := prī V is defined over C and has dimension k then we pick constant
elements zis , jis , s = 1, . . . , k, such that (z̄, j̄) is generic in W over ā. Doing this for
all projections defined over C, we consider the variety V1 obtained from V by setting
xis = zis , yis = jis for all indices is considered above. All of those pairs of constants
will be in Ej.

Further, if V1 is contained in a hyperplane yi = a for a non-constant a ∈ A with
A |= Ej(z, a) for some z ∈ A, then we intersect it with the hyperplane xi = gz where
we choose the entries of g to be generic constants over ā. Doing this for all such a,
we get a variety V2, in a lower number of variables, which is still normal.

If V2 is free then we proceed as above. Otherwise we argue as follows. Suppose for
some i1 6= i2 the projection pri1,i2 V2 satisfies the equation ΦN(yi1 , yi2) = 0 (we can
assume i1 and i2 are different from all indices is considered above). Let us assume
for now that this is the only modular relation between the y-coordinates satisfied by
V2. Then we take algebraically independent elements a, b, c ∈ C over ā and over all
elements from A chosen above, and denote d := (1 + bc)/a. Let V3 be the subvariety
of V2 defined by the equation xi2 =

axi1+b

cxi1+d
. It is easy to see that dimV3 = dimV2 − 1

(here V3 6= ∅ as, by normality, dim pri1,i2 V2 ≥ 2). Now we take a generic point of V3

over āabc and all constants taken above, and proceed as in the free case. Note that
this generic point will be generic in V over A.

When there are more modular relations between the y-coordinates of V2, we ap-
ply the above procedure for all of those modular relations, that is, we introduce
new generic SL2(C)-relations between the pairs of the appropriate x-coordinates (the
corresponding y-coordinates of which satisfy a modular relation), and proceed as
above.

6.6 Existential closedness
Consider the following statements for an Ej-field K.

EC For each normal variety V ⊆ K2n the intersection Ej(K)∩V (K) is non-empty.

SEC For each normal variety V ⊆ K2n defined over a finite tuple ā ⊆ K, the inter-
section Ej(K) ∩ V (K) contains a point generic in V over ā.
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GSEC For each irreducible variety V ⊆ K2n of dimension n defined over a finitely
generated strong Ej-subfield A ≤ K, if V is normal and free over A and strongly
normal over C, then the intersection Ej(K)∩ V (K) contains a point generic in
V over A.

NT K ) C.

ID K has infinite dj-dimension.

EC, SEC, GSEC, NT and ID stand for existential closedness, strong existential
closedness, generic strong existential closedness, non-triviality and infinite dimension-
ality respectively. Clearly, NT and EC are first-order axiomatisable. Notice that if
an Ej-field K satisfies AS+NT+EC then td(K/C) is infinite. In fact, all full Ej-fields
with a non-constant point have the same property (we need to apply AS repeatedly).

Lemma 6.6.1. Let V be an irreducible algebraic variety such that for every finitely
generated (over Q) field of definition A ⊆ K there is a C-point generic in V over A.
Then V is defined over C.

Proof. Let A be a field of definition of V and ā be a transcendence basis of A over
C (if ā is empty then V is defined over C). Then V is defined over Q(ā, c̄)alg for
some finite tuple c̄ ∈ C. Denote A′ := Q(ā, c̄)alg. Let d̄ ∈ C be a generic point of
V over A. Then td(d̄/A′) = dimV . Since ā is algebraically independent over C, we
have td(d̄/A′) = td(d̄/c̄). Let W := Loc(d̄/C0) where C0 = Q(c̄)alg ⊆ C. Evidently,
W ⊇ V = Loc(d̄/A′) and dimW = td(d̄/C0) = dimV . Since both V and W are
irreducible, V = W and therefore V is defined over C0.

Proposition 6.6.2. For Ej-fields SEC ⇒ GSEC.

Proof. Let V and A be as in the statement of GSEC. Choose ā ⊆ A such that ā
contains an Ej-basis of A, V is defined over ā and A = C(ā)alg.

Note that it suffices to prove that V contains an Ej-point v̄ = (z̄, j̄) none of the
coordinates of which is constant and which is generic over ā. Indeed, we claim that
v̄ will be generic over A. If it is not the case then td(v̄/A) < dimV = n. However,
ji and jk are modularly independent for i 6= k as V is free and v̄ is generic in V over
Q(ā) and hence over Q (and modular polynomials are defined over Q). Since V is
free over A and ā contains an Ej-basis of A, (zi, ji) /∈ A2 for each i. Then we would
have δ(v̄/A) < 0 which contradicts strongness of A in K.

We claim that V (K) contains an Ej-point generic over ā which is not a C-point.
If this is not the case then by SEC and Lemma 6.6.1 V is defined over C. Since it
is strongly normal over C, we have dimV > n+ 1 which contradicts our assumption
that dimV = n.

Now we prove that V contains an Ej-point none of the coordinates of which is
constant. We proceed to the proof by induction on n. The case n = 1 is covered by
the above argument (if (z, j) ∈ Ej and one of z, j is in C then both of them must be
in C). If n > 1 take a point v̄ = (z̄, j̄) ∈ V (K)∩Ej(K) generic over ā. If v̄ has some
constant coordinates then we can assume (zi, ji) ⊆ C for i = 1, . . . , k with k < n
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(again, if one of zi, ji is constant then both of them must be constants) and these are
the only constant coordinates. If these constants have transcendence degree at least
k + 1 over ā then the transcendence degree of all elements zi, ji with i > k over C(ā)
will be strictly less than n− k which contradicts A ≤ K as above.

Therefore td({zi, ji : i ≤ k}/Q(ā)) = k. By the induction hypothesis we can
find an Ej-point b̄ of prī V (where ī = (1, . . . , k)) none of the coordinates of which
is constant and which is generic in V over ā. Clearly, δ(b̄/A) = 0 and so denoting
B := A(b̄)alg we have A ≤ B ≤ K. Now let V (b̄) be the variety obtained from
V by letting the corresponding k coordinates of V be equal to the corresponding
coordinates of b̄. Using the induction hypothesis we get an Ej-point ū of V (b̄) which
is generic over ā, b̄ and whose coordinates are all non-constant. It is easy to see that
(b̄, ū) ∈ V (K) ∩ Ej(K) is as required.

Proposition 6.6.3. The strong Fraïssé limit U satisfies SEC and ID, and hence
GSEC.

Proof. Let V be a normal irreducible variety defined over a finite tuple ā. Let also
A := dāeU (we can assume A = C(ā)alg by extending ā if necessary). By Lemma 6.5.7
there is a strong extension B of A which contains an Ej-point v̄ generic in V over ā.
Since U is saturated for strong extensions, there is an embedding of B into U over A.
The image of v̄ under this embedding is the required generic Ej-point of V .

For n ∈ N, let An be an algebraically closed field of transcendence degree n over
C. Defining Ej(An) = C2 we make An into a finitely generated Ej-field with dj-
dimension n. By universality of U , An can be strongly embedded into U which shows
U has infinite dj-dimension because strong extensions preserve dimension.

One can directly prove in the same manner that U satisfies GSEC (without using
Proposition 6.6.2).

Lemma 6.6.4. Let K be an infinite dj-dimensional Ej-field and A ⊆ K be a finitely
generated Ej-subfield. Assume V ⊆ K2n is a normal irreducible variety defined over
A with dimA V > n. Then we can find a strong extension A ≤ A′ ≤ K, generated
over A by finitely many dKj -independent (over A) elements, and a normal subvariety
V ′ of V , defined over A′, with dimA′ V

′ = n.

This can be proven exactly as in the exponential case by intersecting V with
generic hyperplanes (see [Kir09], Proposition 2.33 and Theorem 2.35). We give full
details for completeness.

For p̄ := (p1, . . . , pN) ∈ KN \{0} let the hyperplane Πp be defined by the equation∑N
i=1 pixi = 1. It is obvious that ā ∈ Πb̄(K) iff b̄ ∈ Πā(K).
We will need the following result from [Kir09] which has been adapted from

[Zil04a].

Lemma 6.6.5. Let v̄ ∈ KN and let p̄ ∈ Πv̄ be generic over A. Then for any tuple
w̄ ∈ A(v̄)alg either v̄ ∈ A(w̄)alg or td(w̄/Ap̄) = td(w̄/A) (i.e. w̄ |̂

A
p̄).
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Proof. Let P := Loc(p̄/A(w̄)alg). Then

dimP = td(p̄/Aw̄) ≥ td(p̄/Av̄) = N − 1,

the inequality following from the fact that w̄ ∈ A(v̄)alg. On the other hand P ⊆ Πv̄

and dim Πv̄ = N−1. Since both P and Πv̄ are irreducible, they must be equal. Hence
Πv̄ is defined over A(w̄)alg and so the formula ∀ȳ ∈ Πv̄(x̄ ∈ Πȳ) defines v̄ over A(w̄)alg.
Thus, v̄ ∈ A(w̄)alg.

Proof of Lemma 6.6.4. Let dimA V > n. It will be enough to find A′ and V ′ with
dimA′ V

′ = dimV − 1. Pick a generic point v̄ ∈ V (K). Denote N = 2n and choose
p1, . . . , pN−1 ∈ K to be dKj -independent over A. Pick pN ∈ K such that

∑N
i=1 pivi = 1.

Let A′ := A(p̄)alg and V ′ := V ∩ Πp̄ = LocA′(v̄). Obviously, V ′ is irreducible and
dimV ′ = dimV − 1. We claim that V ′ is normal. Let w̄ := prī v̄ for some projection
map prī with |̄i| = k ≤ n. Then obviously w̄ ∈ A(v̄)alg. Therefore by Lemma 6.6.5
either v̄ ∈ A(w̄)alg or td(w̄/A′) = td(w̄/A). In the former case

dim prī V
′ = td(w̄/A′) = td(v̄/A′) = dimV ′ = dimV − 1 ≥ n ≥ k.

In the latter case
dim prī V

′ = td(w̄/A′) = td(w̄/A) ≥ k,

where the last inequality follows from normality of V .

Proposition 6.6.6. The strong Fraïssé limit U is the unique countable Ej-field sat-
isfying GSEC and ID and having td(C/Q) = ℵ0.

Proof. Let K be such an Ej-field. We will show it is saturated with respect to strong
embeddings. Let A ≤ B be finitely generated Ej-fields and let b̄ be a basis of B over
A. If td(B/A(b̄)) > 0 then let b̄′ be a transcendence basis of B over A(b̄). We can find
a strong extension B ≤ B′ = B(ā′)alg such that B′ |= Ej(a

′
i, b
′
i) for each i. Replacing

B by B′ we may assume that td(B/A(b̄)) = 0 and hence B = A(b̄)alg.
Let V := LocA(b̄) be the Zariski closure of b̄ over A. It is irreducible, normal

and free over A and strongly normal over C. By Lemma 6.6.4 we can find a strong
extension A′ of A, generated by independent elements over A, and a normal irreducible
subvariety V ′ of V over A′ such that dimA′ V

′ = σ(B/A). Obviously, V ′ is also free
over A′ and strongly normal over C (because V is).

By GSEC there is a point v̄ ∈ V ′ ∩Ej in K, generic in V ′ over A′. Then v̄ is also
generic in V over A. Let B′′ := A′(v̄)alg with the induced structure from K. Then
δ(A′) = δ(B′′) and so B′′ ≤ K. Now B′ := A(v̄)alg with the induced structure is
isomorphic to B over A. Moreover, B′′ is generated by dj-independent elements over
B′ and so B′ ≤ B′′ and B′ ≤ K. Therefore, K is saturated for strong extensions.

6.7 The complete theory
Definition 6.7.1. Let Tj be the theory axiomatised by T 0

j + EC + NT.

85



Note that Tj is an ∀∃-theory.

Proposition 6.7.2. All ℵ0-saturated models of Tj satisfy SEC, and hence GSEC.

Proof. It suffices to show that in an arbitrary modelK of Tj every Zariski-open subset
of an irreducible normal variety contains an Ej-point. Let (x̄, ȳ) be the coordinates
of K2n and let V ⊆ K2n be a normal irreducible variety. It is enough to show that for
every proper subvariety W of V , defined by a single equation, V \W contains an Ej-
point. Suppose W (as a subvariety of V ) is defined by an equation f(z1, . . . , zk) = 0
where each zi is one of the coordinates {xi, yi : i = 1, . . . , n}. The assumption that
W ( V means that f does not vanish on V .

We use Rabinovich’s trick to replace V \ W by a normal irreducible variety in
a higher number of variables. Consider the variety V ′ ⊆ K2(n+1) (with coordi-
nates (x̄, xn+1, ȳ, yn+1)) defined by the equations of V and one additional equation
xn+1f(z̄) = 1. It is clear that V ′ is normal and irreducible. By EC, V ′ contains an
Ej-point. Its projection onto the coordinates (x̄, ȳ) will be an Ej-point in V \W .

Proposition 6.7.3. All ℵ0-saturated models of Tj satisfy ID. In particular, a count-
able saturated model of Tj (if it exists) is isomorphic to U .

Proof. LetK |= Tj be ℵ0-saturated. A priori, we do not have a type whose realisations
would be dj-independent, but we can write dj-independence by an Lω1,ω-sentence. The
idea is to use weak Zilber-Pink to reduce this Lω1,ω-sentence to a type and show that
it is finitely satisfiable in K.

ID means that for each n there is a 2n-tuple ā of algebraically independent (over
C) elements with ā ∈ Ej(K) (which is equivalent to δ(ā) = n) such that for all tuples
x̄ one has δ(x̄/ā) ≥ 0. Here we can assume as well that x̄ is a 2l-tuple for some
l and is an Ej-point. The fact that ā is algebraically independent over C is given
by a type consisting of formulae ϕi(ā) = ∀c̄(ā /∈ Vi(c̄)), i < ω, stating that ā is
not in any hypersurface (defined over C) from a parametric family of hypersurfaces
(Vi(c̄))c̄∈C (to be more precise, we could say that (Vi(c̄))c̄∈C is the parametric family
of hypersurfaces over C with degree i).

The statement ∀x1, . . . , x2lδ(x̄/ā) ≥ 0 can be written as an Lω1,ω-sentence as
follows. Given an algebraic variety W ⊆ K2l+2n+m defined over Q, for any c̄ ∈ Cm

with dimW (ā, c̄) < l and for any x̄ ∈ W (ā, c̄) ∩ Ej, the j-coordinates of x̄ (i.e.
xl+1, . . . , x2l) must satisfy a modular relation ΦN(xl+i, xl+k) = 0 for some N and
some 1 ≤ i < k ≤ l, or a modular relation with ā, i.e. ΦN(an+i, xl+k) = 0 for some
1 ≤ i ≤ n, 1 ≤ k ≤ l, or we must have xl+i ∈ C for some 1 ≤ i ≤ l.

Now suppose, for contradiction, that ID does not hold inK. It means that for some
n, for all 2n-tuples ā satisfying ā ∈ Ej and

∧
i ϕi(ā), there are a varietyW ⊆ K2l+2n+m

(for some l,m) defined over Q, a constant point c̄ ∈ Cm with dimW (ā, c̄) < l, and a
tuple x̄ ∈ W (ā, c̄) ∩ Ej, such that ΦN(xl+i, xl+k) 6= 0 for all N and all 1 ≤ i < k ≤ l,
and ΦN(an+i, xl+k) 6= 0 for all 1 ≤ i ≤ n, 1 ≤ k ≤ l, and xl+i /∈ C for all 1 ≤ i ≤ l.

If (ū, v̄, w̄) are the coordinates of K2l×K2n×Km then let W ′ be the projection of
W onto the coordinates (ul+1, . . . , u2l, vn+1, . . . , v2n, w1, . . . , wm). Consider the para-
metric family of varieties W ′(c̄)c̄∈Cm in K l+n. Let N(W ) be the maximal number N
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such that ΦN appears in the defining equations of the finitely many special varieties
given by the weak modular Zilber-Pink for this parametric family. Then the following
holds4 in K:

∀ā

[
ā ∈ Ej ∧

∧
i<ω

ϕi(ā) −→
∨
l,m∈N

W⊆K2l+2n+m

∃c̄ ∈ Cm ∃x̄ ∈ W (ā, c̄) ∩ Ej

(
dimW (ā, c̄) < l

∧
∧

p≤N(W )
1≤i<k≤l

Φp(xl+i, xl+k) 6= 0 ∧
∧

p≤N(W )
1≤i≤n
1≤k≤l

Φp(an+i, xl+k) 6= 0 ∧
∧

1≤i≤l

xl+i /∈ C

)]
.

Here the disjunction (in the first line) is over all positive integers l,m and all alge-
braic varieties W ⊆ K2l+2n+m defined over Q (there are countably many such triples
(l,m,W )).

By ℵ0-saturation ofK and compactness we deduce that there are a finite collection
of varieties Ws ⊆ K2ls+2n+ms , s = 1, . . . , t, and a finite number r such that

∀ā

[
ā ∈ Ej ∧

∧
i≤r

ϕi(ā) −→
∨
s≤t

∃c̄ ∈ Cms ∃x̄ ∈ Ws(ā, c̄) ∩ Ej

(
dimWs(ā, c̄) < ls

∧
∧

p≤N(Ws)
1≤i<k≤ls

Φp(xls+i, xls+k) 6= 0 ∧
∧

p≤N(Ws)
1≤i≤n
1≤k≤ls

Φp(an+i, xls+k) 6= 0 ∧
∧

1≤i≤ls

xls+i /∈ C

)]
.

The formulas ϕi(ū) state that ū is not in a given parametric family of hypersurfaces
Vi(c̄). It is easy to see that we can find a strongly normal and free variety P in K2n

defined over C, of dimension n+1, which is not contained in any of the varieties Vi(c̄)
for any c̄ and any i ≤ r. We can also make sure that the projection of P onto the
last n coordinates is the whole affine space Kn.

Now by the GSEC property we can find a non-constant Ej-point b̄ ∈ K2n which is
generic in P over C. Indeed, we need to intersect P with a generic hyperplane as in
Lemma 6.6.4, with algebraically independent coefficients (instead of dj-independent),
and get a normal and free variety over (the strong closure of) the field generated by
those coefficients. Then we apply GSEC.

Then td(b̄/C) = n + 1 and δ(b̄) = 1 and ϕi(b̄) holds for i ≤ r. Moreover,
bn+1, . . . , b2n are algebraically independent over C. Now by the above statement,
for some W := Ws ⊆ K2l+2n+m (where m = ms, l = ls) there are c̄ ∈ Cm, d̄ ∈
W (b̄, c̄)(K)∩Ej(K) such that dimW (b̄, c̄) < l and bn+1, . . . , b2n, dl+1, . . . , d2l are non-
constant and do not satisfy any modular equation Φp = 0 for p ≤ N(W ).

Suppose, for a moment, that bn+1, . . . , b2n, dl+1, . . . , d2l are pairwise modularly
independent. Then evidently δ(d̄/b̄) < 0 which contradicts AS.

4It holds for any N instead of N(W ). Our choice of N(W ) was made so that it will lead to a
contradiction.
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However those elements may satisfy some modular relations Φp = 0 with p >
N(W ). Let S be the special variety defined by all those modular relations (more
precisely, S is a component of the variety defined by those relations, which contains
the point (bn+1, . . . , b2n, dl+1, . . . , d2l)). We claim that S intersects W ′(c̄) typically.
Indeed, by our choice of N(W ), the intersection cannot be strongly atypical. On the
other hand, no coordinate is constant on the intersection since bi, dk /∈ C, so the inter-
section is not atypical. It means that if bn+1, . . . , b2n, dl+1, . . . , d2l satisfy h indepen-
dent modular relations (h = codimS = n+ l−dimS), then td(b̄′, d̄′) ≤ dimW ′(c̄)−h
where b̄′ := (bn+1, . . . , b2n), d̄′ := (dn+1, . . . , d2n). Counting transcendence degrees
we see that td(b̄, d̄/C) ≤ n + l − h while σ(b̄, d̄) = n + l − h. So δ(b̄, d̄) = 0 which
contradicts AS.

Proposition 6.7.4. The theory Tj is complete and the Fraïssé limit U is ℵ0-saturated.

Proof. Let T 1
j be an arbitrary completion of Tj and letM be a (possibly uncountable)

ℵ0-saturated model of T 1
j . Let also C := CM be the field of constants (which may be

uncountable as well).

Claim. For all finitely generated (i.e. of finite transcendence degree over C) strong
Ej-subfields A,B ≤M with an isomorphism f : A ∼= B, and for any a′ ∈M , there are
A ≤ A′ ≤ M and B ≤ B′ ≤ M with a′ ∈ A′ such that f extends to an isomorphism
A′ ∼= B′.

Proof of the claim. We can assume a′ /∈ A and hence it is transcendental over A. We
consider two cases.

Case 1: dMj (a′/A) = 0.
Let A′ := dAa′eM and let v̄ be an Ej-basis of A′ over A. Since δ(A′/A) = 0,

A′ must be C-generated by v̄ over A, i.e. A′ = 〈Av̄〉. Now if V := LocA(v̄), then
V is normal and free over A and strongly normal over C, and dimV = n (since
δ(v̄/A) = 0). Let W be the image of V under the isomorphism f : A → B (i.e. we
just replace the coefficients of equations of V by their images under f). Then W is
normal and free over B and strongly normal over C, and so by the GSEC property
the intersection W (M) ∩ Ej(M) contains a point w̄ generic in W over B. Setting
B′ := B(w̄)alg (with the induced structure from M), we see that δ(B′/B) = 0 and so
B ≤ B′ ≤M . Clearly f extends to an isomorphism from A′ to B′.

Case 2: dMj (a′/A) = 1.
In this case we pick an element b′ ∈ M which is dMj -independent from B (which

exists by ID) and set A′ = 〈Aa′〉 = A(a′)alg and B′ = 〈Bb′〉 = B(b′)alg. Obviously
A′ ≤M, B′ ≤M and A′ ∼= B′.

Thus, given two tuples ā, b̄ ∈ M (of the same length) with an isomorphism f :
dāeM ∼= db̄eM sending ā to b̄, we can start with f and construct a back-and-forth
system of partial isomorphisms from M to itself showing that tpM(ā) = tpM(b̄).
Combining this with Lemma 6.4.4 we see that if A := dāeM and ā′ is an Ej-basis of
A then the type of ā in M is determined uniquely by Loc(ā′/C), Loc(ā/C(ā′)) and
the number td(A/C(ā′)). Indeed, if for ā, b̄ ∈M these data coincide then there is an
isomorphism f : dāeM ∼= db̄eM sending ā to b̄. Moreover, if Loc(ā′/C) and Loc(ā, ā′/C)
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are defined over a finite set of constants c̄, then the proof of Lemma 6.4.4 shows
actually that tpM(ā) is determined by the algebraic varieties Loc(c̄/Q), Loc(ā′, c̄/Q)
and Loc(ā, ā′, c̄/Q) (in fact, the first two varieties are also uniquely determined by the
third one) and the number td(A/C(ā′)). There are countably many choices for those
varieties and the transcendence degree, hence T 1

j is small, i.e. there are countably
many pure types (types over ∅).5 This implies that T 1

j has a countable saturated
model which must be isomorphic to U by Proposition 6.7.3. Thus, U is saturated
and T 1

j = Th(U). Since T 1
j was an arbitrary completion of Tj, the latter has a unique

completion and so it is complete.

We combine the results of this section in the following theorems.

Theorem 6.7.5. The theory Tj is consistent and complete. It is the first-order theory
of the strong Fraïssé limit U , which is saturated.

Theorem 6.7.6. The following are equivalent.

• The Ax-Schanuel inequality for j is adequate.

• The Ax-Schanuel inequality for j is strongly adequate.

• Lj-reducts of differentially closed fields are models of Tj.

• Lj-reducts of differentially closed fields satisfy EC.

• Lj-reducts of ℵ0-saturated differentially closed fields satisfy SEC.

Thus adequacy of the Ax-Schanuel inequality for j would give a complete ax-
iomatisation of the first-order theory of the differential equation of j and show that
it is nearly model complete. It will also give a criterion for a system of differential
equations in terms of the equation of j to have a solution. Nevertheless, it seems to
be a difficult problem and we are not able to tackle it now. Most probably Kirby’s
technique of proving adequacy of the exponential Ax-Schanuel will not work for j, as
it is based on the theory of differential forms and the simple form of the exponential
differential equation, while the equation of j is quite complicated.

6.8 The general case
In this section we study the predimension given by the “full” Ax-Schanuel inequality
(with derivatives). We consider a predicate E ′j(x, y, y1, y2) which will be interpreted
in a differential field as

∃y3

(
y2

1y
2(y − 1728)2F (y, y1, y2, y3) = 0 ∧ y′ = y1x

′ ∧ y′1 = y2x
′ ∧ y′2 = y3x

′) .
Note that all quadruples of constants (z, j, j(1), j(2)) satisfy E ′j unless j(1) = 0, j(2) 6=
0. For convenience we extend E ′j so that it contains all quadruples of constants.

5We can in fact show by a similar argument that Tj is ℵ0-stable.
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Also, if z is constant then j, j(1), j(2) must be constants as well. Moreover, if ā =(
zi, ji, j

(1)
i , j

(2)
i

)
∈ E ′j(K

×) and one of the coordinates of ā is constant then all of
them are. One can also notice that for non-constant x and y the relation E ′j is
equivalent to

f(x, y) = 0 ∧ y1 = ∂xy ∧ y2 = ∂2
xy.

Lemma 6.8.1. In a differential field if x2 = gx1 with g =

(
a b
c d

)
∈ SL2(C) then for

any non-constant y we have

∂x2y = ∂x1y · (cx1 + d)2,

∂2
x2
y = ∂2

x1
y · (cx1 + d)2 − 2c · ∂x1y · (cx1 + d)3.

Proof. Easy calculations.

Definition 6.8.2. The theory (T 0
j )′ consists of the following first-order statements

about a structure K in the language Lj := {+, ·, E ′j, 0, 1}.

A1 K is an algebraically closed field with an algebraically closed subfield C :=
CK , which is defined by E ′j(0, y, 0, 0). Further, C4 ⊆ E ′j(K) and if ā =(
z, j, j(1), j(2)

)
∈ E ′j(K×) and one of the coordinates of ā is in C then ā ⊆ C.

A2 For any z, j ∈ K\C there is at most one pair
(
j(1), j(2)

)
inK with E ′j

(
z, j, j(1), j(2)

)
.

A3 If
(
z, j, j(1), j(2)

)
∈ E ′j then for any g =

(
a b
c d

)
∈ SL2(C)

(
gz, j, j(1) · (cz + d)2, j(2) · (cz + d)2 − 2c · j(1) · (cz + d)3

)
∈ E ′j.

Conversely, if for some j we have
(
z1, j, j

(1), j(2)
)
,
(
z2, j, w

(1), w(2)
)
∈ E ′j then

z2 = gz1 for some g ∈ SL2(C).

A4 If
(
z, j1, j

(1)
1 , j

(2)
1

)
∈ E ′j and Φ(j1, j2) = 0 for some modular polynomial Φ(X, Y )

then
(
z, j2, j

(1)
2 , j

(2)
2

)
∈ E ′j where j(1)

2 , j
(2)
2 are determined from the following

system of equations:

∂Φ

∂X
(j1, j2) · j(1)

1 +
∂Φ

∂Y
(j1, j2) · j(1)

2 = 0,

∂2Φ

∂X2
(j1, j2) ·

(
j

(1)
1

)2

+
∂2Φ

∂Y 2
(j1, j2) ·

(
j

(1)
2

)2

+ 2
∂2Φ

∂X∂Y
(j1, j2) · j(1)

1 · j
(1)
2 +

∂Φ

∂X
(j1, j2) · j(2)

1 +
∂Φ

∂Y
(j1, j2) · j(2)

2 = 0.

AS If
(
zi, ji, j

(1)
i , j

(2)
i

)
∈ E ′j, i = 1, . . . , n, with

tdC C
(
z̄, j̄, j̄(1), j̄(2)

)
≤ 3n

then ΦN(ji, jk) = 0 for some N and 1 ≤ i < k ≤ n or ji ∈ C for some i.
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A4 is obtained by differentiating the equality Φ(j1, j2) = 0. A compactness argu-
ment shows that AS can be written as a first-order axiom scheme exactly as before.

Definition 6.8.3. An E ′j-field is a model of (T 0
j )′. If K is an E ′j-field, then a tuple(

z̄, j̄, j̄(1), j̄(2)
)
∈ K4n is called an E ′j-point if (zi, ji) ∈ E ′j(K) for each i = 1, . . . , n.

By abuse of notation, we let E ′j(K) denote the set of all E ′j-points in K4n for any
natural number n.

Let C be an algebraically closed field with td(C/Q) = ℵ0 and let C consist of all
E ′j-fields K with CK = C. Note that C is an E ′j-field with E ′j(C) = C4 and it is the
smallest structure in C. From now on, by an E ′j-field we understand a member of C.

Definition 6.8.4. For A ⊆ B ∈ Cf.g. an E ′j-basis of B over A is an E ′j-point b̄ =(
z̄, j̄, j̄(1), j̄(2)

)
from B of maximal length satisfying the following conditions:

• ji and jk are modularly independent for all i 6= k,

•
(
zi, ji, j

(1), j
(2)
i

)
/∈ A4 for each i.

We let σ(B/A) be the length of j̄ in an E ′j-basis of B over A (equivalently, 4σ(B/A) =
|b̄|). When A = C we write σ(B) for σ(B/C). Further, for A ∈ Cf.g. define the
predimension by

δ(A) := tdC(A)− 3 · σ(A).

As before, δ is submodular (so it is a predimension) and the Pila-Tsimerman
inequality states exactly that δ(A) ≥ 0 for all A ∈ Cf.g. with equality holding if and
only if A = C. The dimension associated with δ will be denoted by dj.

Definition 6.8.5. A structure A ∈ C is said to be full if for every j ∈ A there are
z, j(1), j(2) ∈ A such that A |= E ′j

(
z, j, j(1), j(2)

)
. The subclass Ĉ consists of all full

E ′j-fields.

The obvious analogues of all results from Sections 6.3 and 6.4 hold in this setting
as well (with obvious adaptations of the proofs). So we get a strong Fraïssé limit U .

Definition 6.8.6. Let n be a positive integer, k ≤ n and 1 ≤ i1 < . . . < ik ≤ n.
Denote i = (i1, . . . , ik) and define the projection map prī : Kn → Kk by

prī : (x1, . . . , xn) 7→ (xi1 , . . . , xin).

Further, define prī : K4n → K4k by

prī : (x̄, ȳ, z̄, w̄) 7→ (prī x̄, prī ȳ, prī z̄, prī w̄).

Below prī should always be understood in the second sense.

Definition 6.8.7. Let K be an algebraically closed field. An irreducible algebraic
variety V ⊆ K4n is normal if and only if for any 1 ≤ i1 < . . . < ik ≤ n we have
dim prī V ≥ 3k. We say V is strongly normal if the strict inequality dim prī V > 3k
holds.
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Definition 6.8.8. An algebraic variety V ⊆ K4n (with coordinates
(
x̄, ȳ, ȳ(1), ȳ(2)

)
)

is free if it is not contained in any variety defined by an equation ΦN(yi, yk) = 0 for
some modular polynomial ΦN and some indices i, k.

When K is an E ′j-field and A ⊆ K is an E ′j-subfield, we say V ⊆ K4n is free over
A if it is free and it is not contained in a hyperplane defined by an equation yi = a
(for some i) where a ∈ A with A |= ∃z, u, vE ′j(z, a, u, v).

Consider the following statements for an E ′j-field K.

EC For each normal variety V ⊆ K4n the intersection E ′j(K)∩V (K) is non-empty.

SEC For each normal variety V ⊆ K4n defined over a finite tuple ā ⊆ K, the inter-
section E ′j(K) ∩ V (K) contains a point generic in V over ā.

GSEC For each irreducible variety V ⊆ K4n of dimension 3n defined over a finitely
generated strong E ′j-subfield A ≤ K, if V is normal and free over A and strongly
normal over C, then the intersection E ′j(K)∩ V (K) contains a point generic in
V over A.

NT K ) C.

ID K has infinite dj-dimension.

Again, the analogues of all facts established in Sections 6.5 and 6.6 are true with
more or less the same proofs. Therefore U is a model of the theory T ′j axiomatised
by A1-A4,AS,NT,EC.

Proposition 6.7.2 holds as well. However, the proof of Proposition 6.7.3 does not
go through. The weak version of the modular Zilber-Pink conjecture that we used
in that proof follows from uniform Ax-Schanuel without derivatives. As we saw, it
helped us to deduce ID from the other axioms. Since the predimension is now defined
as δ(A) = td(A/C) − 3σ(A), the same weak Zilber-Pink does not work here. So
one needs a weak Zilber-Pink “with derivatives”, which would probably follow from
the uniform version of Ax-Schanuel with derivatives. But the functional equations
given by axioms A3 and A4 are quite complicated, since a modular relation on j’s
imposes a SL2(C) relation on z’s and then those relations impose some algebraic
relations between j(1)’s and j(2)’s which depend on j’s and z’s. In other words, the
functional equations “mix” all variables. This complicates things and it seems that
even formulating a possible weak Zilber-Pink with derivatives is not an easy task. In
fact, we can formulate a statement which would be enough to prove ID, but then it
will not really be an analogue of Zilber-Pink and we do not have a proof for that
statement (it seems Ax-Schanuel does not help). So we conclude that at the moment
we cannot prove the completeness of T ′j .

It is in fact possible that T ′j is not complete. One can try to replace the 3n in the
Ax-Schanuel theorem with something which reflects the “mixed” functional equations,
which would in some cases be stronger than the current version of Ax-Schanuel. If
this is possible, we would need to consider a slightly different predimension, and it
might lead to a complete axiomatisation of the Fraïssé limit.
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These are only some speculations and we are unable to say anything precise re-
garding this issue. So we finish this chapter here...
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Chapter 7

Ax-Schanuel Type Theorems and
Geometry of Strongly Minimal Sets
in DCF0

In this chapter we explore the connection between Ax-Schanuel type theorems (pred-
imension inequalities) for a differential equation E(x, y) and geometry of fibres of
E. More precisely, given a predimension inequality (not necessarily adequate) for
solutions of E of a certain type (which is of the form “td− dim” where dim is a
dimension of trivial type) we show that the fibres of E are strongly minimal and ge-
ometrically trivial (after removing constant points). Moreover, the induced structure
on the Cartesian powers of those fibres is given by special subvarieties.

In particular, since an Ax-Schanuel theorem (of the required form) for the (differ-
ential equation of the) j-function is known (due to Pila and Tsimerman, see Chapter
6), our results will give another proof for a theorem of Freitag and Scanlon [FS15]
stating that the differential equation of j defines a strongly minimal set with trivial
geometry (which is not ℵ0-categorical though). In fact, the Pila-Tsimerman inequality
is the main motivation for this chapter.

Thus we get a necessary condition for E to satisfy an Ax-Schanuel inequality of
the given form. This is a step towards the solution of the main problem of this thesis.
In particular it gives rise to an inverse problem: given a one-variable differential
equation which is strongly minimal and geometrically trivial, can we say anything
about the Ax-Schanuel properties of its two-variable analogue? See Section 7.4 for
more details.

On the other hand, understanding the structure of strongly minimal sets in a given
theory is one of the most important problems in model theory. In DCF0 strongly min-
imal sets have a very nice classification, namely, they satisfy the Zilber trichotomy
(Hrushovski-Sokolović [HuS93]). Hrushovski [Hru95] also gave a full characterisation
of strongly minimal sets of order 1 proving that such a set is either non-orthogonal
to the constants or it is trivial and ℵ0-categorical. However there is no general classi-
fication of trivial strongly minimal sets of higher order and therefore we do not fully
understand the nature of those sets. From this point of view the set J defined by the
differential equation of j is quite intriguing since it is the first example of a trivial

94



strongly minimal set in DCF0 which is not ℵ0-categorical. Before Freitag and Scanlon
established those properties of J in [FS15], it was mainly believed that trivial strongly
minimal sets in DCF0 must be ℵ0-categorical. The reason for this speculation was
Hrushovski’s aforementioned theorem on order 1 strongly minimal sets.

Thus, the classification of strongly minimal sets in DCF0 can be seen as another
source of motivation for the work in this chapter, where we show that these two
problems (Ax-Schanuel type theorems and geometry of strongly minimal sets) are in
fact closely related.

After defining the appropriate notions we formulate the main results of this chapter
in Section 7.1 and prove them in Section 7.2. Then we apply our results to the
differential equation of the j-function in Section 7.3. Section 7.4 is devoted to some
concluding remarks and inverse questions. We have gathered definitions of several
properties of strongly minimal sets that we need in Section 2.5.

The results of this chapter are combined in the preprint [Asl16b].

7.1 Setup and main results
Recall that K = (K; +, ·,′ , 0, 1) is a differentially closed field with field of constants C.
We may assume (without loss of generality) K is sufficiently saturated if necessary.
Fix an element t with t′ = 1. Let E(x, y) be (the set of solutions of) a differential
equation f(x, y) = 0 with rational (or, more generally, constant) coefficients.

Now we give several definitions and then state the main results of this chapter.

Definition 7.1.1. Let P be a non-empty collection of algebraic polynomials P (X, Y ) ∈
C[X, Y ]. We say two elements a, b ∈ K are P-independent if P (a, b) 6= 0 and
P (b, a) 6= 0 for all P ∈ P . The P-orbit of an element a ∈ K is the set {b ∈
K : P (a, b) = 0 or P (b, a) = 0 for some P ∈ P} (in analogy with Hecke orbit, see
Section 6.1). Also, P is said to be trivial if it consists only of the polynomial X − Y .

Definition 7.1.2. For a non-constant x ∈ K the differentiation with respect to x is
the derivation ∂x : K → K defined by ∂x : y 7→ y′

x′
.

Recall that f(x, y) = 0 is the differential equation defining E and denote m :=
ordY f(X, Y ) (the order of f with respect to Y ).

Definition 7.1.3. We say the differential equation E(x, y) has the P-AS (Ax-Schanuel
with respect to P) property if the following condition is satisfied:
Let x1, . . . , xn, y1, . . . , yn be non-constant elements of K with f(xi, yi) = 0. If the yi’s
are pairwise P-independent then

tdC C
(
x1, y1, ∂x1y1, . . . , ∂

m−1
x1

y1, . . . , xn, yn, ∂xnyn, . . . , ∂
m−1
xn yn

)
≥ mn+ 1. (1.1)

The P-AS property can be reformulated as follows: for any non-constant solutions
(xi, yi) of E the transcendence degree in (1.1) is strictly bigger than m times the
number of different P-orbits of yi’s. Note that (1.1) is motivated by the known
examples of Ax-Schanuel inequalities that we have seen in previous chapters.
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Remark 7.1.4. Having the P-AS property for a given equation E may force P to
be “closed” in some sense. Firstly, X − Y must be in P . Secondly, if P1, P2 ∈ P then
P1(x, y) = 0, P2(y, z) = 0 impose a relation on x and z given by Q(x, y) = 0 for some
polynomial Q. Then the P-AS property may fail if one allows a relation Q(yi, yj) = 0
between yi and yj (although one requires Pl(yi, yj) 6= 0, l = 1, 2). In that case one
has to add Q to P in order to allow the possibility of an Ax-Shcanuel property with
respect to P .

Similar conditions on P are required in order for P-independence to define a
dimension function (number of distinct P-orbits) of a pregeometry (of trivial type),
which would imply that the P-AS property is a predimension inequality. Note that
the collection of modular polynomials has all those properties. However, the shape of
P is not important for our results since we assume that a given equation E has the
P-AS property.

Definition 7.1.5. A P-special variety (in Kn for some n) is an irreducible (over C)
component of a Zariski closed set in Kn defined by a finite collection of equations
of the form Pik(yi, yk) = 0 for some Pik ∈ P . For a differential subfield L ⊆ K a
P-special variety over L is an irreducible (over Lalg) component of a Zariski closed
set in Kn defined by a finite collection of equations of the form Pik(yi, yk) = 0 and
yi = a for some Pik ∈ P and a ∈ Lalg.

For a definable set V , a P-special subvariety (over L) of V is an intersection of V
with a P-special variety (over L).

Remark 7.1.6. If the polynomials from P have rational coefficients then P-special
varieties are defined over Qalg. Furthermore, if E satisfies the P-AS property then
for the set U := {y : f(t, y) = 0 ∧ y′ 6= 0} we have U ∩ C(t)alg = ∅ and so P-special
subvarieties of U over C(t) are merely P-special subvarities.

Recall that for differential fields L ⊆ K and a subset A ⊆ K the differential
subfield of K generated by L and A will be denoted by L〈A〉. Let C0 ⊆ C be the
subfield of C generated by the coefficients of f and let K0 = C0〈t〉 = C0(t) be the
(differential) subfield of K generated by C0 and t (clearly U is defined over K0). We
fix K0 and work over it (in other words we expand our language with new constant
symbols for elements of K0).

Now we can formulate our main result (see Section 2.5 for definitions of geometric
triviality and strict disintegratedness).

Theorem 7.1.7. Assume E(x, y) satisfies the P-AS property for some P. Assume
further that the differential polynomial g(Y ) := f(t, Y ) is absolutely irreducible. Then

• U := {y : f(t, y) = 0 ∧ y′ 6= 0} is strongly minimal with trivial geometry.

• If, in addition, P is trivial then U is strictly disintegrated and hence it has
ℵ0-categorical induced structure.

• All definable subsets of Un over a differential field L ⊇ K0 are Boolean combi-
nations of P-special subvarieties over L.

96



As the reader may guess and as we will see in the proof, this theorem holds
under weaker assumptions on E. Namely, it is enough to require that (1.1) hold for
x1 = . . . = xn = t (which can be thought of as a weak form of the “Ax-Lindemann-
Weierstrass” property). However, we prefer the given formulation of Theorem 7.1.7
since the main object of our interest is the Ax-Schanuel inequality (for E).

Further, we deduce from Theorem 7.1.7 that if E has some special form, then all
the fibres E(s, y) for a non-constant s ∈ K have the above properties (over C0〈s〉).

Corollary 7.1.8. Let E(x, y) be defined by P (x, y, ∂xy, . . . , ∂
m
x y) = 0 where P (X, Ȳ )

is an irreducible algebraic polynomials over C. Assume E(x, y) satisfies the P-AS
property for some P and let s ∈ K be a non-constant element. Then

• Us := {y : f(s, y) = 0 ∧ y′ 6= 0} is strongly minimal with trivial geometry.

• If in addition P is trivial then any distinct non-algebraic (over C0〈s〉) elements
are independent and Us is ℵ0-categorical.

• All definable subsets of Un
s over a differential field L ⊇ C0〈s〉 are Boolean com-

binations of P-special subvarieties over L.

Remark 7.1.9. Since Us ∩C = ∅, in Theorem 7.1.7 and Corollary 7.1.8 the induced
structure on Un

s is actually given by strongly special subvarieties (over L), which
means that we do not allow any equation of the form yi = c for c a constant. In
particular we also need to exclude equations of the form P (yi, yi) = 0 for P ∈ P .

We also prove a generalisation of Theorem 7.1.7.

Theorem 7.1.10. Assume E(x, y) satisfies the P-AS property and let p(Y ) ∈ C(t)[Y ]\
C, q(Y ) ∈ C[Y ]\C be such that the differential polynomial f(p(Y ), q(Y )) is absolutely
irreducible. Then the set

Up,q := {y : E(p(y), q(y)) ∧ y /∈ C}

is strongly minimal and geometrically trivial.

As an application of Theorem 7.1.7 we obtain a result on the differential equation
of the j-function which was established by Freitag and Scanlon in [FS15]. To be more
precise, let F (j, j′, j′′, j′′′) = 0 be the algebraic differential equation satisfied by the
modular j-function (see Section 6.1).

Theorem 7.1.11 ([FS15]). The set J ⊆ K defined by F (y, y′, y′′, y′′′) = 0 is strongly
minimal with trivial geometry. Furthermore, J is not ℵ0-categorical.

Strong minimality and geometric triviality of J follow directly from Theorem
7.1.7 combined with the Ax-Schanuel theorem for j (see Section 6.1). Of course the
“furthermore” clause does not follow from Theorem 7.1.7 but it is not difficult to
prove. Theorem 7.1.7 also gives a characterisation of the induced structure on the
Cartesian powers of J . Again, that result can be found in [FS15] in a more general
form.
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The proof of Theorem 7.1.11 by Freitag and Scanlon is based on Pila’s modular Ax-
Lindemann-Weierstrass with derivatives theorem along with Seidenberg’s embedding
theorem and Nishioka’s theorem on differential equations satisfied by automorphic
functions ([Nis89]). They also make use of some tools of stability theory such as the
“Shelah reflection principle”. However, as one may guess, we cannot use Nishioka’s
theorem (or some analogue of that) in the proof of 7.1.7 since we do not know anything
about the analytic properties of the solutions of our differential equation. Thus, we
show in particular that Theorem 7.1.11 can be deduced from Pila’s result abstractly.
The key point that makes this possible is stable embedding, which means that ifM
is a model of a stable theory and X ⊆ M is a definable set over some A ⊆ M then
every definable subset of Xn can in fact be defined with parameters from X ∪A (see
Section 2.5).

Let us recall once more that the set J is notable for being the first example of
a strongly minimal set (definable in DCF0) with trivial geometry that is not ℵ0-
categorical. Indeed the aforementioned result of Hrushovski on strongly minimal sets
of order 1 led people to believe that all geometrically trivial strongly minimal sets
must be ℵ0-categorical. Nevertheless, it is not true as the set J illustrates.

7.2 Proofs of the main results

Proof of Theorem 7.1.7

Taking x1 = . . . = xn = t in the P-AS property we get the following weak version of
Ax-Lindemann-Weierstrass1 property for U which in fact is enough to prove Theorem
7.1.7.

Lemma 7.2.1. P-AS implies that for any pairwise P-independent elements u1, . . . , un ∈
U the elements ū, ū′, . . . , ū(m−1) are algebraically independent over C(t) and hence over
K0.

We show that every definable (possibly with parameters) subset V of U is either
finite or co-finite. Since U is defined over K0, by stable embedding there is a finite
subset A = {a1, . . . , an} ⊆ U such that V is defined over K0 ∪ A. It suffices to
show that U realises a unique non-algebraic type over K0 ∪ A, i.e. for any u1, u2 ∈
U \acl(K0∪A) we have tp(u1/K0∪A) = tp(u2/K0∪A). Let u ∈ U \acl(K0∪A). We
know that acl(K0∪A) = (K0〈A〉)alg = (K0(ā, ā′, . . . , ā(m−1)))alg. Since u /∈ (K0〈A〉)alg,
u is transcendental over K0(A) and hence it is P-independent from each ai. We may
assume without loss of generality that ai’s are pairwise P-independent (otherwise we
could replace A by a maximal pairwise P-independent subset). Applying Lemma 7.2.1
to ā, u, we deduce that u, u′, . . . , u(m−1) are algebraically independent over K0〈A〉.
Hence tp(u/K0 ∪ A) is determined uniquely (axiomatised) by the set of formulae

{g(y) = 0} ∪ {h(y) 6= 0 : h(Y ) ∈ K0〈A〉{Y }, ord(h) < m}
1To be precise, ALW is P-AS under an additional assumption td(x̄/C) = 1.
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(Recall that g is absolutely irreducible and hence it is irreducible over any field). In
other words g(Y ) is the minimal differential polynomial of u over K0〈A〉.

Thus U is strongly minimal. A similar argument shows also that if A ⊆ U is a
(finite) subset and u ∈ U ∩ acl(K0A) then there is a ∈ A such that u ∈ acl(K0a).
This proves that U is geometrically trivial.

If P is trivial then distinct elements of U are independent, hence U is strictly
disintegrated.

The last part of Theorem 7.1.7 follows from the following lemma.

Lemma 7.2.2. Every irreducible (relatively) Kolchin closed (over C(t)) subset of Un

is a P-special subvariety of Un.

Proof. Let V ⊆ Un be an irreducible relatively closed subset (i.e. it is the inter-
section of Un with an irreducible Kolchin closed set in Kn). Pick a generic point
v̄ = (v1, . . . , vn) ∈ V and let W ⊆ Kn be the Zariski closure of v̄ over C. Let
d := dimW and assume v1, . . . , vd are algebraically independent over C. Then
vi ∈ (C(v1, . . . , vd))

alg for each i = d + 1, . . . , n. By Lemma 7.2.1 each vi with
i > d must be in a P-relation with some vki with ki ≤ d. Let Pi(vi, vki) = 0 for i > d.
The algebraic variety defined by the equations Pi(yi, yki) = 0, i = d + 1, . . . , n, has
dimension d and contains W . Therefore W is a component of that variety and so it
is a P-special variety.

We claim that W ∩ Un = V . Since v1, . . . , vd ∈ U are algebraically independent
over C, by Lemma 7.2.1 v̄, v̄′, . . . , v̄(m−1) are algebraically independent over C(t).
Moreover, the (differential) type of each vi, i > d, over v1, . . . , vd is determined
uniquely by an irreducible algebraic equation. Therefore tp(v̄/C(t)) is axiomatised
by formulas stating that v̄ is Zariski generic in W and belongs to Un. In other words
v̄ is Kolchin generic in W ∩ Un. Now V and W ∩ Un are both equal to the Kolchin
closure of v̄ inside Un and hence they are equal.

Thus definable (over C(t)) subsets of Un are Boolean combinations of special
subvarieties. Now let L ⊆ K be an arbitrary differential subfield over which U is
defined. Then definable subsets of Un over L can be defined with parameters from
L̃ = K0 ∪ (U ∩ Lalg) (see Section 2.5). Then Lemma 7.2.2 implies that irreducible
Kolchin closed subsets of Un defined over L̃ are P-special subvarities of Un over L.

Finally, note that since U does not contain any algebraic elements over C(t), the
type of any element u ∈ U over C(t) is isolated by the formula f(t, y) = 0 ∧ y′ 6= 0.

Proof of Theorem 7.1.10

We argue as above and show that for a finite set A = {a1, . . . , an} ⊆ Up,q there
is a unique non-algebraic type over K0〈A〉 realised in Up,q. Here we will use full
Ax-Lindemann-Weierstrass.

If u ∈ Up,q \ (K0〈A〉)alg then q(u) is transcendental over K0(A) and so q(u) is
P-independent from each q(ai). Moreover, we can assume {q(a1), . . . , q(an)} is P-
independent. Then by the P-AS property

tdC C
(
p(u), q(u), . . . , ∂m−1

p(u) q(u), p(ai), q(ai), . . . , ∂
m−1
p(ai)

q(ai)
)
i=1,...,n

≥ m(n+ 1) + 1.

99



But then

tdC C
(
t, u, u′, . . . , u(m−1), ai, a

′
i, . . . , a

(m−1)
i

)
i=1,...,n

≥ m(n+ 1) + 1,

and hence u, u′, . . . , u(m−1) are algebraically independent overK0〈A〉. This determines
the type tp(u/K0A) uniquely as required. It also shows triviality of the geometry.

Proof of Corollary 7.1.8

Consider the differentially closed field Ks = (K; +, ·, ∂s, 0, 1). The given form of
differential equation E implies that Us is defined over C0(s) in Ks. However, in general
it may not be defined over C0(s) in K, it is defined over C0〈s〉 = C0(s, s′, s′′, . . .). Since
∂ss = 1, we know by Theorem 7.1.7 that Us is strongly minimal in Ks. On the other
hand the derivations ∂s and ′ are inter-definable (with parameters) and so a set is
definable in K if and only if it is definable in Ks (possibly with different parameters).
This implies that every definable subset of Us in K is either finite or co-finite, hence
it is strongly minimal.

Further, Theorem 7.1.7 implies that Us is geometrically trivial over C0(s) in Ks.
By Theorem 2.5.2, Us is also geometrically trivial over C0〈s〉 in Ks. On the other
hand for any subset A ⊆ Us the algebraic closure of C0〈s〉 ∪ A is the same in K and
Ks. This implies geometric triviality of Us in Ks.

The same argument (along with the remark after Theorem 2.5.2) shows that the
second and the third parts of Corollary 7.1.8 hold as well.

7.3 The modular j-function
We recall some basic properties of the j-function presented in the previous chapter.

The j-invariant satisfies the following order three algebraic differential equation:

F (y, y′, y′′, y′′′) = Sy +R(y)(y′)2 = 0, (3.2)

where S denotes the Schwarzian derivative defined by Sy = y′′′

y′
− 3

2

(
y′′

y′

)2

and R(y) =

y2−1968y+2654208
2y2(y−1728)2

. Let J be the set defined by (3.2). Note that F is not a polynomial
but a rational function. In particular constant elements do not satisfy (3.2), for Sy
is not defined for a constant y. We can multiply our equation through by a common
denominator and make it into a polynomial equation

F ∗(y, y′, y′′, y′′′) = q(y)y′y′′′ − 3

2
q(y)(y′′)2 + p(y)(y′)4 = 0, (3.3)

where p and q are respectively the numerator and the denominator of R. Let J∗ be the
set defined by (3.3). It is not strongly minimal since C is a definable subset. However
J = J∗ \ C is strongly minimal and MR(J∗) = 1, MD(J∗) = 2. Thus whenever we
speak of the formula F (y, y′, y′′, y′′′) = 0 (which, strictly speaking, is not a formula in
the language of differential rings) we mean the formula F ∗(y, y′, y′′, y′′′) = 0 ∧ y′ 6= 0.
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Let P = Φ := {ΦN(X, Y ) : N > 0} be the collection of modular polynomials (see
Section 6.1). Two elements are modularly independent iff they are Φ-independent.
For an element a ∈ K its Hecke orbit is the same as its Φ-orbit.

Let us form the two-variable analogue of the equation (3.2):

f(x, y) := F (y, ∂xy, ∂
2
xy, ∂

3
xy) = 0. (3.4)

Now we reformulate the Ax-Schanuel theorem for j (see Section 6.2) in the termi-
nology of this chapter.

Theorem 7.3.1. The equation (3.4) has the Φ-AS property.

As a consequence of Theorems 7.1.7 and 7.3.1 we get strong minimality and geo-
metric triviality of J (note that F ∗(Y0, Y1, Y2, Y3) is obviously absolutely irreducible
as it depends linearly on Y3).

Lemma 7.2.1 for j is of course a special case of the Ax-Schanuel theorem for j.
Nevertheless it can also be deduced from Pila’s modular Ax-Lindemann-Weierstrass
with derivatives theorem ([Pil13]) by employing Seidenberg’s embedding theorem.
Therefore only Pila’s theorem is enough to prove strong minimality and geometric
triviality of J . Moreover, Corollary 7.1.8 shows that all the non-constant fibres of
(3.4) are strongly minimal and geometrically trivial (after removing constant points)
and the induced structure on the Cartesian powers of those fibres is given by special
subvarieties. Note that it is proven in [FS15] that the sets F (y, y′, y′′, y′′′) = a have
the same properties for any a.

Remark 7.3.2. To complete the proof of Theorem 7.1.11, that is, to show that J is
not ℵ0-categorical, one argues as follows (see [FS15]). The Hecke orbit of an element
j ∈ J is contained in J . Therefore J realises infinitely many algebraic types over j
and thus is not ℵ0-categorical.

7.4 Concluding remarks
The P-AS property states positivity of a predimension of the form “td−m ·d”, where
d is the number of distinct P-orbits.2 Transcendence degree, being the algebraic
dimension, is non-locally modular. On the other hand d is a dimension of trivial
type. And it is this fact that is responsible for triviality of the geometry of U .

For the exponential differential equation the predimension is of the form “td− ldim”.
The linear dimension is locally modular non-trivial and accordingly the strongly min-
imal set y′ = y is not trivial, indeed it is non-orthogonal to C. Here strong minimality
is obvious as the equation has order one. However one may ask whether strong min-
imality can be deduced from this type of predimension inequalities in general. The
answer is no. For example, consider a linear differential equation with constant coeffi-
cients ∂2

xy− y = 0. We showed in Chapter 5 that an Ax-Schanuel statement holds for
it. However U is the set defined by y′′−y = 0 and the set y′ = y is a definable infinite

2Strictly speaking, we do not know this but can assume it is the case. See Remark 7.1.4.
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and co-infinite subset (the differential polynomial Y ′′ − Y is absolutely irreducible
though).

An interesting question is whether there are differential equations with the P-AS
property with trivial P . As we showed here, if E(x, y) has such a property then
the corresponding U must be strongly minimal and strictly disintegrated. There are
quite a few examples of this kind of strongly minimal sets in DCF0. The two-variable
versions of those equations will be natural candidates of equations with the required
P-AS property.

For example, the geometry of sets of the form y′ = f(y), where f is a rational
function over C, is well understood. The nature of the geometry is determined by the
partial fraction decomposition of 1/f . As an example consider the equation

y′ =
y

1 + y
. (4.5)

One can show that it defines a strictly disintegrated strongly minimal set ([Mar05b]).
The two variable analogue of this equation is

∂xy =
y

1 + y
. (4.6)

But this is equivalent to the equation y′

y
= (x − y)′. Denoting z = x − y we get

the exponential differential equation y′ = yz′. It is easy to deduce from this that
(4.6) does not satisfy the P-AS property with any P (it satisfies a version of the
original exponential Ax-Schanuel inequality though and therefore has a predimension
inequality which is of the form td− ldim). Indeed, the fibre of (4.6) above x = t is
of trivial type but the section by x = t + y is non-orthogonal to C. So according to
Theorem 7.1.10 the equation (4.6) does not satisfy any P-AS property. Of course,
all the sets y′ = f(y) can be treated in the same manner and hence they are not
appropriate for our purpose. Thus, one needs to look at the behaviour of all the sets
E(p(y), q(y)), and if they happen to be trivial strongly minimal sets then one can
hope for a P-AS inequality.

The classical Painlevé equations define strongly minimal and strictly disintegrated
sets as well. For example, let us consider the first Painlevé equation y′′ = 6y2 + t.
Strong minimality and algebraic independence of solutions of this equation were shown
by Nishioka in [Nis04]. We consider its two-variable version

∂2
xy = 6y2 + x. (4.7)

The goal is to find an Ax-Schanuel inequality for this equation. Note that (4.7) does
not satisfy the P-AS property with trivial P . Indeed, if ζ is a fifth root of unity then
the transformation x 7→ ζ2x, y 7→ ζy sends a solution of (4.7) to another solution.
If one believes these are the only relations between solutions of the above equation,
then one can conjecture the following.

Conjecture 7.4.1 (Ax-Schanuel for the first Painlevé equation). If (xi, yi), i =
1, . . . , n, are solutions to the equation (4.7) and (yi/yj)

5 6= 1 for i 6= j then

td(x̄, ȳ, ∂x̄ȳ) ≥ 2n+ 1.
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One could in fact replace y’s with x’s in the condition (yi/yj)
5 6= 1 as those are

equivalent. Though we do not have a proof of this conjecture at the moment, it seems
a weaker version, namely, the Ax-Lindemann-Weiertsrass part of Ax-Schanuel, can
be proven by elaborating Nishioka’s method. It asserts that the above conjecture is
true under the additional assumption td(x̄) = 1.

Nagloo and Pillay showed in [NP14] that the other generic Painlevé equations
define strictly disintegrated strongly minimal sets as well. So we can analyse relations
between solutions of their two-variable analogues and ask similar questions for them
too.

In general, proving that a certain equation has the required transcendence prop-
erties may be much more difficult than proving that there are equations with those
properties. In this regard we believe that “generic” (in a suitable sense) equations
must satisfy the P-AS property with trivial P . However we do not go into details
here and finish with a final remark.

Zilber constructed “a theory of a generic function” where the function has tran-
scendence properties analogous to trivial AS property described here ([Zil05]). He
also conjectured that it has an analytic model, i.e. there is an analytic function that
satisfies Zilber’s axioms and, in particular, the given transcendence properties. Wilkie
constructed Liouville functions in [Wil05] and showed that they indeed satisfy the
transcendence properties formulated by Zilber. Later Koiran [Koi03] proved that Li-
ouville functions satisfy Zilber’s existential closedness axiom scheme. However, those
functions do not satisfy any algebraic differential equation, so we cannot translate the
result into differential algebraic language. If there is a differentially algebraic function
with similar properties then it may give rise to a differential equation with the desired
properties.
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