
Turán densities of some hypergraphs related to K
k

k+1
∗
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Abstract

Let B
(k)
i

be the k-uniform hypergraph whose vertex set is of the form S ∪ T , where |S| = i,
|T | = k− 1 and S ∩ T = ∅, and whose edges are the k-subsets of S ∪ T that contain either S or

T . We derive upper and lower bounds for the Turán density of B
(k)
i

that are close to each other
as k → ∞. We also obtain asymptotically tight bounds for the Turán density of several other
infinite families of hypergraphs. The constructions implying the lower bounds are derived from
elementary number theory by probabilistic arguments, and the upper bounds follow from some
results of de Caen, Sidorenko, and Keevash.

1 Introduction

Given an integer k ≥ 2 and a set V of size |V | ≥ k, we denote by
(V
k

)
the family of all k-element

subsets (in short, k-subsets) of V . A k-uniform hypergraph H is an ordered pair (V,E), where the
edge set E is a subfamily of

(V
k

)
. Given two k-uniform hypergraphs H and G, we call G H-free if G

does not contain H as a subhypergraph. The extremal function ex(n,H) is defined as the maximum
number of edges in an H-free k-uniform hypergraph on n vertices, while the Turán density of H is

π(H) = lim
n→∞

ex(n,H)(n
k

) .
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11067, and OTKA Grant K76099. The second author was supported by NSF grant DMS-1001638. The third author
was supported by NSF grants CNS-0721983, CCF-0728928 and DMS-0906634, ARO grant W911NF-06-1-0076, and
TAMOP-4.2.2/08/1/2008-0008 program of the Hungarian Development Agency. The fourth author was supported
NSA grant H98230-10-1-0165.
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For k = 2 the Turán density of H is determined by its chromatic number, namely, π(H) = 1 −
1

χ(H)−1 .

In the case k ≥ 3 much less is known. Let Kk
r be the complete k-uniform hypergraph on r

vertices. A classical problem of Turán [13] is to determine π(Kk
r ) when r > k ≥ 3. Erdős [3] offered

$500 for determining π(Kr
k) for any particular k > r ≥ 3 and $1000 for solving the problem for all

k and r. There are several constructions which show that π(K3
4 ) ≥

5
9 (see, e.g., [7]), while the best

upper bound is π(K3
4 ) ≤ 0.561666 obtained by Razborov [10] (see Falgas-Ravry and Vaughan [4]

for more recent results obtained using flag algebras). For π(Kk
k+1), the natural asymptotic question

remains open: the best known bounds for π(Kk
k+1) [12, 8] imply that

1−Θ

(
ln k

k

)
≤ π

(
Kk

k+1

)
≤ 1−Θ

(
1

k

)
. (1)

In this paper we consider the asymptotic Turán densities of some classes of hypergraphs related

to Kk
k+1. Given 2 ≤ i ≤ k, define a k-uniform hypergraph B

(k)
i as follows. The vertex set of B

(k)
i

is of the form S ∪ T , where S ∩ T = ∅, |S| = i and |T | = k − 1, and the edge set consists of all

k-element subsets of S ∪ T containing either S or T . Clearly, B
(k)
2 = Kk

k+1. Concerning the other
extreme value of i, Bohman, Frieze, Mubayi and Pikhurko [1] recently showed that as k → ∞

π
(
B

(k)
k

)
= 1− (2 + o(1))

(
ln k

k

)
.

As noted by Mubayi, the sequence of hypergraphs B
(k)
2 , B

(k)
3 , . . . , B

(k)
k starts with Kk

k+1 and ends

with the graph B
(k)
k studied in [1]. Since this is a natural progression and the asymptotic Turán

denisty of B
(k)
k is known, progress on the Turán densities for the hypergraphs B

(k)
i with 2 < i < k

are a plausible route to a better understanding of the limiting behavior of π(Kk
k+1). In this paper we

take the first tentative steps in this direction: we derive bounds resembling (1) for the hypergraphs

B
(k)
k−i and B

(k)
i+1 with i fixed and k tending to infinity.

Theorem 1. Fix i ≥ 1. As k → ∞ we have

1−Θ

(
ln k

ki

)
≤ π

(
B

(k)
i+1

)
, π
(
B

(k)
k−i

)
≤ 1−Θ

(
1

ki

)
.

Actually, Theorem 1 is the special case of the following more general statement.

Theorem 2. For every pair of integers i, k satisfying 1 ≤ i ≤ ln k/(10 ln ln k), we have

1− (1 + o(1))
12i2 ln k(k

i

) ≤ π
(
B

(k)
i+1

)
, π
(
B

(k)
k−i

)
≤ 1−

1

k − i+
(k−1

i

)
− 1

,

where the o(1) term tends to 0 as k → ∞, independently of i.

The upper bound in Theorem 2, which is actually valid for i < k/2 as well, immediately follows
from a result of Sidorenko [11], which relates the Turán density of a hypergraph to its size. The
construction we used to prove the lower bound in Theorem 2 does not use the entire structure of
the excluded hypergraph; it requires only the edges containing S and a single edge containing T .
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Motivated by this observation, we define B̂
(k)
i to be the k-uniform hypergraph whose vertex set is

the disjoint union S ∪ T ∪ {v}, where |S| = i and |T | = k − 1, and whose edge set is

{T ∪ {v}} ∪

{
S ∪ T ′ : T ′ ∈

(
T

k − i

)}
.

In other words, we obtain B̂
(k)
i from B

(k)
i by removing all of the edges that contain T and adding

a new vertex v and a new edge consisting of T and v. Applying to this hypergraph a result of
de Caen [2] on the number of complete subhypergraphs in dense hypergraphs, we shall obtain

asymptotically matching bounds for π(B̂
(k)
k−i).

Theorem 3. Fix i ≥ 1. We have π
(
B̂

(k)
k−i

)
= 1−Θ

(
lnk
ki

)
as k → ∞.

Finally, define a k-uniform hypergraph C(k) with 2k − 2 vertices and k edges as follows. The
vertex set of C(k) has a partition into two (k − 1)-sets: V (C(k)) = S ∪ T , with S ∩ T = ∅ and
|S| = |T | = k − 1, and the edge set of C(k) consists of all k-sets containing S and a single k-set
containing T . By applying a result of Keevash [5] that relates the Turán density of a hypergraph
to the maximal size of a forest contained in it, we shall obtain asymptotically matching bounds for
π(C(k)).

Theorem 4. For k → ∞, we have π(C(k)) = 1−Θ( lnk
k ).

While our upper and lower bounds for the Turán density of B
(k)
i are close to each other, it

would be nice to know which one is closer to the truth. We suspect that it should be closer to the

upper bound. It would also be interesting to find a good lower bound on the Turán density of B
(k)
i

for i near k/2.
In Section 2 we prove the lower bounds in Theorems 2, 3, and 4, and in Section 3 we prove the

upper bounds.

2 Lower Bounds

Kim and Roush [6] constructed a denseKk
k+1-free k-uniform hypergraphHk; let us start by recalling

this construction. Let ℓ ≈ k
2 ln k be a prime number, and take an equipartition of the vertex set [n]

into ℓ sets V1, . . . , Vℓ. It is easy to see that almost all k-subsets of [n] intersect each of the sets Vi.
Define the weight of a subset X of [n] as w(X) =

∑ℓ
j=1 j|X ∩ Vj | (mod ℓ). Let i ∈ Zℓ be chosen

such that the number of k-sets having weight i is minimal. The edge set of Hk will consist of all
k-sets that intersect all V1, . . . , Vℓ except for those with weight i. In this section we generalize this
construction.

Definition 5. Given positive integers i, ℓ and k, an i-fold sum cover of Zℓ is a multi-set X of
elements of Zℓ such that every b ∈ Zℓ can be written as a sum of exactly i distinct elements of X.

Construction. Let

ℓ ∼
1

6i2 ln k

(
k

i

)
≥

1

12i2 ln k

(
k

i

)
(2)
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be a prime number. Let V be a set of n vertices with an equipartition V = V1 ∪ V2 ∪ · · · ∪ Vℓ, and
define σ : V → Zℓ by σ(v) = j when v ∈ Vj . We associate an X ⊆ V with the multi-set σ(X) ⊆ Zℓ

by σ(X) = {σ(v) : v ∈ X}, and define the weight w(X) = Σv∈Xσ(v) (mod ℓ). Let ϕ be the weight
with the fewest k-subsets having that weight. Finally, the edges of our hypergraph Gi are

{
X ∈

(
V

k

)
: w(X) 6= ϕ and ∀v ∈ X,σ(X − v) is an i-fold sum cover of Zℓ

}
.

The lower bounds in Theorems 2, 3, and 4 follow from the following two claims. Claim 6 implies

that Gi does not contain B
(k)
i+1, B

(k)
k−i, B̂

(k)
k−i, and in particular, G1 does not contain C(k).

Claim 6. Let F be a k-uniform hypergraph (V,E) such that V contains two disjoint subsets S, T
with |T | = k− 1, and |S| = i+1 or |S| = k− i, and E contains an edge containing T and all k-sets
S ∪ T ′ with T ′ ∈

( T
k−|S|

)
. Then Gi is F -free.

Proof. We assume that G contains a copy of F . Then V (G) contains two disjoint sets S and T
such that |T | = k − 1 and T is contained in an edge of G. By the definition of Gi, the set σ(T ) is
an i-fold sum cover of Zℓ, namely, {w(T ′) : T ′ ∈

(T
i

)
} covers all values of Zℓ.

By the definition of F we have either |S| = i+1 or |S| = k− i. First assume that |S| = i+1. If
we take all k-sets of the form S ∪ T ′ where T ′ ⊆ T with |T ′| = k − i− 1, then the set of weights of
these k-sets will range over all elements of Zℓ because w(S ∪ T ′) = w(S) + w(T ) − w(T \ T ′), and
w(T \T ′) can take any value of Zℓ (w(S) and w(T ) are fixed). However, this is impossible since we
explicitly prohibited one of the weights in the definition of Gi.

Now assume that |S| = k − i. If we take all of k-sets of the form S ∪ T ′ where T ′ ⊆ T with
|T ′| = i, then the set of weights of these k-sets will again range over all the elements of Z because
w(S ∪ T ′) = w(S) + w(T ′) where w(T ′) can take any value of Zℓ (w(S) is fixed). However, this is
impossible by the construction of Gi.

Claim 7.

e(Gi) ≥

(
1− (1 + o(1))

1

ℓ

)(
n

k

)
≥

[
1−

12i2 ln k(
k
i

) − o

(
ln k

ki

)](
n

k

)
.

Proof. By removing the edges with weight ϕ, we retain at least 1 − 1
ℓ of the edges of

(
V
k

)
. On

the other hand, by Lemma 8 below, with probability 1 − o(1/ℓ) that an edge chosen uniformly at
random from

(
V
k

)
satisfies the property that all of its (k − 1)-element subsets are i-fold sum covers

of Zℓ. It follows that the graph will have edge density at least 1− (1 + o(1))(1/ℓ).

Lemma 8. Let k ≥ i ≥ 1 be integers and ℓ be a prime number satisfying (2). Let y1, y2, . . . , yk be
chosen uniformly and independently at random from Zℓ (with replacement). Let Y be the multiset
{y1, . . . , yk}. With probability 1 − o(1/ℓ) every (k − 1)-element subset of Y is an i-fold sum cover
of Zℓ.

Proof. We first consider the case when i = 1. In this case ℓ ∼ k
3 ln k suffices. For x ∈ Zℓ and

Y ′ ∈
(

Y
k−1

)
, let Mx,Y ′ be the event that x 6= y for any y ∈ Y ′. We have

Pr(Mx,Y ′) =

(
1−

1

ℓ

)k−1

≤ e−(k−1)/ℓ = e−(3−o(1)) ln k = o(ℓ−2k−1).
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Thus the probability that there exists a (k − 1)-subset of Y which is not a 1-fold sum cover of Zℓ

is at most
∑

x,Y ′ Pr(Mx,Y ′) = o(ℓ−2k−1) · ℓk = o(1/ℓ).
We thus assume that i ≥ 2 for the rest of our proof. We begin by studying the distribution of

(i − 1)-fold sums of elements of Y . For an arbitrary set A ⊆ [k] we use the notation
∑

A for the
sum

∑
a∈A ya. For each x ∈ Zℓ let Fx be the collection of sets A ∈

(
[k]
i−1

)
such that

∑
A = x. Let

E be the event that there exists an x ∈ Zℓ such that |Fx| ≥ 2i+ 1. We show that Pr(E) = o(1/ℓ).
Note that this is a simple observation for i = 2.

Let i ≥ 3. For x ∈ Zℓ, define Ex to be the event that |Fx| ≥ 2i+1. We further partition Ex into
two cases.

Case 1: There exist 2i+1 (i−1)-subsets A1, . . . , A2i+1 of [k] such that
∑

A1 = · · · =
∑

A2i+1 = x
and A1, . . . , A2i+1 has a system of distinct representatives (SDR).

Case 2: There exist 2i+1 (i−1)-subsets A1, . . . , A2i+1 of [k] such that
∑

A1 = · · · =
∑

A2i+1 = x
and A1, . . . , A2i+1 do not have a SDR.

We bound the probability of each case by an application of the union bound. First, if A1, . . . , At

are distinct (i− 1)-subsets of [k] with a SDR, then

Pr
(∑

A1 =
∑

A2 = · · · =
∑

At = x
)
=

(
1

ℓ

)t

. (3)

To see this, assume that a1, . . . , at are representatives of A1, . . . , At. We rewrite

Pr(
∑

A1 = · · · =
∑

At = x) =
t∏

j=1

Pr(Ej|E1 . . . Ej−1),

where Ej is the event that
∑

Aj = x. Each term in this product equals to 1/ℓ because each Ej sets
the value of yaj . Using the fact

(
m
n

)
≤ (emn )n for all positive integers m ≥ n and (2), the probability

of Case 1 is at most

( ( k
i−1

)

2i+ 1

)(
1

ℓ

)2i+1

≤

(
e
( k
i−1

)

(2i+ 1)ℓ

)2i+1

≤

(
6e i2 ln k

k − i+ 1

)2i+1

= o

(
1

ℓ2

)
,

where the last equality uses the assumption i ≤ ln k/(10 ln ln k).
Now consider Case 2. Assume that A1, . . . , A2i+1 are (i − 1)-subsets of [k] such that

∑
A1 =

· · · =
∑

A2i+1 = x and A1, . . . , A2i+1 do not have a SDR. Let B1, . . . , Bb, Bb+1 be a minimal
subfamily of A1, . . . , A2i+1 such that |∪b+1

j=1Bj| ≤ b (Hall’s theorem guarantees the existence of such

subfamily). Then |∪b
j=1Bj | ≤ |∪b+1

j=1Bj | ≤ b and on the other hand, |∪b
j=1Bj | ≥ b by the minimality

of B1, . . . , Bb+1. Thus | ∪
b
j=1 Bj | = b. Since every proper subfamily of B1, . . . , Bb+1 satisfies Hall’s

condition, B1, . . . , Bb has a SDR. Clearly b ≤ 2i. Furthermore, we claim that b ≥ i + 1. In fact,
since A1, . . . , At are (i−1)-sets, we have b ≥ |∪b+1

ℓ=1Bℓ| ≥ i−1 ≥ 1. Consequently b ≥ |B1∪B2| ≥ i.
Since an i-set has only i distinct (i− 1)-subsets, we have b ≥ |B1 ∪ · · · ∪Bi+1| ≥ i+ 1, as desired.

Therefore the probability of Case 2 is at most the probability that there exists b (i− 1)-subsets
B1, . . . , Bb of [k] for some i+ 1 ≤ b ≤ 2i such that

| ∪b
j=1 Bj | = b,

∑
B1 = · · · =

∑
Bb = x, and B1, . . . , Bb have a SDR.
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By (3), this probability is at most

2i∑

b=i+1

(
k

b

)(( b
i−1

)

b

)(
1

ℓ

)b

≤
2i∑

b=i+1

(
e2k
(

b
i−1

)

b2ℓ

)b

≤ i

(
e2k
(

2i
i−1

)

(i+ 1)2ℓ

)i+1

= o

(
1

ℓ2

)
,

where the last equality uses the assumption that 3 ≤ i ≤ ln k/(10 ln ln k).
Adding the probabilities in the two cases together, we have Pr(Ex) = o

(
1
ℓ2

)
and Pr(E) ≤∑

x∈Zℓ
Pr(Ex) = o

(
1
ℓ

)
.

Next, let us consider the i-fold sums of a fixed (k − 1)-element subset of Y . We may assume
that the elements of our (k − 1)-element subset are y1, y2, . . . , yk−1. Let Sj be the set of elements
of Zℓ covered by (i − 1)-fold sums of {y1, . . . , yj}. Note that if the event E does not hold then
|Sj | ≥ 1

2i

(
j

i−1

)
. For x ∈ Zℓ let Mx be the event that x does not appear as an i-fold sum of

y1, . . . , yk−1. We have

Pr(Mx ∩ E) =
k−1∏

j=i

Pr

(
∀A ∈

(
[j − 1]

i− 1

)
, yj +

∑
A 6= x

)
=

k−1∏

j=i

(
1−

|Sj−1|

ℓ

)

≤ exp



−

k−1∑

j=i

1

2i

(
j − 1

i− 1

)
1

ℓ



 = exp

{
−

1

2i
·
1

ℓ
·

(
k − 1

i

)}

= exp {−(3− o(1))i ln k} ≤ o(ℓ−2k−1).

Summing over all x ∈ Zℓ and all (k − 1)-element subsets of Y gives the desired result.

3 Upper bounds

Proof of the Upper Bound in Theorem 2. We shall apply a result of Sidorenko [11] that for a k-
uniform hypergraph F with f edges,

π(F ) ≤ 1−
1

f − 1
.

Therefore, for 2 ≤ i ≤ k,

π
(
B

(k)
i

)
≤ 1−

1

i+
(k−1
i−1

)
− 1

.

For fixed i and k → ∞, it follows that

π
(
B

(k)
i+1

)
≤ 1−

1

i+
(
k−1
i

) ≤ 1−
1

k − i+
(
k−1
i

)
− 1

, and π
(
B

(k)
k−i

)
≤ 1−

1

k − i+
(
k−1
i

)
− 1

.

In order to prove the upper bound of Theorem 3, we shall count the number of complete
subhypergraphs of a dense hypergraph. Fix a k-uniform hypergraph G of order n. Let mi denote
the number of i-cliques Kk

i for i ≥ k in G, for example mk is the number of hyperedges of G. In
addition, define mk−1 =

( n
k−1

)
. Adapting the techniques previously used by Moon and Moser, de

Caen [2] provided the following recursive lower bound on mi.
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Theorem 9. If mi−1 > 0, then

mi+1 ≥
i2mi

(i− k + 1)(i + 1)

(
mi

mi−1
−

(k − 1)(n − i) + i

i2

)
.

This implies the following lower bound on mℓ for ℓ > k.

Corollary 10. Let 0 ≤ α ≤ 1, and let G be a k-uniform hypergraph with at least (1− α)
(n
k

)
n

n−k+1
edges. Then for any ℓ ≥ k,

mℓ ≥

(
n

ℓ

) ℓ∏

i=k

(
1−

(
i− 1

k − 1

)
α

)
.

Proof. The k = 2 case can be found in Lovász [9] (Problem 10.40). The proof of the general case
is almost the same. Let ai = mi/mi−1. We claim that for i ≥ k,

ai ≥
n

i

(
1−

(
i− 1

k − 1

)
α

)
. (4)

Let us prove (4) by induction. By the definition of mk and mk−1, we have

ak ≥ (1− α)

(
n

k

)
n

n− k + 1

1( n
k−1

) = (1− α)
n

k
.

For i > k, by Theorem 9 and the induction hypothesis,

ai+1 ≥
i2

(i− k + 1)(i + 1)

(
ai −

(k − 1)(n − i) + i

i2

)

≥
i2

(i− k + 1)(i + 1)

(
n

i

(
1−

(
i− 1

k − 1

)
α

)
−

n

i2
(k − 1)

)

=
n

(i− k + 1)(i + 1)

(
i

(
1−

(
i− 1

k − 1

)
α

)
− k + 1

)

=
n

i+ 1

(
1−

(
i

k − 1

)
α

)
.

Let ℓ ≥ k. By applying (4) to i = k, . . . , ℓ, we obtain

mℓ = mk−1

ℓ∏

i=k

ai ≥

(
n

k − 1

) ℓ∏

i=k

n

i

(
1−

(
i− 1

k − 1

)
α

)
≥

(
n

ℓ

) ℓ∏

i=k

(
1−

(
i− 1

k − 1

)
α

)
.

Proof of the Upper Bound in Theorem 3. Suppose that G is a B̂
(k)
k−i-free k-uniform hypergraph on

n vertices with at least (1− α) n
n−k+1

(
n
k

)
edges, where

α =
ln
[
2
(k−1

i

)]
− ln ln

[
2
(k−1

i

)]

2
(k−1

i

) ≈
i!

2ki
(i ln k − ln ln k) . (5)
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By standard averaging arguments, there exists a subset A of size k − i so that the neighborhood
of A (i.e., the collection of i-sets whose union with A is an edge of G) is an i-uniform hypergraph

on n− (k − i) vertices with at least (1− α) n
n−k+1

(
n−(k−i)

i

)
> (1− α)n−(k−i)

n−k+1

(
n−(k−i)

i

)
edges. From

Corollary 10 it follows that the neighborhood of A has at least f(α)
(n−(k−i)

k−1

)
(k− 1)-cliques, where

f(α) :=
k−1∏

j=i

(
1−

(
j − 1

i− 1

)
α

)
.

No such clique can be extended to an edge of G by adding a vertex outside A – otherwise we obtain

a copy of B̂
(k)
k−i. The number of non-edges in G is at most

(
α−

k − 1

n− k + 1
(1− α)

)(
n

k

)
≥ f(α)

(
n− (k − i)

k − 1

)
n− j − (k − 1)

k
, (6)

where the term n− j − (k − 1) counts the number of remaining vertex outside A and a (k−1)-clique
and thus each non-edge may be counted at most k times. As n → ∞, (6) becomes

(α+ o(1))

(
n

k

)
≥ (f(α) + o(1))

(
n

k

)
,

which implies that α ≥ f(α). It is easy to see that 1 − x ≥ e−2x for 0 ≤ x ≤ ln 2
2 . By (5), we have(k−2

i−1

)
α → 0 as k → ∞, and so

f(α) ≥
k−1∏

j=i

exp

(
−2

(
j − 1

i− 1

)
α

)
= exp

(
−2

(
k − 1

i

)
α

)
.

Consequently,

α ≥ f(α) ≥ exp

(
−2

(
k − 1

i

)
α

)
=

ln
[
2
(
k−1
i

)]

2
(
k−1
i

) ,

contradicting (5).

Proof of the Upper Bound in Theorem 4. A forest is a hypergraph whose edges can be ordered as
E1, E2, . . . , Em such that for each 1 ≤ i ≤ m, we have Ei ∩ (E1 ∪ · · · ∪ Ei−1) ⊆ Ej for some j < i.
Based on the work of Sidorenko [11], Keevash [5] showed that if a k-uniform hypergraph H has f
edges and the maximal number of edges of H forming a forest is t then its Turán density π = π(H)
satisfies

πt−1 − (f − t)(1− π) ≤ 0.

Notice that C(k) has k edges, k − 1 of which form a forest, so t = k − 1 and f − t = 1. Hence
the Turán density of C(k) satisfies

πk−2 − (1− π) ≤ 0.

Letting π = 1− α this becomes
(1− α)k−2 ≤ α.
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As seen in the proof of the upper bound in Theorem 3, this implies α ≥ e−2(k−2)α, which further
implies that

α ≥
ln[2(k − 2)]− ln ln[2(k − 2)]

2(k − 2)
.

Hence π = 1− α ≤ 1− ln k
2k +O( ln ln k

2k ), as desired.
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