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Abstract

A graph G is called F -saturated if it is F -free but the addition of
any missing edge to G creates a copy of F . Let the saturation function
sat(n, F ) be the minimum number of edges that an F -saturated graph
on n vertices can have. We determine this function asymptotically
for every fixed complete partite graph F as n → ∞ and give some
structural information about almost extremal F -saturated graphs. If
the two largest parts of F have different sizes, then we can reduce the
error term to O(1).

1 Introduction

Let Kr denote the complete graph on r vertices. For r ≥ 2 and positive
integers s1, . . . , sr, let Ks1,...,sr denote the complete r-partite graph with
part sizes s1, . . . , sr, that is, its edges are precisely those pairs that connect
two different parts. The join F ∗G of graphs F and G is obtained by taking
the disjoint union of F and G and adding all edges between them. Let G

denote the complement of a graph G. Thus Kr = K1,...,1 and Ks1,...,sr =
Ks1 ∗ · · · ∗Ksr .
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A graph G is F -saturated if G does not contain F as a subgraph (not
necessarily induced) but the addition of any new edge to G creates at least
one copy of F . In other words, G is F -saturated if and only if it is a maximal
F -free graph.

The saturation function sat(n, F ) is the minimum number of edges that
an F -saturated graph on n vertices can have. This can viewed as the dual
function of the celebrated Turán function ex(n, F ), the maximum number
of edges in an F -saturated graph of order n. One crucial difference is that,
for any fixed F , sat(n, F ) is bounded by a linear function of n (as it was
shown by Kászonyi and Tuza [20]) while ex(n, F ) may be quadratic in n.

The structure and extremal properties of clique-saturated graphs were
studied already in the 1940s by Zykov [33]. The saturation problem (to
determine the saturation function and describe all extremal graphs) for Kr

was completely solved by Erdős, Hajnal, and Moon [15]. They used their
result to prove a conjecture of Erdős and Gallai [14] about graphs that are
critical with respect to edge domination. It turns out that Kr−2 ∗Kn−r+2

∼=
K1,...,1,n−r+2 is the unique minimum Kr-saturated graph for every n ≥ r.
Thus

sat(n, Kr) =
(

r − 2
2

)
+ (r − 2)(n− r + 2), n ≥ r. (1)

One direction of extending the above result is to view K3 as the 3-cycle
and consider the general m-cycle Cm. Ollmann [21] determined the satura-
tion function for the 4-cycle and described all extremal graphs. (A shorter
proof was found by Tuza [29].) Very recently, Chen [9, 8] completely solved
the case of C5. The value of sat(n, Cm) is unknown (even asymptotically)
for any other fixed m; various bounds are proved in [1, 17]. Also, the ag-
gregate outcome of papers [6, 19, 11, 10, 12, 32], with the final gaps filled
by computer search, determines sat(n, Cn), the Hamilton cycle case, for all
n ≥ 3.

Another direction of research motivated by the result of Erdős, Hajnal,
and Moon [15] is to view the clique Kr as K1,...,1 and consider the saturation
problem for complete partite graphs. The case of a star K1,s is easy, see [20].
Pikhurko [25] computed the saturation function of Kt∗Ks = K1,...,1,s exactly
when n ≥ n0(s, t). Unaware of this result, Chen, Faudree, and Gould [7] re-
proved it, with explicit estimates on n0(s, t). Pikhurko and Schmitt [26]
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determined the asymptotic of sat(n, K2,3). Gould and Schmitt [18] stated
a conjecture about sat(n, K2,...,2) and proved it under some additional as-
sumption.

We should also mention a related conjecture of Erdős, Hajnal, and Moon
[15] about the minimun number of edges in a bipartite Ks,t-free graph G ⊆
Kn,m such that the addition of any new edge between the parts creates
at least one copy of Ks,t. The conjecture was proved independently by
Bollobás [4] and Wessel [30], while all minimum graphs were characterized
in [3, 31].

In this paper we determine the asymptotic of sat(n, Ks1,...,sr) as n→∞
for every sequence s1 ≤ · · · ≤ sr. In order to state our results, it will be
convenient to denote

p = s1 + · · ·+ sr−1 − 1. (2)

Theorem 1 (Asymptotic Result) Let r ≥ 2, sr ≥ · · · ≥ s1 ≥ 1, and
F = Ks1,...,sr . Define p by (2). Then, for all large n,(

p +
sr − 1

2

)
n − O(n3/4) ≤ sat(n, F )

≤ p(n− 1)−
(

p

2

)
+
⌈

(sr − 1)(n− p)− bs2
r/2c

2

⌉
. (3)

In particular,

sat(n, Ks1,...,sr) =
(

s1 + · · ·+ sr−2 +
sr − 3

2

)
n + O(n3/4).

An example of an F -saturated graph can be obtained by taking the join
of Kp and a K1,sr -saturated graph H, see Construction 1 in Section 3 for all
details.

Remarkably, our proof (with some extra work) shows not only that the
above construction is asymptotically best possible but also allows us to de-
scribe the structure of all almost extremal graphs when sr−1 < sr. It turns
out that any F -saturated graph on n vertices with at most sat(n, F ) + o(n)
edges can be transformed into the above example Kp ∗ H by adding and
removing at most o(n) edges. Informally speaking, this says that all almost
extremal graphs have almost the same structure. This stability property is
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important on its own and is often very helpful for getting more precise esti-
mates or in applications. Also, we obtain some structural information when
sr−1 = sr. It is convenient to partition all sequences s1 ≤ · · · ≤ sr into three
families:

Case I: sr > sr−1,

Case II: sr = 1 (and thus s1 = · · · = sr−1 = 1),

Case III: sr = sr−1 ≥ 2.

Theorem 2 (Stability) Let r ≥ 2 and s1 ≤ · · · ≤ sr. Let F = Ks1,...,sr

and define p by (2). Let n→∞ and let G be an arbitrary F -saturated graph
of order n and size sat(n, F ) + o(n).

Then G has a set P of O(1) vertices such that all but at most o(n)
vertices of G have exactly p neighbors in P and exactly sr − 1 neighbors in
the complement of P . In Cases I and II, we can additionally require that
|P | = p.

By refining further the structural information about G in Cases I and II,
we obtain a very sharp version of stability, which implies that if the size of
the graph is within O(1) from sat(n, F ), then we need to change at most
O(1) edges.

Theorem 3 (Refined Stability) Let r ≥ 2 and s1 ≤ · · · ≤ sr such that
sr−1 < sr or sr = 1. Let F = Ks1,...,sr and define p by (2). Let n→∞ and
let G be an arbitrary F -saturated graph of order n and size sat(n, F )+O(1).

Then G has a set P of p vertices such that all but at most O(1) vertices
of G are connected to every vertex of P and have exactly sr − 1 neighbors in
the complement of P .

Clearly, Theorems 1 and 3 determine the saturation function within an
additive error O(1) in Case I.

Corollary 4 Fix r ≥ 2 and s1 ≤ · · · ≤ sr with sr−1 < sr. Let n → ∞.
Then

sat(n, Ks1,...,sr) =
(

s1 + · · ·+ sr−1 +
sr − 3

2

)
n + O(1).
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Note that in Case II we know the saturation function exactly by (1) while
in Case III the error term is O(n3/4) by Theorem 1

Section 5 provides constructions showing that some of the stability results
cannot be strengthened in certain ways.

2 Notation

We use the standard notation and terminology of graph theory. In particular,
v(G) and e(G) denote respectively the number of vertices and edges of a
graph G. All undefined terms can be found in e.g. [5]. The following less
standard shorthands are helpful in our proofs.

Suppose that we have a graph G = (V,E) (which will typically be the
Ks1,...,sr -saturated graph that we study). For A ⊆ V and x ∈ V , we use the
following notation:

• A = V \A is the complement of A,

• G−A = G[V \A] is the subgraph of G induced by A,

• Γ(A) is the set of all vertices y ∈ V \ A that are connected to every
vertex of A,

• Γ(x) = Γ({x}) is the neighborhood of x,

• d(x) = |Γ(x)| is the degree of x,

• dA(x) = |Γ(x) ∩A| is the number of neighbors of x in A.

Also, let G[A, B] denote the bipartite subgraph of G induced by disjoint
vertex sets A, B ⊆ V .

If the addition of xy to G creates a copy of Ks1,...,sr , we denote its parts
by S1, . . . , Sr with |Si| = si for each i = 1, . . . , r. In addition to (2), we will
also use the shorthand

q = p + sr − 1 = s1 + · · ·+ sr − 2. (4)

In order to improve the readability of the paper and decrease the number
of variables, we use the asymptotic notation (such as O(1) and o(1)) which
hides constants that depend on (s1, . . . , sr) but not on n.

Also, we denote [n] = {1, . . . , n} and [m, n] = {m, . . . , n}.
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3 Proof of Theorem 1

Let us recall the following easy result (see [20]).

Lemma 5 Let s ≥ 2 and n ≥ s + bs/2c. Then

sat(n, K1,s) =
⌈

(s− 1)n− bs2/2c
2

⌉
. (5)

Sketch of Proof. A graph G is K1,s-saturated if and only if the maximal
degree of G is at most s−1 and G[A] is a clique, where A consists of vertices
of degree at most s − 2 in G. Thus we have to minimize df(a)e, where
f(a) =

(
a
2

)
+ (s − 1)(n − a)/2. We have f(a + 1) − f(a) = a + 1 − s/2.

Thus, one of the optimal assignments is always a = bs/2c. By looking
at all possible residues n (mod 2) and s (mod 4), one can check that the
minimum is indeed given by (5) (and that it is achievable by some K1,s-
saturated graph G).

The following construction exhibits the upper bound of Theorem 1.

Construction 1 Let F be as in Theorem 1. Define p and q by (2) and (4).
Let G′ be a K1,sr -saturated graph on [n − p] obtained from a clique on a
set A ⊆ [n − p] of size bsr/2c by adding at most one edge connecting A to
B = [n − p] \ A and adding edges inside B so that G′[B] does not contain
any Kt,sr+1−t with 1 < t < sr and every vertex of B has degree sr − 1 in
G′. (Such G′ exists for all large n.) Finally, let G = Kp ∗ G′. Then G is
F -saturated.

Proof. First, let us check that G is F -free. When we injectively map V (F )
into V (G), then the set X of at least v(F ) − p = sr + 1 vertices of F goes
inside V (G′). Since X cannot entirely fit inside some part Si of F , it follows
that F [X] contains a complete bipartite subgraph Kt,sr+1−t for some t ∈ [sr].
If t = 1 or t = sr, then F [X] has a vertex of degree sr and thus it is not
a subgraph of G′. Otherwise sr ≥ 3 and F [X] is bridgeless. Thus, if F [X]
embeds into G′, then X has to go inside A. However, |A| = bsr/2c < |X| =
sr + 1 is too small. Hence, F 6⊆ G.

On the other hand, consider the addition of any missing edge xy to G.
Since xy lies inside V (G′), it creates K1,sr in G′. Then G + xy contains
Kp ∗K1,sr

∼= Kp+1 ∗Ksr ⊇ F , as required.
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Next, we prove the lower bound of Theorem 1. Let r, si, F be as in
Theorem 1. Let n be large and let G be an arbitrary F -saturated graph on
V = [n] with e(G) = O(n). Some properties of G that we establish here,
will be used later when we will work on the stability property. In particular,
the following definitions apply to the whole article:

A = {x ∈ V : d(x) ≥ n1/4},
B = {x ∈ V \A : dA(x) ≤ p− 1}, (6)

C = {x ∈ V : d(x) ≤ q − 1}.

Since e(G) ≥ |A|n1/4/2, we have

|A| = O(n3/4). (7)

Lemma 6 |B| = O(n3/4).

Proof. Take any two non-adjacent vertices x, y ∈ B. The addition of xy

to G creates a copy of F on V (F ) = S1 ∪ · · · ∪ Sr, say, with x ∈ Si and
y ∈ Sj . Since each part St is an independent set in F , we have i 6= j. Let
S = V (F ) \ (Si ∪ Sj).

Let us show that G− A contains a path of length at most 3 connecting
x to y. Assume that A contains S, the common neighborhood of x and y in
F , for otherwise we are done. Since

dA\S(x) ≤ p− 1− |S| ≤ |Sj | − 2,

and x is connected in F to every vertex of Sj , there is y′ ∈ (Sj \ {y}) \ A.
Likewise, there is x′ ∈ (Si \ {x}) \ A. Then xy′, y′x′, x′y ∈ E(F ) give the
required 3-path connecting x to y in G−A.

Thus the diameter of B with respect to the graph G − A is at most 3.
By estimating the possible number of paths of length at most 3 in G − A

that start in B, we obtain(
|B|
2

)
≤ |B|(n1/4 + n2/4 + n3/4),

which implies the lemma.
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Lemma 7 |C| = O(1).

Proof. Let m = v(F ) be the number of vertices in F . Let the Ramsey number
Rq−1(m) be the smallest t such that any coloring of the edges of Kt with
q−1 colors gives a monochromatic copy of Km. By Ramsey’s Theorem [27],
Rq−1(m) exists (i.e. is finite).

We claim that |C| < qRq−1(m). Suppose that this is false. Since each
vertex of C has degree at most q − 1, the straightforward greedy algorithm
gives us an independent set C ′ ⊆ C with |C ′| ≥ Rq−1(m). For each vertex
x ∈ C ′, fix an arbitrary ordering of its neighborhood in G, which we encode
by a bijection fx : Γ(x)→ [d(x)].

For each pair of distinct vertices x, y ∈ C ′, do the following. Fix a copy
of F in G + xy on S1 ∪ · · · ∪ Sr. Let x ∈ Si and y ∈ Sj . Then i 6= j.
Let X = Sj \ {y} ⊆ Γ(x) and Y = V (F ) \ (Sj ∪ {x}) ⊆ Γ(y). Since
|X ∪Y | = |V (F )|− 2 > q− 1 (while d(x), d(y) ≤ q− 1) there are x′ ∈ X and
y′ ∈ Y with fx(x′) and fy(y′) equal to the same index t ∈ [q − 1]. But the
bipartite graph F [X, Y ] is complete, so x′ and y′ are adjacent. Let c(xy) = t.

This defines an edge (q − 1)-coloring c of all pairs of C ′. Let an m-set
M ⊆ C ′ be monochromatic, of color t. Then all vertices f−1

x (t), x ∈M , are
pairwise adjacent in G (in particular, they are pairwise distinct). Thus G

contains a clique of order m = v(F ), which contradicts the F -freeness of G.
This contradiction proves the lemma.

Now, armed with Lemmas 6 and 7, we are ready to finish the proof of
Theorem 1. For each vertex of V \ (A∪B), select some p edges that connect
it to A. This gives, by Lemma 6, p(n − |A| − |B|) = pn − O(n3/4) edges.
The number of the remaining edges can be bounded from below by

1
2

∑
x∈A

(d(x)− p) ≥ (n− |A|)(q − p)− q|C|
2

≥ q − p

2
n−O(n3/4), (8)

where we used (7) and Lemma 7. Putting these bounds together, we get the
lower bound in (3).
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4 Stability

4.1 Proof of Theorem 2

First, we prove Theorem 2. Fix r ≥ 2 and s1 ≤ · · · ≤ sr. Let n →
∞. Given an arbitrary F -saturated graph G on V = [n] with at most
sat(n, F ) + o(n) edges, we prove a sequence of lemmas, each giving a more
accurate information about the structure of G. If a lemma applies only to
some of Cases I–III, we explicitly specify this in its statement.

As before, p and q are defined by (2) and (4). Recall that sat(n, F ) =
(p+q

2 + o(1)) n by Theorem 1. As in Section 3, we define C to be the set
of vertices of degree less than q in G. By Lemma 7, |C| = O(1). Let
C ′ = {x ∈ V : d(x) > q}. Clearly, we can add an extra summand |C ′|/2 to
to (8). Thus we have

|C ′| = o(n). (9)

The following auxiliary lemma about our almost minimum F -saturated
graph G is very useful in our proof.

Lemma 8 If a set L ⊆ V is such that |L| = n − o(n) and all but o(n)
vertices of L have at least p neighbors in L = V \ L, then

1. G[L] can be obtained from some graph H of maximum degree at most
q − p by adding o(n) edges;

2. every vertex of L, with at most o(n) exceptions, has exactly p neighbors
in L and exactly q − p neighbors in L.

Proof. We modify the edge counting argument at the end of proof of Theo-
rem 1 in Section 3. For each vertex x of L select a set of min(p, dL(x)) edges
connecting x to L. The total number of selected edges is pn − o(n). Let R

be the set of the remaining edges and let D = {x ∈ L : dL(x) > q−p}. Then

2|R| ≥
∑

x∈L\(C∪D)

(q − p) +
∑
x∈D

(q − p + 1) ≥ (q − p)n + |D| − o(n).

Thus e(G) ≥ p+q
2 n + 1

2 |D| − o(n). Since G is almost extremal, we conclude
that |D| = o(n). Hence, we also have

2|R| ≥
∑

x∈L\(C∪D)

(q − p) +
∑
x∈D

(d(x)− p) ≥ (q − p)n +
∑
x∈D

d(x)− o(n).
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Thus the number of edges incident to D is at most
∑

x∈D d(x) = o(n). The
graph H = G[L \D] satisfies the first part of the lemma.

Also, if a vertices of L have more than p neighbors in K, then by selecting
p+1 edges per each of these vertices in the above estimates, we would improve
the final lower bound on e(G) by a/2. Thus a = o(n) and almost every vertex
of L has exactly p neighbors in L.

Among the vertices of L that have L-degree exactly p, those that fail to
have exactly q − p neighbors in L are restricted to C ∪C ′. This set is small
by Lemma 7 and (9). The lemma is proved.

Let L0 = {x ∈ V : d(x) = q} = V \ (C ∪ C ′) and K = V \ L0. For
i = 1, 2, define

Li = {x ∈ Li−1 : dLi−1(x) = q − p}. (10)

By Lemma 6 (since A ⊆ K, where A is defined by (6)), almost every vertex
of L0 has at least p neighbors in K. By Lemma 7 and (9), we have |L0| =
n − o(n). Thus Lemma 8 applies to the set L = L0 and shows that |L1| =
n− o(n). Since |L0 \ L1| = o(n), we can apply Lemma 8 again, this time to
the set L1 and conclude that |L2| = n− o(n).

Thus each vertex x ∈ L2 has exactly p neighbors in L1 and q−p neighbors
in L1. Also, the vertex x ∈ L2 ⊆ L1 has degree p and q − p into K ⊆ L1

and L0 ⊇ L1 respectively. So, each x ∈ L2 as well as every y ∈ Γ(x) ∩ L0 =
Γ(x) ∩ L1 has exactly q − p and p neighbors in L0 and K respectively.

For x ∈ L2, let us call the set Γ(x) ∩K the stem of x and any set of the
form Γ(y)∩K for some y ∈ Γ(x)∩L0 a branch of x. The above properties of
L2 ensure that each vertex x ∈ L2 has exactly q− p branches (when we take
into account their multiplicity) and that each stem and branch is a p-subset
of K. These definitions also apply when sr = 1 (when we are in Case II);
then there are no branches.

Lemma 9 Let x, y ∈ L2 be at distance at least 4 in G − K. Then the
following holds, depending on which case we are in.

Case I: The stem of one vertex is equal to a branch of the other vertex.

Case II: The stem of x equals to the stem of y.
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Case III: The stem of one vertex is equal to a branch of the other vertex or
we have |N(x)∩N(y)∩K| = s1 + · · ·+ sr−2 and G contains all edges
between the non-empty sets (N(x)\N(y))∩K and (N(y)\N(x))∩K.

Proof. Suppose that the addition of xy to G creates copy of F on S1∪· · ·∪Sr.
Let i, j be indices such that x ∈ Si and y ∈ Sj . Let S = V (F ) \ (Si ∪ Sj).
Since each of x and y is connected to everything in S, we have

S ⊆ N(x) ∩N(y) ∩K. (11)

The number of neighbors of x (or y) in K \ S is p − |S| = si + sj − sr − 1.
Also, since there is is no 3-path connecting x to y in G−K, at least one of
Si \ {x} and Sj \ {y} is a subset of K. Suppose that it is the latter. Then
the size considerations show that si = sr and N(x) ∩K = S ∪ (Sj \ {y}).

Suppose that we are in Case I (that is, sr > sr−1). We necessarily have
i = r and sj < sr. Thus si−1 > si +sj−sr−1 and the set Si\{x} intersects
L0. Pick any vertex z in this intersection. Since yz ∈ E(F ) and y ∈ L2, we
have in fact z ∈ L1. Also, z has to be connected to all of S ∪ (Sj \ {y}) in G.
Since this set is a subset of K, this identifies p K-neighbors of z. But the
vertex z ∈ L1 has exactly p neighbors in K. Thus the set Γ(z) ∩K, which
is a branch of y, is equal to the stem Γ(x) ∩K of x, giving the required.

If we are in Case II, then x and y have |S| = p common neighbors in F

and thus (by x, y ∈ L2) we have N(x) ∩K = N(x) ∩K, as required.
Finally, suppose that we are in Case III. If Si \ {x} intersects L0 in

some vertex z, then we argue in the same way as in Case I that a branch
of y (defined by some z ∈ N(y)) is equal to the stem of x. Suppose that
Si \ {x} ⊆ K. Then sj = sr and N(y) ∩K = S ∪ (Si \ {x}). Now, (N(x) \
N(y)) ∩K = Sj \ {y} 6= ∅ and (N(y) \ N(x)) ∩K = Si \ {x} 6= ∅ while F

contains all edges between these two sets, giving the required.

Lemma 10 There a collection S of p-subsets of K such that |S| = O(1)
and the number of vertices x ∈ L2 whose stem belongs to S is n− o(n).

Proof. We use the following Selection Procedure. We inductively choose
vertices x1, x2, . . . ∈ L2 so that each new vertex xi+1 is at distance more
than 3 in G−K from each of x1, . . . , xi and the stem of xi+1 is not equal to
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the stem or some branch of a previous vertex. Suppose that the procedure
stops (no more suitable vertices exist) after x1, . . . , xm have been selected.

We show first that m is bounded. Although we can write a formal proof
that applies to all the cases, the argument is more readible when we split it
case by case.

If we are in Case I, then m ≤ sr. Indeed, if xsr+1 existed, then by
Lemma 9 the stem of each x1, . . . , xsr has to be equal to a branch of xsr+1.
But these stems are all pairwise distinct by our construction while xsr+1 ∈ L2

has at most sr − 1 different branches, a contradiction.
By Lemma 9, m ≤ 1 in Case II.
Suppose that we are in Case III. Let t be an integer such that any p-

uniform hypergraph with t edges contains a delta-system of size v(F ), that
is v(F ) hyperedges whose pairwise intersections are all the same. The cele-
brated result of Erdős and Rado [16] states that such t exists (i.e. is finite).
We claim that m ≤ 2sr(t − 1) + 1. Suppose on the contrary that this is
false. Define a graph H on [m] by putting an edge ij if and only if the first
alternative in Case III of Lemma 9 holds for the pair x = xi and y = xj

of vertices. The argument of Case I shows that for each i ∈ [m] at most sr

pairs ij with j ∈ [i− 1] are missing from H. Thus

e(H) ≥
(

m

2

)
− srm >

t− 2
t− 1

(
m

2

)
.

By Turán’s theorem [28], H contains a copy of Kt, say with vertices h1, . . . , ht.
By the choice of t, the p-uniform hypergraph H = {N(xhi

) ∩ K : i ∈ [t]},
contain a delta-system with v(F ) hyperedges, say F = {N(yi) ∩ K : i ∈
[v(F )]}. By Lemma 9 we know that the common intersection of F has
s1 + · · · + sr−2 < p vertices. Hence, for each hyperedge N(yi) ∩ K of F
we can pick a vertex zi which belongs only to this hyperedge. The vertices
z1, . . . , zv(F ) span a clique in G. This contradicts the F -freeness of G.

Thus, in each of the three cases, the size of the set X = {x1, . . . , xm} ⊆ L2

produced by the Selection Procedure is bounded by a constant. By Part 1
of Lemma 8 applied to L0, the number of vertices of L2 ⊆ L0 at distance at
most 3 from X in G−K is o(n). The stem of each remaining vertex of L2

already occurs as the stem or a branch of some x ∈ X by the maximality
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of X. Thus the family of p-sets

S =
⋃

x∈X

(
{Γ(x) ∩K} ∪ {Γ(y) ∩K : y ∈ Γ(x) ∩ L0}

)
,

whose size is at most srm = O(1), establishes the validity of the lemma.

Fix the family S given by Lemma 10. By removing p-sets X ∈ S with
|Γ(X)| = o(n) from S, we can additionally assume that |Γ(X)| = Ω(n) for
each X ∈ S.

What we have achieved by now is that if we let L = V \ (∪X∈SX), then
L is a set of size n − O(1) such that almost every vertex of G has at least
p neighbors in L. But, since we need to apply Lemma 8 again, we prefer to
keep shrinking Li by moving all ‘exceptional’ vertices to the complement of
Li+1. So we define

L3 = {x ∈ L2 : Γ(x) ∩K ∈ S}.

We have |L3| = n − o(n). Define L4 by (10) with i = 4. By Lemma 8,
|L4| = n − o(n). Similarly as we argued about L2, it follows that all q − p

L0-neighbors of every x ∈ L4 belong to L3. Thus the stem and all branches
of each x ∈ L4 belong to the family S.

Let L5 consist of those vertices of L4 all whose branches are the same as
the stem:

L5 = {x ∈ L4 : ∀ y ∈ Γ(x) ∩ L0 Γ(x) ∩K = Γ(y) ∩K}.

Lemma 11 In Case I (and vacuously in Case II), we have |L5| = n− o(n).

Proof. Suppose on the contrary that |L4 \L5| = Ω(n). Since |S| = O(1), we
can find X ∈ S such that |Y | = Ω(n), where Y = Γ(X) ∩ (L4 \ L5).

We know by Part 1 of Lemma 8 that G[L0] is the union of a bounded
degree graph and o(n) edges. Thus we can find x, y ∈ Y at distance at least 4
in G−K. Let the addition of xy to G create a copy of F on S1∪· · ·∪Sr. Let
x ∈ Si and y ∈ Sj with, say, i > j. As in the proof of Lemma 10, we argue
that the set S = V (F )\(Si∪Sj) lies inside K, there is z ∈ (Si\{x})∩L0, this
vertex z belongs in fact to L3, Sj \ {y} is a subset of K, and i = r. By now,
we have identified all p K-neighbors of x. By the definition of Y 3 x, y, the
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vertices x and y has the same neighborhood X in K. Thus the set Si \ {x}
lies entirely in Γ(y) \ K ⊆ L0. Since y is connected in F to all of Si, we
have that the set Si \ {x} includes all q− p L3-neighbors of Y ; in particular,
Si \ {x} ⊆ L3. However, each vertex w ∈ Si \ {x} is connected in F to
everything in S ∪ (Sj \ {y}) = X. This set has size p. Since w ∈ L3 ⊆ L1,
we have that Γ(w)∩K = X. Thus the stem and all branches of y are equal
to X, which contradicts y ∈ L4 \ L5. The lemma is proved.

Lemma 12 If we are in Case I or II, then |S| = 1.

Proof. Suppose on the contrary that we have two distinct X, Y ∈ S. By
Lemma 11, we can pick x, y ∈ L5 such that Γ(x) ∩K = X, Γ(y) ∩K = Y ,
and the distance between x and y in G−K is at least 4.

Let the addition of xy to G create a copy of F on S1 ∪ · · · ∪ Sr with
x ∈ Si and y ∈ Sj . The set S = V (F ) \ (Si ∪ Sj) lies inside K. If we are
in Case II, then |S| = p and thus X = Y = S, a contradiction. So suppose
that we are in Case I.

Without loss of generality assume that i > j. Then there is z ∈ (Si \
{x})∩L0, z ∈ L3, Sj \{y} ⊆ K, i = r, X = Γ(x)∩K = S∪(Sj \{y}) and this
is also the K-neighborhood of z: Γ(z) ∩K = X. However, z is a neighbor
of y ∈ L5, so Γ(z) ∩K = Y . This contradiction proves the lemma.

Let P = ∪X∈SX. Now, Lemma 12 (in Cases I and II), Lemma 10
(in Case III), and one final application of Lemma 8 to L = V \ P imply
Theorem 2.

4.2 Proof of Theorem 3

Next, we move on to proving Theorem 3. As before, let G be an F -saturated
graph on V = [n] but we additionally assume that

e(G) ≤ p + q

2
n + O(1). (12)

Let P = ∪X∈SX be as before. Since we are in Case I or II, we have
|P | = p. Let N consist of those vertices of P that are connected to every
vertex of P . By the definition of S, we have |N | = n−o(n). For i ∈ [0, p−1]
let

Yi = {x ∈ P : dP (x) = i}
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and yi = |Yi|. Let Y = ∪p−1
i=0 Yi and y = |Y |. The sets N , P , and Y partition

V . Also, let

L = {x ∈ P : d(x) ≥ ln y},
M = {x ∈ N : dN (x) ≤ sr − 2}.

If y = O(1), then Theorem 3 follows from Lemma 7. So, suppose on the
contrary that y → ∞ or, more precisely, that we can select an increasing
sequence of n and a graph G on V = [n] for each selected n so that y →∞.
(Note that y = o(n).)

The following sequence of claims will give us more and more precise
structure of G.

By Lemma 7, the set C of vertices of degree less than q has size O(1).
The following simple initial estimate, where we take into account the number
of edges between P and P plus the half of the sum of degrees of G−P , will
be the basis for further refinements:

e(G) ≥ e(G[P,N ∪ Y ]) +
1
2

∑
x∈(N∪Y )\C

(q − dP (x))

≥ p(n− y) +
p−1∑
i=0

iyi +
(n− y)(q − p)

2
+

1
2

p−1∑
i=0

(q − i)yi −O(1)

≥ p + q

2
n +

p−1∑
i=0

i− p

2
yi −O(1). (13)

So far this inequality is not very useful as we do not have much control over
yi. But if we can add e.g. an extra term py to the bound, this will imply
the desired result y = O(1). One way of improving (13) is to observe that,
for each vertex x ∈ P , the sum (13) counts at most q edges at x. Hence, we
can add

1
2

∑
x∈N∪Y

(d(x)− q) (14)

to the right-hand side of (13). One immediate consequence is that

|L| = O(y/ ln y) = o(y), (15)

because ln y − q = (1 − o(1)) ln y so the extra term (14) is at least (1/2 −
o(1))|L| ln y. But, this is O(y) by (12) and (13), so (15) holds.
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A bit more subtle consequence is the following. For a vertex x ∈ P and
an integer i ≥ 1, let ∂i(x) consist of all vertices of G−P that are at distance
at most i (with respect to the graph G − P ) from x. For a set X ⊆ P , let
∂i(X) = ∪x∈X∂i(x).

Lemma 13 For every x ∈ P , wee have |∂3(x)| = O(y).

Proof. Let A ⊆ N ∪ Y be an arbitrary set. Since each vertex of ∂1(A) \ A

sends at least one edge to A and we cannot increase the right-hand side
of (13) by py, we have that

|∂1(A)| − |A| ≤
∑
x∈A

d(x) =
∑
x∈A

(d(x)− q) + q|A| ≤ 2py + q|A|,

implying that |∂1(A)| ≤ 2py + (q + 1)|A|. Iteratively applying this bound to
∂3(x) = ∂1(∂1(∂1(x))), we obtain the required.

Lemma 14 The set Yi is empty for each i < s1 + · · ·+ sr−2.

Proof. Suppose Yi 3 x. By Lemma 13 there is z ∈ N \∂3(x). Let S1∪· · ·∪Sr

span a copy of F in G + xz. The common neighborhood of x and z in F

has cardinality at least s1 + · · ·+ sr−2. But x and z have at most dP (x) = i

common neighbors in G, hence i ≥ s1 + · · ·+ sr−2, as required.

If we are in Case II, then p = r− 2, Y = ∪r−3
i=0 Yi is empty by Lemma 14,

and y = 0, which is the desired contradiction. So suppose that we are in
Case I (that is, sr−1 < sr).

Lemma 15 For every i ∈ [0, p − 1], we have |Y ′i | = o(y), where Y ′i consist
of those vertices of Yi that have at most p− i− 1 neighbors in L.

Proof. Suppose on the contrary that |Y ′i | = Ω(y). The graph G − P − L

(by which we mean G− (P ∪ L)) has maximum degree less than ln y. Since
|L| = o(y), there are x, z ∈ Y ′i \L at distance at least 4 in G−P −L. Then
each of x and z has at most p − 1 neighbors in L ∪ P . Let the addition of
xz to G create an F -subgraph on S1 ∪ · · · ∪ Sr with x ∈ Si and z ∈ Sj . Let
S = V (F ) \ (Si ∪ Sj). Then S ⊆ L ∪ P while both Si \ {x} and Sj \ {z}
intersect the complement of L ∪ P (because the degrees of z and x into
L∪P are too small). This gives a 3-path connecting x to z in G−P −L, a
contradiction.
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Lemma 16 Let M ′ = M \ ∂1(L) consist of those vertices of M that are not
in L nor have a neighbor in L. Then |M ′| = o(y).

Proof. Suppose that the lemma is false. Since the graph G − P − L has
maximum degree at most ln y we can find x, z ∈ M ′ at distance at least 4
in G− P −L. Since x, z 6∈ L do not have any neighbors in L, their distance
in G − P is also at least 4. Let S1 ∪ · · · ∪ Sr span a copy of F in G + xz

with x ∈ Si and z ∈ Sj . Let S = V (F ) \ (Si ∪ Sj). Then S lies inside
Γ(x) ∩ Γ(z) ⊆ P . We have

|(N(x) ∩ P ) \ S| = |(N(y) ∩ P ) \ S| = si + sj − sr − 1.

However, we have Si \{x} ⊆ (N(y)∩P )\S or Sj \{z} ⊆ (N(x)∩P )\S (for
otherwise we find a 3-path in G − P between x and z). Suppose that the
latter inclusion holds. It follows that si = sr and S ∪ (Sj \ {z}) = N(x)∩P .

Every element of Si is connected in F to everything in S∪(Sj \{z}) = P .
Thus Si ⊆ N and z has at least |Si\{x}| = sr−1 neighbors in N . So z 6∈M ,
a contradiction to our assumption z ∈M ′.

Lemma 17 |M | = o(y).

Proof. By (15) and Lemmas 15 and 16, the sum in (14) is at least

1
2

∑
x∈L

(d(x)− q) =
1
2

∑
x∈L

d(x)− o(y) ≥ |M |
2

+
1
2

p−1∑
i=0

(p− i)yi − o(y).

When we add this to (13), the bound becomes

e(G) ≥ p + q

2
n +
|M |

2
− o(y).

Now, (12) implies that |M | = o(y).

Lemma 18 Every vertex x ∈ Y has at least sr − 1 neighbors in N .

Proof. Since |∂3(x)| = O(y) is much smaller that |N |, there is z ∈ N \∂3(x).
Let S1, . . . , Sr be the parts of F ⊆ G + xz with x ∈ Si and z ∈ Sj . The
set S = V (F ) \ (Si ∪ Sj) is inside Γ(x) ∩ Γ(z) ⊆ P . Moreover, Si \ {x} ⊆
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(N(z) ∩ P ) \ S or Sj \ {z} ⊆ (N(x) ∩ P ) \ S for otherwise x and z are at
distance at most 3 in G− P . Since

|(N(x)∩P )\S| < |(N(z)∩P )\S| = si+sj−sr−1 ≤ min(si−1, sj−1), (16)

we have N(z)∩P = S ∪ (Si \{x}). Also, the last inequality in (16) is in fact
equality and sj = sr. Since F has all edges connecting Sj to S∪(Si\{x}) and
the latter set has p elements, all belonging to P , we conclude that Sj ⊆ N .
Thus x has at least |Sj \ {z}| = sr − 1 neighbors in N , as required.

Let j = s1 + · · ·+ sr−2. We obtain the following lower bound on e(G) by
Lemmas 7, 14, and 18:

e(G) ≥
∑

x∈N\M

(
dP (x) +

dN (x)
2

)
+
∑
x∈Y

(
dN∪P (x) +

d(x)− dN∪P (x)
2

)

≥ (n− |M | − y)
(

p +
sr − 1

2

)
+

p−1∑
i=j

yi
q + (sr − 1) + i

2
− q|C|

≥ p + q

2
n +

p−1∑
i=j

yi
i + sr − s1 − · · · − sr−1

2
− o(y).

Since sr−1 < sr, the coefficient at yi for j ≤ i ≤ p− 1 is strictly positive.
By (12), each yi must be bounded by a constant, a contradiction to our
assumption y →∞. This finishes the proof of Theorem 3.

5 Further Constructions

Let us give an example which shows that we cannot generally require that
|P | = p in Theorem 2 in Case III (i.e. when sr−1 = sr ≥ 2).

Construction 2 Let r ≥ 2, 1 ≤ s1 ≤ · · · ≤ sr−1 = sr, sr ≥ 2, and
F = Ks1,...,sr . Define p by (2).

Let n → ∞ be such that n ≡ v(F ) (mod 2). Take a partition [n] =
X∪X ′∪Y ∪Y ′∪Z, where the sizes of parts are n/2+o(n), sr−1, n/2+o(n),
sr − 1, and s1 + · · ·+ sr−2 respectively, with |X| and |Y | even. Put a clique
on X ′ ∪ Y ′ ∪ Z. Take arbitrary (sr − 1)-regular C4-free graphs on sets X

and Y . Put complete bipartite graphs between X and X ′ ∪ Z and between
Y and Y ′ ∪ Z.
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The obtained graph G is F -saturated of size sat(n, F ) + O(1). However,
G has only s1 + · · ·+ sr−2 < p vertices of degree n− o(n).

Proof. First, suppose on the contrary that G contains a copy of F on U =
S1∪· · ·∪Sr. If U intersects both X and Y , say x ∈ U∩X and y ∈ U∩Y , then
the vertices x and y, non-adjacent in G, belong to the same part Si. But then
the number of common neighbors of x and y in F is at least v(F )−si > |Z|, a
contradiction. Thus, by symmetry, we can assume that U ⊆ X∪X ′∪Y ′∪Z.
Note that furthermore U ∩ Y ′ = ∅ because the (X ∪X ′ ∪ Y ′ ∪ Z)-degree of
any vertex of Y ′ is |X ′ ∪ Z| = p, which is strictly smaller than the minimal
degree of F . Hence, U ⊆ X ∪ X ′ ∪ Z. Now, the same case analysis as in
Construction 1 gives a contradiction.

Next, let us show that the addition of any new edge xy to G creates an
F -subgraph. Take an arbitrary partition Z = S1 ∪ · · · ∪Sr−2 with part sizes
s1, . . . , sr−2 respectively. Up to symmetry, we have the following cases.

If x ∈ X and y ∈ Y , then let Sr−1 = Y ′ ∪ {x} and Sr = X ′ ∪ {y}.
If x ∈ X and y ∈ X ∪ Y ′, then let Sr−1 = X ′ ∪ {x} and Sr = (Γ(x) ∩

X) ∪ {y}.
In all cases, S1 ∪ · · · ∪ Sr spans the complete partite graph in G + xy.

Hence, G is F -saturated. The remaining claims of Construction 2 are trivial
to check.

Remark. For some other constructions that violate |P | = p in Theorem 2
when sr−1 = sr ≥ 2, see [29] (when F = K2,2) and [18] (when s1 = · · · =
sr = 2).

The following constructions shows that we cannot require in Theorem 3
that every vertex of P is connected to everything in P when sr−1 ≥ 2.

Construction 3 Let r ≥ 2, 1 ≤ s1 ≤ · · · ≤ sr−1 ≤ sr, sr−1 ≥ 2, and
F = Ks1,...,sr . Define p by (2). Let n be large with (n− p− 1)(sr − 1) even.

Let P = [p] and X = [p + 1, n− 1]. Define the graph G on [n] as follows.
Let the set X span an (sr− 1)-regular C4-free graph in G. The graphs G[P ]
and G[P,X] are complete. The remaining vertex n is connected to [p − 1]
as well as some set Y of sr − 1 vertices of X such that the distance between
any two vertices of Y in G[X] is at least 3.

Then the constructed graph G is F -saturated of size p+q
2 n + O(1). It
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has exactly p vertices of degree n − o(n) but the vertex n is not connected
to all of them (namely, {n, p} is not an edge).

Proof. Let us first check that G is F -free. The analysis of Construction 1
shows that G − n is F -free. It remains to rule out the possibility of an F -
subgraph on U = S1 ∪ · · · ∪ Sr containing the special vertex n, say n ∈ Si.
Every y ∈ X \ Y has at most p common neighbors with n in G. Hence, Si

does not intersect X \ Y . Also, each Sj with j 6= i is disjoint from X \ Y

because n sends no edge to X \ Y . Hence U ⊆ P ∪ Y ∪ {n} but the latter
set has only p + (sr − 1) + 1 < v(F ) vertices, a contradiction.

Let us show that the addition of any new edge xy to G creates a copy
of F . The analysis of Construction 1 takes care of all cases except when
n ∈ {x, y}, say x = n.

If y ∈ X \ Y , then we can take Sr = {y} ∪ Y and take an arbitrary
partition P ∪ {n} = S1 ∪ · · · ∪ Sr−1 with Sr−1 3 n, p and each |Si| = si.
(Recall that sr−1 ≥ 2 by our assumption.) If y = p, then fix z ∈ Y and take
Sr = {n}∪ (N(z)∩X) and an arbitrary paritition P ∪{z} = S1 ∪ · · · ∪Sr−1

with the appropriate part sizes. In both cases, the sets S1, . . . , Sr span a copy
of F . Thus G is indeed F -saturated. All other claims of Construction 3 are
trivial.

Remark. Interestingly, if sr−1 = 1, then, under the assumptions of The-
orem 3, the bipartite graph G[P, P ] is necessarily complete for all large n.
This follows from Lemma 14 (whose proof, with obvious modifications, also
works when y = O(1)).

6 Concluding Remarks

The exact determination of the saturation function for complete partite
graphs (at least when n is sufficiently large) is an interesting open prob-
lem. The upper bound in (3) gives the exact value of sat(n, F ) when sr = 1
(see [15]) and when s1 = · · · = sr−1 = 1 and n ≥ n0(r, sr) is large (see [25, 7]).
However, it is not optimal when F = K2,2 (see [21]) and, more generally,
when s1 = · · · = sr = 2 (see [18]). The first open case is K2,3. We believe
that sat(n, K2,3) = 2n − 3 for all large n (in which case the upper bound
in (3) is sharp).
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Also, we do not know if Corollary 4 is valid in Case III.
It would be interesting to extend our results to k-uniform hypergraphs

with k ≥ 3. It comes as no surprise that the hypergraph case is much more
complicated than the graph case. There are two natural ways of defining a
complete r-partite k-graph on a vertex partition S1 ∪ · · · ∪ Sr:

Weak Version: W k
s1,...,sr

consists of all k-tuples that intersect k different
parts,

Strong Version: Sk
s1,...,sr

consist of all k-tuples that intersect at least two
parts.

Very few results about the saturation function for weak and strong com-
plete partite k-graphs for k ≥ 3 are known. Bollobás [2] completely solved
the problem for W k

1,...,1
∼= Sk

1,...,1. The saturation function sat(n, W 3
1,1,m) was

asymptotically determined in [22] with the result being exact for infinitely
many values of n for every m (when Steiner triple systems with certain
parameters exist). The paper [24] relates sat(n, W 4

1,1,1,m) to the Turán func-
tion ex(n, W 3

1,1,1,1): in particular, if the famous conjecture of Turán [28] that
ex(n, W 3

1,1,1,1) = (5
9 + o(1))

(
n
3

)
holds, then sat(n, W 4

1,1,1,m) = (m
9 + o(1))

(
n
3

)
.

Erdős, Füredi, and Tuza [13] determined the saturation function exactly for
S3

1,3 and asymptotically for Sk
1,k. The asymptotic of sat(n, Sk

1,m) for any
fixed 3 ≤ k < m was determined in [23]. See [25] for a conjecture about
sat(n, Sk

l,m) when l ≤ k − 1 and l + m > k.
The (almost) extremal saturated hypergraphs in the above problems ex-

hibit a variety of patterns, so it is difficult even to make a general conjecture.
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[16] Erdős, P., and Rado, R. Intersection theorems for systems of sets. J. Lond.
Math. Soc. 35 (1960), 85–90.

[17] Gould, R.,  Luczak, T., and Schmitt, J. Constructive upper bounds for
cycle-saturated graphs of minimum size. Electronic J. Combin. 13 (2006),
19pp.

[18] Gould, R. J., and Schmitt, J. R. Minimum degree and the minimum size
of Kt

2-saturated graphs. Discrete Math. 307 (2007), 1108–1114.

[19] Isaacs, R. Infinite families of non-trivial trivalent graphs which are not Tait
colorable. Amer. Math. Monthly 82 (1975), 221–239.

22



[20] Kászonyi, L., and Tuza, Z. Saturated graphs with minimal number of
edges. J. Graph Theory 10 (1986), 203–210.

[21] Ollmann, L. T. K2,2-saturated graphs with a minimal number of edges. In
Combinatorics, Graph Theory and Computing, Proc. 13th Southeast. Conf.,
Boca Raton, (Utilitas Math., Winnipeg) (1972), pp. 367–392.

[22] Pikhurko, O. The minimum size of saturated hypergraphs. Combin. Prob.
Computing 8 (1999), 483–492.

[23] Pikhurko, O. Asymptotic evaluation of the sat-function for r-stars. Discrete
Math. 214 (2000), 275–278.

[24] Pikhurko, O. Constructing designs straightforwardly: Worst arising cases.
J. Combin. Designs 9 (2001), 100–106.

[25] Pikhurko, O. Results and open problems on minimum saturated graphs. Ars
Combinatoria 72 (2004), 111–127.

[26] Pikhurko, O., and Schmitt, J. A note on minimum K2,3-saturated graphs.
Australas. J. Comb. 40 (2008), 211–215.

[27] Ramsey, F. P. On a problem of formal logic. Proc. London Math. Soc. 30
(1930), 264–286.

[28] Turán, P. On an extremal problem in graph theory (in Hungarian). Mat.
Fiz. Lapok 48 (1941), 436–452.

[29] Tuza, Z. C4-saturated graphs of minimum size. Acta Univ. Carolin. Math.
Phys. 30 (1989), 161–167.
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