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1 Introduction

In this lecture we discuss the use of elementary theory of pseudo-differential operators
to analyze Hessians for optimization problems governed by partial differential equa-
tions. The role of this analysis is to come up with Hessian approximation that will
accelerate gradient based methods. Quasi-Newton methods such as BFGS cannot
cope efficiently with a very large dimension of the design space. Their efficiency is
very good for a small dimensional design space, and it deteriorate as the dimension
of the design space increases. The approach presented here is a complementing ap-
proach for the classical quasi-Newton methods. It uses the asymptotic behavior of the
symbol of the Hessian to construct an accurate Hessian approximation for the high
frequency range, in the representation of the design space. The resulting approximate
Hessians are differential or pseudo-differential operators.

2 The Main Idea

Gradient based methods can be viewed as relaxation methods for the equation
Ha =g (1)

where g is the gradient and H is the Hessian of the functional considered. For example,
a Jacobi relaxation for equation (1) has the form

o — a+d(g—Ha) (2)

which is essentially the steepest descent method for minimizing the cost functional.
The observation that the convergence rate for gradient descent methods is governed by
I — 0'H suggests that effective Preconditioners can be constructed using the behavior
of the symbol of the Hessian 7:[(]{), for large k. The idea is simple. Assume that

H(k) = O(|k]")  for large |K| (3)



and let R be an operator whose symbol satisfies
1

RiK) = Ol

) for large |k|. (4)

The behavior of the preconditioned method

a—a— Ry (5)
is determined by
[ — 6RH (6)
whose symbol
1 — 6R(k)H(k) (7)

approaches a constant for large |k|. A proper choice of ¢ leads to a convergence rate
which is independent of the dimensionality of the design space. This is not the case
if the symbol of the iteration operator has some dependence on k.

It is desired not to change the behavior of the low frequencies by the use of the
preconditioner, since the analysis we do for the Hessian does not hold in the limit
|k| — 0. That is, we would like the symbol of the preconditioner to satisfy also,

R(k) — 1 for |k| — 0. (8)

2.1 Constructing The Preconditioner from Its Symbol

We come now to the question of constructing the preconditioner from its symbol.
Since we are only interested in acceleration of certain numerical procedure, it is enough
to use approximations for the true Hessians. Let us begin with the simplest examples.
We have seen the correspondence between differential operators and symbols,

0

Symbol: ik; Operator: — j=1,....3 (9)
Jx;
and therefore
Symbol: (ik;)™ Operator: 527 j=1,....3 (10)
I -

J

Polynomials in tk;, even in several dimensions, correspond to differential operators
which are easily found as was shown in a previous lecture.

Example I. Consider the problem given in example V in lecture no. 2.

1 9
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subject to

20 2 U 0
dx dy — 0
) (0)-(0)

with the boundary condition

o
- Oz
|2

where 3? = (1 — M?) and Q = {(z,y)|ly > 0}. It was shown there that 7:((16) = B
This implies that

a9,

v

1 d?
Happroz = _@E (11)
An effective preconditioner R must satisfy R(k) = % for large |k| and this is obtained
for

1 d?
R =pl — —— 12

The addition of the operator ul was to ensure that the preconditioner does not affect
the low frequency range. A choice ¢ = 1 can be taken although some approxima-
tion of the first eigenvalue can give a better choice. Thus, the implementation of a
preconditioned iteration for that problem consist of repeated application of the two
steps

_ L
/’H/) 32 dz? )\9: (13)

a—a— o0y

where ¢ is found using a line search on coarse grids and, 4 = 1 on fine grids. Note
that the construction of the preconditioner was done on the differential level but the
numerical implementation is using some approximation of it, e.g., finite difference
approximation.

A good discretization (h-elliptic) of the state equation uses staggered grid. We
demonstrate it on a rectangular domain with a uniform grid of spacing i. Let the
grid points be labeled {(z,7)|0 < 7 < N,;;0 < j < N,}. The discrete variables
approximating u will be located at the middle of the vertical cell edges, i.e., will be
parameterized as u;;;1/5. The discrete approximations to v will be located at the
middle of the horizontal edges, i.e., parameterized by v;41/; ;. Discretization of the
first equation is done at the cell centers and the second equations at the vertices, both
using central differences. Design variables are located at the boundary nodes and the
boundary condition is given by

1

Vit1/20 = 7 (@ip = ai). (14)



A calculation of the cost functional for the discrete problem requires the values of
u on the boundary j = 0. This is done by introducing ghost variables u;y1/2-1/2.
An extra equation for these ghost values is introduced at the boundary nodes, ap-
proximating the second interior equation. We introduce adjoint variables (Lagrange
multipliers) (A, ) discretized as Ait1/2 j+1/2 and g ; with ghost points for A. The ad-
joint variables satisfy the same equation as (u,v) but at points shifted by (1/2,1/2).
A straightforward calculation shows that the gradient is given by

1

2h
The discrete preconditioner is done as follows. Let ¢;,7 = 1,..., N be the solution
of the discrete problem

(Ai1/20/2 — Nic1/2,172 + Niv1/2,-1/2 — Aic1/2,-1/2)- (15)

ﬂth/ﬂ/’j - 1/{7’—1 + 2%/)]' - 1/{7'+1 = —ﬁQ—h()\i+1/2,1/2 - )‘i—1/2,1/2 (16)
+Ai1/2,-1/2 — Xi—1/2,-1/2)

for y =2,..., N — 1, where h is the mesh size used for the discretization and g =
¥y = 0. The design variables are updated by
Oz]':Oz]'—(S’Q/)j jzl,...,N (17)

Note that applying the preconditioner requires the solution of a differential equation
on the boundary where the control is given. This is a typical case. The equation
defining the preconditioner is in one dimension less than the state and the costate
equations.

Example II. We now move to a more challenging case which is the construction of
an approximation to a Hessian with a symbol 7:[(k) = |k|, and the problem is on the
boundary of a domain in three space dimensions. Recall that in our lecture no 2 in
this volume we have discussed the mapping

¢|F - Ta_n|r7 (18)

where ¢ is the solution of a Laplace equation in the domain (2
Ap =0, (19)
and we have found that its symbol is
T(k) = [k|. (20)

The construction of an operator 7' from functions defined on the boundary of a
domain, to functions defined on the same boundary, whose symbol is |k| is done as
follows. Let g be a function defined on the boundary of €, we define T'g by

_ 94

Tg=
g onjaq’

(21)
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where

Ap=0 Q ¢
op=g 0. (22)
Another case we consider is an operator S whose symbol is
S09 = o (23)
k|’
It can be approximated as
Sg = ¢|8Q (24)
where ¢ is the solution of
Ap=0 ‘
=g 09 (29)

This follows from certain relations that we obtained in a previous lecture.

Example ITI. Here we construct an operator whose symbol is i(aky + bks)/|k|. We
have a product of symbols, and each of them is something that we already know. A
product of symbols correspond to applying the corresponding operators one after the
other (with the proper order for systems of differential equations).

The symbol ¢(aky + bky) correspond to the operator a% + ba% where t1, 15 are the
tangential coordinate corresponding to the wave directions ky, ky respectively. Let ¢
be the solution of (25) then,

0

9 :
Tg= (aé?—tl + ba—tg)¢|aﬂ (26)

has the desired symbol.

Remark: The operators that we have constructed in the last example are nonlo-
cal, and one may construct also integral operators for them, with singular kernels. We
prefer this approach since in the context of the optimal design problems one already
has a (fast) solver for the equations needed for these pseudo-differential operators.

2.2 Preconditioners for Finite Dimensional Design Space

The previous section discussed the construction of preconditioners from their symbol
in case the design space was a space of functions defined, for example, on the boundary
of a domain. This is the infinite dimensional design space. In many applications
one uses a fixed finite dimensional representation of the design space, using a set of
prescribed shape functions. When the number of these functions is small one can use



acceleration techniques such as BFGS. When that number grows and the number of
BFGS steps required to solve the problem increases significantly, one may combine a
preconditioner which is based on the infinite dimensional analysis.

We consider two design spaces. The first, A, is a space of functions which is infinite
dimensional and the second one, A,, is a subspace of the first and is represented in
terms of ¢ functions, f;,7 = 1,...,q. We also assume that the set f;,7 =1,...,¢ is
orthonormal with respect to the usual Ly inner product on the boundary,

[ £ fuls)ds = 6. (27)

where ¢, is the Kronecker delta. Functions in A, are linear combination of the form
E;-l;% a; f;, and the space A, can be identified [R?. We construct a mapping P from
A to IR? by,

(Pa); :/89 a(s)f;(s)ds  j=1,....q. (28)

Note that the transpose of the operator P acts from the finite dimensional space IR?
to A and is given by

d—1

(PYa)(s) = 3 ajfils) (29)

i=1

where @ = (o, ..., q).
Now we come to the point of relating gradients calculated with respect to the
design space A to those calculated with respect to IR?. Let

57 =c [ als)gs)ds + %8 [ (a)(s)a(s)ds + O(e) (30)

be the variation of the functional corresponding to a change in the design variables
by ea. The gradient with respect to A is certainly V.J = ¢, and the Hessian is H.
Now if the change in the design variables are done in the subspace A,, we consider
& = >, &;f; and then a substitution into the above expression for ¢.J gives

andy [ (HE)(s) fu(s)ds +O(E) - (31)

g 1.0
5J:62&j/ fi(s)g(s)ds + 622
i a0 2

.

and in that case

VJ = (32)

Il
Q



where § = (g1,...,94), 9; = Jaq fi(s)g(s)ds, and the Hessian for the subspace, H,, is
related to the full Hessian H as

(Ma)iw = [ (L)) fe(s)ds k=1 (33)

Notice that for the finite dimensional design space we can write,

a(s) = (PTd)(s)
VJ = Pg (34)
H, = PHPT.

These are the abstract formulas for the discrete quantities for the subspace as a
function of the same quantities on the infinite dimensional space.

A preconditioner for the finite dimensional design can be obtained by constructing
first the infinite dimensional preconditioner and then using the above formula to get
R, = Hq_l. The preconditioned iteration is

a— a—0R,g. (35)
Example Consider the case H = ﬁLd—2 which appeared in one of the previous
lectures. The finite dimensional preconditioner is constructed from the inverse of the

finite dimensional Hessian

1 dsz .
(Mol = =75 | () oz (5)ds. (36)

3 Application to Shape Design: Fluid Dynamics

Application of the ideas discussed in the previous sections to examples of shape design
problems for fluid dynamics models will be demonstrated, For simplicity, we use the
small disturbance potential equations and the Linearized Euler equations. Discussion
starting from a truly shape design problems is given in Arian and Ta’asan [3].

3.1 Small Disturbance Potential Equation
Let @ = {(z,y,2)|z > 0} and let ¢ satisty

and consider the minimization problem
1
min [ (pouods — /). (3%)
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This problem is related to a shape design problem governed by the Full Potential
equation in a general domain, using the cost functional %fag(p — p*)ids.

It can be shown using standard computation, as explained in a previous lecture,
that if A satisfies the equation

(1= M) + Ay +2.=0  Q

; 39
2 _ pouo(potiods — [*)e =0 99 (39)
then the gradient of the functional is given by
oA
ad — U 4
Vol uoa:ﬂ (40)

We would like to compute the Hessian for this problem and to construct an infinite
dimensional preconditioner for it. We assume a perturbation in « of the form

&(x) = a(k) exp (ik - x) (41)

where x = (z,y) and k = (ky, k2), and then the corresponding change in ¢ is

3, 2) = (k) exp (ik - x) exp (02), (42)

and the change in the adjoint variable is

A(x,z) = Ak) exp (ik - x) exp (52) (43)
where o, 0 are solutions for the following algebraic equation,

—(1—=M*»ki—-ki+o*=0 (44)
—(1—M*»ki —ki+a*=0.

In these expressions ki, ko are given, as well as &(k) which amount to perturbing the
shape by one frequency with a given amplitude.

The Choice of o,a. There is a nontrivial point with respect to the choice of the
roots that needs some explanation. In the subsonic case, M < 1, we have two real
roots for o. One is negative and correspond to a bounded solution in 2, the other is
positive and correspond to an unbounded solution for ¢, A and it is discarded in our
analysis. In the supersonic case, M > 1, and the expression (1 — M?)k? 4+ k2 may be
either positive or negative. If it is positive we take for o the root mentioned above. If
it is negative then ¢ has two imaginary roots. One of these correspond to an incident
wave and the other to a reflected wave. The perturbation in the incident wave is zero,
since this wave comes from infinity and there was no change there. The reflected wave
arise from the change in shape. In the supersonic regime, at the outflow there are no
boundary conditions for ¢, while the adjoint variable A has two boundary conditions.
Therefore, for the perturbation in the adjoint variable no waves are going toward the



outflow. This means that the sign of o is opposite to that of ¢ in the supersonic case
when wave solutions exist. Therefore, the roots are

6= (1= MK + Kk (1— M)k} + k% >0

(45)
—& =i\/—(L— M2k} — k} (1 — M)k} + k2 < 0.

o
o=
From the boundary condition for ¢ and A we see that the following relations hold,

A

—0d(k) = ikrupd(k) (46)

aAk) = Pouok2¢( )

and from these the change in the gradient as a result of a change in « is given by — A,
and therefore,

» 2 4 K1
H(k) = Potlo - (47)
Now notice that
oo = (1 — M?*)k?+ k2 (1 —M*ki+k3>0
o = —(1— M2k — 2 (1= M)k 4 k2 < 0 (48)

and the two can be combined as
= (1 — M*)k{ + k3. (49)

In summary, the symbol of the Hessian is

N k4
k) = pgug - . 50
3.1.1 Two Dimensional Case
In this case ky does not exists and we have a symbol
R k?
k) = —————. 51
H( 1) |1 — M2| ( )
This is the symbol of the differential operator
1 0*
- 52
|1 — M?| Ox? (52)
A preconditioned gradient descent method have the form
p — - M2| ¢__“03z (53)

ou—oz—&/)
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That is, we have to solve an ODE on the boundary with the gradient as a source
term, before using it as a direction of change for the design variable. According to
our analysis the new method converges at a rate with is independent of the number
of design variables, since the symbol for the modified iteration does not depend on k.
Note that the construction of the preconditioner was done on the differential level but
the numerical implementation is using some approximation of it, e.g., finite difference
approximation.

3.1.2 Three Dimensional Case

We distinguish here two cases, the purely subsonic case and the general case which
may include transonic regimes.

Purely Subsonic Case. In this case | — M? > 0 and hence |(1 — M?)ki + k3| =
(1 — M?)k? + k3. The preconditioner symbol is

A

R(k) = [(1 = M)k} + k3 [ (pdugh). (54)
The preconditioned iteration will have in the Fourier space the direction
a(k) = R(k)g(k) (55)
which after some rearrangements reads as
pRugkia(k) = (1 — M*)k? + k2)g (k). (56)

This equation in the Fourier space can be translated into the following differential
equation for the change in the design variable,

4~
, 40%

Pty = —(1 - M) S - 25 (57)

Actually, since our analysis was accurate only for the high frequency changes, we
may not want to use that preconditioning for the very smooth components in the
solution. This suggest a combination of the standard gradient descent method and
this preconditioning, which for example, can be employed as

. Mo 0*g d%g
/~LO<‘|‘P(2JU3@: —(1—M2)7—7+M9 (58)

The addition of the p term is so that the low frequency range will not be affected
by this preconditioner and would just use the gradient direction. High frequency
on the other hand, are accurately analyzed by our method and should use the above
preconditioner. It is also possible to use BFGS method in conjunction with the infinite
dimensional preconditioner developed here.

10



Supersonic and Transonic Cases. In this case the term |(1—M?)ki +k3| cannot be

simplified and we have to treat a certain pseudo differential operator. To approximate
|(1 — M*)ki + k3| we use the relation

oo = |(1 — Mk} + E2| (59)

which was derived before, using the interior equations. We want to derive an imple-
mentation in real space of the equation whose form in the Fourier space is

g(k) + pg(k).

The symbol oo represent two normal derivatives to solution of the small distur-
bance equation we started with, one with the ¢ equation and the other with the
A equation. The difference between the two is at the far field boundary condition
which is responsible for the proper choice in o,6. The operator whose symbol is
|(1 — M*)ki 4 k2| is therefore constructed in two step.

né(k) + plubkia(k) = (1 — MH)K? + K

. (60
=22 90
and the full preconditioned direction for & is therefore
5 d'a Oy
Hé+ potios— = -+ 1y (62)
where 1,1 satisfy the above equations.
3.2 The Linearized Euler Equations
Consider the linearized Euler equation around a mean flow (po, pouo, 0,0, po),
Q pU a]] pO ay pO az 0 IO
0 Q 0 0 p% - u
0 0 Q 0 pl—oay v =0 (63)
0 0 0 Q pio . w
p

0 pociOz poci0y pocyd. Q

—

in a domain Q = {(z,y,z)|z > 0}, where @ = Us-V (UB = (uo,0,0) denotes the

velocity vector), with the solid wall boundary condition

W = Uy, 0. (64)
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It is assumed that the problem was obtained by a linearization in a vicinity of a
boundary point, and that the far field boundary conditions were given in terms of
characteristic variables, which are not used explicitly in the derivation of the approx-
imate Hessian. The minimization problem is

1 )
— —p*)de. 65
ming [ (p—p')ide (65)

o3

If a change & produces a change p in the pressure then, the variation in this functional
can be written as

_ *\ ~ l ~2 ~113
50 = [ (p—p)pde+ 3 [ e+ O(II°) (66)

We calculate the Hessian in a slightly different way than before to illustrate another
approach. If one can express the quadratic term in p in terms of & one can identify
the Hessian. That is,

/ P = / (Ha)ade. (67)

This means that we can calculate the Hessian without going through the adjoint
variable. We need to express p in terms of &, and we do it in the Fourier space. From
the boundary condition at the wall

w(k) = ikyupa(k). (68)

The calculation of ]%(k) in terms of éz(k) is done by solving the system of the linearized
Euler equation with the above boundary condition for w. We look for solution of the
form

e
I
&

exp(tk - x) exp(iksz). (69)

The term tks here is the analog of our ¢ in the previous example. It is more convenient
here due to the form of the symbol of the full equation. The following relation follows
by substituting the above expression for U into the Linearized Euler equations (63),

Aq uoky Pokl ,00]52 pok‘:a 0 Ay 0
A, 0  pouoks 0 0 ki A 0
Lk | A4 [ =] o0 0 pougky 0 ks Ay | =10 (70
Ay 0 0 0 potoks ks Ay 0
As 0 pociks pociks pociks uoky As 0
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This is a linear system for (Ay,..., As) and it has a nontrivial solution when the
determinant is zero,

detL(k) = 2 (u2k? — A2 + k2 + E2) =0 (71)

Note that there are five solutions for this equations. Each of them has a corresponding
solution for the vector (Ay,..., As),

= Pouocokh —ky, —ks, —ks,/)ouolﬁ) ks = o4

= (
= (
(1,
(0
(0

pOuOcokh kl; —kz, kS,pOUOkl) ks = 03
1

= 0,0,0,0,) k=0 (72)
= ,1,0,0,0,) kB =0
= 707_k37k270) kl =0
where
o1 =~y = /(1 — M)k} + k2 (1 — M)k?+ k2 >0 (13)

o1 =~y = —iy/—(1 - M)k} — k3 (1 — M)k} + k3 < 0

Note that for the subsonic case oy correspond to the bounded solution, while o,
to the unbounded one. When (1 — MQ)kf + k% < 0 we have two bounded solution. In
that case oy correspond to the incident wave and therefore its amplitude is zero for
the perturbation variables. Thus, we are left with o; for both subsonic and supersonic
cases. The three solution corresponding to k; = 0 are not important for our analysis
since they do not affect the changes in pressure (see the corresponding eigenvectors).

To summarize, only V; contributes to the pressure changes as a result of changes
to the design variables by . The solution for U is given by AV for some scalar A.
The w component in this solution is —Aks and this must equal to i'ugkléz(k) form the
boundary condition which in the Fourier space is given by (68). From that we find
A= —'iuoi—;éz(k). Thus the solution is,

pouocgkl
k —k
~ . 12
U= —iup—a(k) —ky (74)
—R3
pouokl

The last component in this vector gives us the change in the pressure

A ki .

) = —ipud a1 (75)
3
and from this we get
3 i ki 2
(k) * = pgug |O‘( )| (76)
ksks
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Notice that we have taken the complex conjugate of }AS(k), and since ks is a complex
number its conjugate was taken as well. Since ksks = |(1 — M?)k} + k3| we obtain
the symbol of the Hessian in the form,

N k4
M) = P e+ ]

(77)

A preconditioner for this problem is done exactly as in the small disturbance
equations using (60)-(62). It is also possible to construct the preconditioner based on
solution of the linearized Euler equations, but is more complicated and unnecessary.
The gradient g appearing in (60)-(62) has to be changed to the gradient for this
problem, using the adjoint formulation.
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