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1 Introduction

In this lecture which is the first in a series of four lectures we will lay down the
foundation for the ideas presented later. We are concerned with mathematical tools
that will enable us the analysis and the construction of efficient algorithms for the
solution of shape optimization problems governed by fluid dynamics models, ranging
from the full potential equation to the full compressible Navier-Stokes equations.
We restrict all our discussions to gradient based methods. We begin this lecture
with a short review of basic ideas in optimization where we start with algebraic
problems and constraints. We derive the optimality conditions for such cases as an
introduction to our problems of interest which include optimal control and shape
design. We demonstrate the derivation of the optimality conditions for a control
problem and discuss the case of finite dimensional control as well as the infinite
dimensional control case. Our last topic is the derivation of optimality conditions
for shape design problem. We derive the variation of functionals with respect to the
domain (shape) of integration. Examples for optimal shape design problems which
minimize the deviation of the pressure from a given pressure distribution, are given
for the full potential equation and the Euler equation.

2 Review of The Basics: Gradient Based Methods

We begin by a very elementary discussion of minimization problems in a finite number
of design variables. We focus first on the unconstrained case and recall a few of the
basic observations made in any textbook on the subject. This is given for completeness
of the presentation.

2.1 Unconstrained Optimization

Consider the unconstrained minimization problem

min F(«) (1)
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where o = (a1,...,a,). We refer to « as the design variable and to E(«) as the
cost functional. A change in the design variables by & introduces a change in the
functional which can be written as

1
dF =FE(la+ea)— Ela) = ca'VE + 562&THO~é + 0(63). (2)
Here (VE)T = (%, cee %) and H stands for the Hessian, i.e., the matrix of second

derivatives of E. We assume the Hessian H is positive definite, i.e., ol Ha > 0 for
all @ # 0 to guarantee a unique minimum. For small ¢ we can neglect second order
terms and higher in € and see that a choice of & = —V E result in a reduction of the
functional, that is,

E(a —eVE)— E(a) = —¢|VE|*+ O(c?). (3)

This is the basis for the steepest descent method and other gradient based methods.
The gradient VE of the functional to be minimized can be easily computed for this
case, say, by finite differences. At a minimum the following equations hold,

OF

B, =

Optimality Condition: 0 j=1,...,q. (4)

These equations are called the (first order) necessary conditions for the problem.

2.2 Constrained Optimization

Consider next the problem

) (5)

min, E(a, Ua
) =

LU(a),a

where U = (Uy,...,U,),a = (a1,...,04), L = (L1,...,L,). We derive now the
optimality conditions for this case. Consider changes in o and correspondingly in U
as

a— a+ e

Ula) = Ula+ ed) = U + el + O(e?), (6)
where & and U are related through the equation
LyU + Lo =0, (7)

which is a linearization of the constraint equation in (5). The variation in the func-
tional can be written as

SE = E(a+ca,Ula + ¢d)) — E(a,U(a)) = (6" Ey + UTEy) + O(e?). (8)
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For this formulation we see that a descent direction for the functional depends on
U, which is not known before we have decided about the direction of change (since U
depends on @). Using U is not a viable approach and we are going to derive a different
one. The idea is to eliminate the dependence of the variation in the functional on U.
We derive it in details since later on we need to do a similar derivation for partial
differential equations (PDE) and there things may look less obvious.

From equation (7) for U we have (by taking transpose),

Urrh +a"tt =0 (9)
and therefore also
(U'LE +a"I5)x =0 (10)

for an arbitrary vector A = (A1,...,A,). The plan is to add this term, which is zero,
to our expression for the variation in the cost functional and then by using a proper
choice for A simplifying the variation of the cost functional such that it does not
depend on U. Clearly,

SE = (6" Ey + UM Ey) + «(UTLE + 6" L)X + O(6%) (11)
and by recombination of terms
SE = ea" (B, + LEX) 4+ UY (Ey 4+ LEN) + O(6%), (12)
and this is true for all A. Now a proper choice for A that simplifies (12) is given by
Adjoint Equation: L{A+ Ey =0, (13)
which leads to
SE =ea" (LN + E,) + O(¢?). (14)

Equation (13) for A is called the adjoint (or costate) equation and A is called the
adjoint (costate) variable, or the Lagrange multiplier. Note the last expression for
the variation of £ given by (14) does not depends on U, but it does depends on A,
which satisfies the adjoint equation listed above. It is clear that the choice

a=—(LIX+E,) (15)
is a direction of descent for the functional E, since
SE = —¢||LEX + E,|* + O(?). (16)

This direction is called the steepest descent direction, and the method based on it is
called the steepest descent method.



At a minimum LI) + E, = 0, giving us the optimality condition (necessary
condition)

LU(a),a) =0
T _
Optimality Conditions: LyA+ Eu =0 (17)
LN+ E, =0.

The left hand side of the last equation is the gradient of the functional subject to the
constraints,

VE = LI\ + E,. (18)

2.3 Condition Number of the Hessian

The convergence rate for the steepest descent method is connected to the eigenvalues
of the Hessian, in particular, to the ratio of the smallest eigenvalue to the largest one.
We discuss this in some details in this section. A basic gradient descent method has
the form

a—a—I0VE (19)

where 4 is a step size, whose magnitude is determined using a line search. At the a
vicinity of a minimum o = o, since VE(a*) = 0, we have

E(a,U(a)) = E(a”,U(a%)) + %&TH& +0(llal”), (20)

where @ = a — a*. From this we see that the gradient in the vicinity of the minimum
can be expressed as

(VE)(a) = Ha. (21)
Substituting the last equality into (19) and subtracting o from both sides we get,
& — (I — dH)a. (22)

This relation expresses the new errors (& on left) as a function of the old errors (&
on right). Convergence rate depends on

|l — oH]||. (23)

Now we want to relate the difficulty in solving an optimization problem using the
steepest descent method to the condition number of the Hessian. The Hessian is a
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symmetric matrix and it is also positive definite (if indeed we have a minimum). Let
its eigenvalues be p; with eigenvectors v;, i.e.,

Hvj = pjv; (24)

and assume that 0 < pq < p < ... < p,. The iteration matrix was shown to be
I — H and its eigenvalues are 1 — ;. For convergence we need

max |1 — dop;| < 1 (25)
J

which implies § < %q Taking 6 = fq, with 0 < ¢ < 2 gives
max|1—5/,aj|:|1—c&. (26)
J Hq
Thus, the convergence rate depends on the ratio of the smallest to the largest eigen-
value of the Hessian. When dealing with symmetric positive matrices this is the
condition number of the matrix.

The structure of the minimum is essentially determined by H and its analysis in
the context of fluid dynamics equation will be demonstrated later. It plays a major
role in the optimization problem and its solution processes.

Several approaches for calculating gradients of £ subject to the constraints exist,
and we discuss some of them.

2.4 Gradient Calculation: Constrained Optimization

Black Box Methods are the simplest approach to solve constrained optimization
problems and consist of calculating the gradient in the following way. Let 6 F be the
change in the cost functional as a result of a change & in the design variables. The
following relation holds

§E =a'E, +a'U By (27)

where U, are the partial derivatives of U with respect to the design variables, also
termed as sensitivity derivatives. All quantities in this expression are straightforward
to calculate except U,. The dimensionality of this quantity is the dimension of U
times the dimension of «.

The calculation of U, is done in this approach using finite differences. That is, for
each of the design parameters a; in the representation of a as o = Y°!_; a;¢;, where
e; are a set of vectors spanning the design space, one perform the following process



ALGORITHM: Black-Box Gradient Calculation
e Solve L(U(a +¢€e;),a+e€e;) =0 given a,¢
e Set % ~ (Ula+ee;) —Ula))/e

Once the above process is completed for 7 = 1,..., ¢, one combines the result into

ou ou
Ul=(4,...,7— 28
L= G o) (29)
which is used in calculation of the gradient
VE =E,+UlEy. (29)

Since in practical problems the dimension of U/ may be thousands to millions, the
feasibility of calculating gradients using this approach is limited to cases where the
number of design variables is very small.

The Adjoint Method is an efficient way for calculating gradients for constrained
optimization problems even for very large dimensional design space. The idea is to
use the expression for the gradient as appears in (18). Thus, one introduces into the
solution process an extra unknown, A, which satisfies the adjoint equation (13).

A minimization algorithm is then a repeated application of the following three
steps.

ALGORITHM: Adjoint Method
e Given a solve L(a,U) =0 for U
e Given «o,U solve Lg)\—I—EU =0 for A

e Update a as a— a—8[E,+ LT

2.5 Quasi-Newton Methods

When considering gradient based methods for the solution of optimization problem
it is useful to consider the level lines of the cost functional. If the level lines are close
to circles, then gradient based algorithms will be fast to converge since the gradient
(with a minus sign) points toward the minimum. If on the other hand, when those
level curves are thin ellipses the gradient does not point toward the minimum in
general, and therefore gradient based methods will be slow to converge. The thin
ellipses correspond to bad conditioning (large ratio of largest to smallest eigenvalue)
of the Hessian.



It is important to notice the following two cases. The first is when removing just
a few eigenvalues, a well conditioned system is obtain. In such cases methods which
use an approximate Hessian which is constructed during the iterative process, such as
BFGS, lead to very effective solvers. The second case is when the condition number
remains high even after removing a large number of eigenvalues. This is typical to
problems arising from discretization of partial differential equations where the number
of design variables is large. Iterative algorithms of the BFGS type cannot serve as
a remedy in this case and different approaches are needed. Such approaches will be
described in lectures 3 and 4 following this one.

3 Control Problems Governed by PDE

Shape optimization problems which are one of our main topics, are related to control
problems governed by PDE. An understanding of boundary control problems will help
us to get the proper insight into shape optimization problems.

We consider the small disturbance equation, for zero Mach number, in two dimen-
sions. The domain (2 is a rectangle whose bottom boundary has a control variable to
be optimized. It is required to achieve a certain pressure distribution on that bound-
ary. Denote by I' the bottom boundary and by I'g the rest of the boundary 2. The
potential ¢ satisfies the equation

Ap=0 Q
9¢ _

State Equation: on @ I (30)
b=g I'o

where « is the design variable. This problem is related to a shape design problem

in which the bottom boundary is described by the function «, and the boundary

condition for ¢ on this boundary is % = 0. We will come to this relation later on.
We consider the cost functional

B(a) = 5 [ (p - )de (31)

where p = ¢,, and we would like to construct a formula for the gradient of this func-
tional. We consider a perturbation of the design variable by ec and the corresponding
change in ¢ by e¢, which satisfies

Ad=0 0

9 ~

ge=a T (32)
QBZO Lo



The variation in the functional is

0E = E(a+ea) — E(a) =3 fol(p+ep—p*)* = (p—p*)?lda
= ¢ Jr(dz — p*)qud:”c +0(e?) (33)
= —¢ Jp(¢e — p*)epdz + O(€?)

where integration by parts have been used in the last equality. As in the abstract
constrained optimization problem we discussed in section (2.2), we see that the change
in the functional depends on the the sensitivity derivatives ¢, and we would like to
eliminate this dependence, in order to get an efficient computation of the gradient.
We do it by adding a term to d £ which is the differential analog of the term UTL%C)\—I—
&P LTX in the algebraic case. Then a proper choice for A will result in the desired
form for the variation in the functional.

Let A be an arbitrary function defined in the same domain as ¢. From equation

(32) for & we have

0= / MAdde = / SANdz + / an g—i)ds (34)

where the second equality follows from integration by parts. This is the analog of
equation (10) that we have in the algebraic case. Adding the right hand side of (34)
(multiplied by ¢€) to 0 E we get

8qb ~OX
an ' on

Since J§) = I' + I'y we can break the integral [, into [+ fr, and then combine the
Jr terms, to obtain

ok = —e/r(qﬁgg —p*)zqum + 6/9 Adddz + 6/ (A —)ds + O(é?). (35)

oA D
. ds—e [ == 2224 / AXdz + O
[ o=+ s —e [ 352 [ A+ [ Gandz + O30
In order to eliminate the dependence of §E on ¢ we make the following choice for A
AX=0 0
oA ¥ —
Adjoint Equation: dn + (¢ =p)e=0T (37)
)\ == 0 Fo.
Therefore,
5E—6/A d;c—l—O —e/Aozggdx—l—O( :—G/Améz—l—O(ez) (38)
r

where integration by parts was used in the last equality. The expression for the
changes in the functional is given as as a function of the changes in the design variable,
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as well the adjoint variable A which satisfies the adjoint equation (37), (or costate
equation in control terminology). We would like now to pick a direction of change &
that will result in reduction of the cost functional. We distinguish two cases.

I. Finite Dimensional Control. In this case we assume that the design variable
a(x) has a representation

a(2) = L (2 (39

and a similar expression for &, where the functions f;,7 = 1,...,¢ are prescribed.
This implies

q
SE = _ezozj/ Mo fide + O(), (40)
=t 7T
and hence
oF
S = —/F)\ggfjd:c (41)

and the choice
&; :/Ar_fjdx (42)
Iy

will result in a reduction of the cost functional by
g
SE = —62(/ Mo fide)? + O(e2). (43)
j=1 7T

At a minimum the following conditions hold,

oL

= — [ N\ fidx = =1,...,q. 44
5o /F fide =0 j q (44)

Note that the gradient given in (44) is in terms of A.

II. Infinite Dimensional Control. In this case we regard the variable o as a
function defined on the boundary I'. A proper choice that will result in a reduction
of the functional is given in terms of A,

a(z) =M(z) ze€T (45)

and the corresponding reduction in the functional is given this time by

SE = —e/ I\, |2de + O(e2). (46)
I
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An algorithm for solving this control problem consists of repeated application of
the following three steps, until convergence (of the gradient to zero),

ALGORITHM
(1) Solve the state equation (30) for ¢
(2) Solve the adjoint equation (37) for A
(3) Update a by a—da , where 0 is found by line search.
& is given by (42) or (45).

4 Shape Design Problems

We consider next problems in which the design variable is the shape of the domain
in which a PDE is given. We need to derive formulas for the changes of different
cost functionals which depend on the shape. Let us take some examples of practical
importance.

Example I: The functional depends on the whole domain. Consider the
functional

J(Qu) = /Q F(u)de (47)
which depends on the domain as well as on a function u = u(€), which depends on
that domain too. For the moment we do not specify exactly the dependence of this
function on the domain. Later on this function will be a solution of a PDE defined
in 2, and will change as we change the domain (2.

We need to calculate the variation of this functional with respect to 2. To do
this we assume that the function u(f2) is defined in a slightly larger domain that
includes 2. We examine J(Q., u(Q)) — J(Q,u()) where . is a small perturbation
of 2, parameterized by a small number ¢. The perturbation of the shape is done
following Pironneau [13]. The boundary of € is perturbed in the direction of the
outward normal to £ by ea(s)n, where s is a parameterization of the boundary, n is

the outward normal and a(s) is an arbitrary function defined on the boundary. We
use the short notation, u® = u(Q°) and v = u(£). We have

‘](QE7 uE) - ‘](Q7 u) = er—Q F(uﬁ)d,zz — fQ_Qe F(u)d$
+ Jana. F(u)dz — Jana. F(u)dz

For small € these integrals can be approximated as follows

(48)

/E_Q F(u)de = e/ o(s)F(u)ds + O(e?) (49)

T+
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/Q—Qe F(u)de = —6/_ a(s)F(u)ds + O(€?) (50)

iy _ , _ N 2
/Qrme F(uf)dx /Qrme F(u)dz 6/9 Fu(u)udz + O(e*) (51)
where
it = lim [ — 52
= lim ' — ] (52)

and I't = {s € T'|a(s) > 0} and I'" = {s € I'|a(s) < 0}. We conclude that,

1
S[J(Q) — J(Q)] = / a(s)F(u)ds + / Fu(u)ads + O(e). (53)
€ r Q

This formula is useful when we have functionals defined on the interior of the
domain up to the boundary. Recall that in order to construct the necessary conditions,
or to calculate gradients, we need to consider this type of expression.

Example II: Boundary Functionals. Consider next the functional

J(T,u) = /F Flu)ds (54)

where u = u(I'), ds is an area element, and I' is part of the boundary of a domain
Q. The function u depends on the domain in a way which we do not prescribe at the
moment. Again we are interested in perturbations of the domain, and as a result of
it perturbations of I'. It is convenient to use the same type of perturbation as before.
The new boundary will be denoted by I'. and we want to calculate

%[](FE, u) — J(I', u)] (55)

for small e. This case is slightly more complicated since we have to consider the
change of the area element ds as well. Consider a line element ds, where the radius
of curvature is given by R. Note that this line element can be written as Rdf where
R is the radius of curvature and df represent an infinitesimal angle. A change in the
boundary by ean changes the line element to (R —ea)df = (1 —c%)Rd0 = (1 —c%)ds.
Thus, we obtain a formula, for the two dimensional case, for the new line element

!
ds® = (1 — e=)ds. 56
(1-c2) (56)
For problem in three dimension we consider two orthogonal tangential coordinates
and in each direction a similar result hold for the line element. The area element being
the product of the two line elements has the formula (56) but now with

111
= — 57
R R R (57)
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where Ry and R, are the radiuses of curvature in two orthogonal directions on the
surface. Note that the quantity % does not depends on the choice of coordinate system
since it 1s the trace of the matrix of second derivatives of the surface describing the
boundary.

In order to obtain a simple expression for the variation of the functional as a
function of the boundary I' we have to express [ f(u‘)ds in terms of an integral
and quantities on I.

Consider a point * € I' and the corresponding shift of it to z° € I'. given by
¢ = = + ean. The integral depends on u which is a function of z, and

u(z) = u(x + ean) = u(z) + ea% + 0(62) (58)
u(z°) = u(x 4+ ean) + eu(x + ean) + 0(62) = u(x) + ea%(:c) + eu(z) + 0(62) (59)

For simplicity, we assume that f(u) does not depends explicitly on x, although this
can be handled as well. Using the last two formulas we have

F, = fluteiteags), +O()
= f(uw), + 6ozfu(u)g—z|F + efu(u)ty, + O(€?).

Using this together with the formula for the line (area) element (56) we get

flu)dss = (f(u) + eafu(u) 5t + efu(w)a)(l — ef)ds (61)
= f(u)ds + e[ozfu(u)g—z — 5 f(w)]ds + efu(u)uds + O(€?)

Substituting (61) into (55) we have

(60)

%[/Fe fe(u)ds = [ flu)ds] :/Fa(—%—|—fu(u)%)ds—|—/rfu(u)ﬂds+O(62). (62)

5 Applications to Fluid Dynamics

We use next the ideas developed in the previous sections to study shape optimization
problems governed by two fluid dynamics equations. The first is the Full Potential
equation and the second is the Euler equations. We derive in both case the optimality
(necessary) conditions in details.

5.1 Shape Design Using The Full Potential Equation
Consider the Full Potential (FP) equation

VpVo=0 Q
b = oo nN-T (63)
Vé-n=0 T
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where p = f(q) with ¢ = 1|V¢|* and the following shape optimization problem,

: 1 *\2
min [ (p - p')?ds (61)
where p = g(q). We derive the necessary conditions for this problem, and obtain a
formula for the gradient for this functional subject to the FP equation (63).

As a result of changes in the shape I', the potential changes to ¢+ e+ O(€*) and
p into p + ¢p + O(e*). Moreover,

af N
p=—-—-Ve¢ -V 65
P=g Ve Ve (65)
and the equation governing ¢ is
ViV + VoV = 0. (66)

The functional variation with respect to I' (see equation (62)) can be written as

3 o dp o (p=p)° )
0J = 6/F(p p*)pds + E/Fa[a—n(p —p") — T]ds + O(¢€%). (67)
From the boundary condition % = 0 some terms are simplified, in particular g—i =
%g—g%[(%):’ + Z?;%(%)Q] = 0. We also have the relation
. 0p, 0606  0pdb. g . -
p= (222 L 2PN Iy 68
P= 34 Bnan T B ) T 9g O VI® (68)

where Vi stands for the tangential gradient. Substituting these into 6./ and using
integration by parts for the V¢ terms gives

B -9 [0y N (p—p)?
== 0% 57 (5e0 =150 ) + a5 e (69

This expression depends on ¢ which is to be eliminated using the same idea as before.
To this end we use the identity

/Q MVpVeé + VpVd)de = 0 (70)

which follows from (66) and holds for an arbitrary A. The relation p = %Vgg - Vo

and integration by parts of each of the terms in the above integral give

af o e Of
/Qwa—q[w-w]w_/Qwa—q[w-w]wdm (71)
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~ 3P4 (72)

n on

/ AV pV dda = / IV pVAdz + / a

where in the first integral we used the relation V¢ -n =0 on I' as well as é =0 and

Vrd =0 on dQ —TI'. Thus,

~ 0
/ Hvpva+ v
Q dq
for an arbitrary smooth function A. This is the analog of equation (10) of section
(2.2).

Before we add this term to the functional we need to express certain terms in the

qb a—)\)ds =0 (73)

n on

(V- Vé|Ve)da +/an -

boundary. The wall boundary condition for ¢ on I,

Vo -nf .. =V(o+ €d) - n‘.. =0 (74)
will be transfered to I'. It is easy to see that

d—1
n“=n-ey_ %tj + O(€?) (75)
o0t
by considering one dimension at a time. Therefore
. D ) =2 o
V((b—l—eqb—l—eoza—n—l-O(e )) n—ezatt—l-O( )) =0 (76)

Using the boundary condition V¢ - n|. = 0 we get

2 d—1
</§ Ja

The expression for the Change in the functiogal as given in (69) depends on « as
well as on ¢. To eliminate the dependence on ¢ we add the left hand side of (73).

We then collect terms involving & separately from terms mVOlvmg , and use the
boundary condition for % on I', giving
8] = — [ro[x f‘% = (Zq(p P35 ]) pan]
+ Joa FP()‘% gi)ds
+ o d(VpVA+ VEIVA - V|Ve)da
Now we choose A such that it satisfies
va + V(V)\ V§3EV ) = 0
971 _
Adjoint Equation: ’08” + EJ =1 3t; [aq(p P)a, ] =0T (79)
A=0 on—-r
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and then the variation of the functional simplifies to

3 Fo  (p—p) KL 0, 06
5] = — /F alprz S+ L 5 g lds: (80)

J=1

P (p—p) K0, 04
VI = —p - 5 +;a—tj(Apa—tj) r (81)

5.2 Shape Design Using The Euler Equations

Our next example is a similar minimization problem but this time subject to the
Euler equation. Namely,

. 1 *\ 2 G
min [ (p - p7)?ds (82)

where p = p(U), and U is the solution of the Euler equation. Here U stands for the
variables (p, pu, F) and u = (u,v,w). The Euler equations in conservation form are
written as

fetgy+h.=0 (83)
where
f=AU g=BU h=CU, (84)

and where the matrices A, B, C can be found, for example, in Hirsch [12]. An impor-
tant property of the equation that we use here is

fo=AU, g¢,=BU, h=Cu,. (85)

The change f in the flux vector f satisfies,

U+ €)= f(U) —I-eg—(];U—I-O( D= fU)+ AU+ O() = f+ ¢f (86)

and similar expressions for §, h. The equation for the perturbation quantities reads
or equivalently,

(AD), + (BU), + (CT), = 0. (88)
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Now consider the following identity which follows from integration by parts,

Jo A (AU)dV = — [ Ay - AUV + [5q A - AUn - ids

= — [q ATA, - UdV + [, ATA - Un -ids (89)

and similar integrals for the ¢ and & terms. Combining these identities we arrive at

— Jo(ATA, + BTA, 4+ CTA,) - UdV

+ foo(ATn i+ B™n-j+CTn-k)A - Uds =0, (90)
for an arbitrary A. We will use the notation
D=An-i+Bn-j+Cn-k (91)

and note that DU is the normal flux at the boundary which has the form, see Hirsch
[12],

pu-n
DU = (p(u-n)u—l—pn ) ; (92)
(E+pu-n

and at a wall where u-n =0, it reduces to

0
DU, = ( pn ) . (93)
0

We have DU = DU following (84),(86) and its analog for the g, h terms, and

(pn) = pn + pi. (94)
Combining the last equalities and i = —3/7) Z*t; from (75), we get
. ) 1 da
/FA-DUds :/FA-DUds :/Ff))\-nds—/rp;a—tj()\-tj)ds (95)

where we used the notation A = (A1, A, A5), and A = (A2, A3, Ay). The wall boundary

condition
u-n, =0 (96)
becomes upon perturbation

u-ne =0, (97)

16



and as before we transfer this boundary condition to the original boundary I,

a_u d—1 aa

) - € — 1] . _ — 1. 2
(u+tetd) nj, =(u+ cos + et)). - (n 6; at]’tmr + O(¢€”). (98)

Collecting only the € terms we get

d—1
da du
ion—Y Zuitj+a— n=0 I 99
u-n jﬂatju jtag-n (99)

The variation of the functional
5= [0~ )5+ alp - 1) 2 — 0 g, (100)
will be simplified by adding (90) to it, but with a choice of A which makes the volume
integral vanish. Thus, we assume that
ATA, + BTA, +CTA, =0 0 (101)
Using (90),(95) it leads to

6J = Jplp—p"+ A-nlpds
+ fr ol =55 + (p - p7) FElds
— frp X S ty)ds (102)

+ fyq_r DTA - Uds

Now we come to use the boundary conditions for /. We begin with the far field
01 —I'. We assume that the boundary conditions there are given in terms of charac-
teristic variables and assume that T is the matrix such that T'U are the characteristic
variables. We write the far field term as

/ DTA - Uds = / DTA-T\TTds = / T-TDTA-TUds  (103)
89-T 80-T a0-T

We distinguish the following cases. Supersonic inflow: all variables are specified at
inflow, and thus U = 0. Thus, no boundary conditions are imposed on A. Supersonic
outflow: No boundary conditions are specified for U, hence U is arbitrary there and
therefore we are led to the choice A = 0 at supersonic outflow. Subsonic inflow:
4 conditions are specified (3 in 2D), and those are (TU)1727374 = 0, thus (TU)5 is
arbitrary, leading to (T-TDTA); = 0. Subsonic outflow: one condition is given for U/
which implies (TU)5 = 0 and therefore (T"TDA); 334 = 0. On the wall T’ we choose

An+p—p =0. (104)
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In summary, the boundary conditions for A are

supersonic inflow none

subsonic inflow (TTDTA); =

supersonic outflow A=0 (105)
subsonic outflow (T~TDTA)1934=0

Wall Axn+p—p =0

With this choice for A together with the interior equation (101) we get that 6./
involves integrals depending on o and A and not on U terms. Rearrangement by
using integration by parts gives,

5J = Aa[—% +(p— p*)g—i — div(p))]ds. (106)

The gradient of the functional in this case is therefore given by

(p—p)?

sp T (p— p*)@ — div(pA). (107)

Vil == on

References

[1]  Arian E., Ta’asan S., Shape Optimization in One-Shot. Optimal Design and
Control, Edited by J. Boggaard, J. Burkardt, M. Gunzburger, J. Peterson,
Birkhauser Boston Inc. 1995

[2]  Arian E., Ta’asan S., Multigrid One-Shot Methods for Optimal Control Prob-
lems: Infinite Dimensional Control. ICASE Report No. 94-52.

3] E. Arian, S. Ta’asan, Analysis of the Hessian for Aerodynamics Optimization:
Inviscid Flow. ICASE Report No. 96-28., submitted to Journal of Computa-
tional Physics

[4]  Beux F., Dervieux A., A Hierarchical Approach for Shape Optimization, Inria
Rapports de Recherche, N. 1868 (1993).

[5] Jameson A., Aerodynamics Design via Control Theory. J. Sci. Comp. Nov. 21,
1988

[6] Mandel B., Periaux J., Stoufflet B., Optimum Design Methods in Aerodynam-
ics, AGARD-FDP-VKI Special Course, April 1994.

[7] Ta’asan S., One-Shot Methods for Optimal Control of Distributed Parameter
Systems I: Finite Dimensional Control. ICASE Report No. 91-2, 1991

18



8]

[10]

[11]

[12]

[13]

[14]

S. Ta’asan, Trends in aerodynamics design and optimization: a mathematical
view point. in Proceedings of the 12th ATAA Computational Fluid Dynamics
Conference June 1 995, San Diego, CA. pp. 961-970 ATAA-95-1731-CP.

Ta’asan S., Fast Solvers for MDO Problems. Multidisciplinary Design Opti-
mization, state of the art. Edited by N.M. Alexandrov, M.Y. Hussaini, STAM
1997.

Ta’asan S., Salas M.D., Kuruvila G., Aerodynamics Design and Optimization
in One-Shot. Proceedings of the AIAA 30th Aerospace Sciences and Exhibit,
Jan 6-9 1992.

Ta’asan S., Kuruvila G., Salas M.D., A New Approach to Aerodynamics Opti-
mization. Proceedings of the First European Conference on Numerical Methods
in Engineering. Sept 1992, Brussels Belguim.

C. Hirsch, Numerical Computation of Internal and External Flows, Vol I, II,

Wiley 1990.

O. Pironneaux, Optimal Shape Design for Elliptic Systems, Springer Series in
Computational Physics, 1983.

A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid Dy-
namics. GMD-Studien.

19



