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1 Warm-Up

(Po98) Prove that for all ordered triples (a, b, c) of prime numbers:

a2b + a2 + ac2 + 115a + b2c + b2 + c2 + 27c + 176 > 6ab + 22ac + 14bc + 5b.

Solution: Complete the square

2 The p-Norm

Here’s the easiest way to think of this: let’s define the “p-norm” of a sequence as follows: take a sequence
{a1, a2, . . . , an} and call it a. Then write ‖a‖p to denote p

√
|a1|p + · · ·+ |an|p. (By the way, p doesn’t have

to be an integer; the p-th root is then defined as the 1/p power.)
This is kind of intuitive; if p = 2, then if we have n-dimensional space and a is a coordinate vector, ‖a‖2

is the length of it. And different p’s give different notions of length; for instance, p = 1 corresponds to the
Manhattan (taxicab) distance. For completeness, definte ‖a‖∞ to be the maximum of the |ak|. Amazingly
enough, this notion of p-norm appears in many areas of mathematics. You’ll see it again and again as you
learn more math.

Also, we should define “addition” and “multiplication” on sequences. That is, given a = {a1, a2, . . . , an}
and b = {b1, b2, . . . , bn}, define a + b to be {a1 + b1, a2 + b2, . . . , an + bn} and ab to be {a1b1, a2b2, . . . , anbn}.

3 Cute Inequalities (inspired by Kiran97)

AM-GM-HM For positive sequences a:

a1 + · · ·+ an

n
≥ n
√

a1 · · · an ≥
n

1
a1

+ · · ·+ 1
an

with equality when all of the ak are equal.

Cauchy-Schwarz (a1b1 + · · ·+ anbn)2 ≤ (a2
1 + · · ·+ a2

n)(b2
1 + · · ·+ b2

n). Note that this is a special case of
Hölder. Can you see why?

Minkowski Given the same sequences as above, and p ≥ 1, ‖a + b‖p ≤ ‖a‖p + ‖b‖p.

Hölder Given the same sequences as above, and p, q ≥ 1 such that 1/p + 1/q = 1,

‖ab‖1 ≤ ‖a‖p · ‖b‖q

Note: we can take p = 1 and q = ∞; their reciprocals “add up to 1.”
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Chebyshev If a and b are increasing positive sequences, then:

a1b1 + · · ·+ anbn

n
≥ a1 + · · ·+ an

n

b1 + · · ·+ bn

n

If one sequence is increasing but the other is decreasing, then the inequality flips.

Rearrangement If we have the series a1b1 + · · · + anbn, it is maximized when the a’s and b’s are both
sorted in the same direction, and minimized when they are sorted in opposite directions.

Bernoulli If x > −1 and r ≥ 1, then (1 + x)r ≥ 1 + rx.

1. (IMO95) Let a, b, and c be positive real numbers such that abc = 1. Prove:

1
a3(b + c)

+
1

b3(c + a)
+

1
c3(a + b)

≥ 3
2

2. (ELMO 1999/2) Prove that for a, b, c, d > 0:

26 abcd + 1
(a + b + c + d)2

≤ a2 + b2 + c2 + d2 +
1
a2

+
1
b2

+
1
c2

+
1
d2

.

Solution: Split by the + in the numerator of LHS. The first inequality uses RMS-GM: 4
√

abcd/
√

a2 + b2 + c2 + d2 ≤
1/2, so that we bound

2

√
abcd

a2 + b2 + c2 + d2
≤ 4
√

abcd ≤ a + b + c + d

4
.

For the second part, we use HM2-AM:√
4

1
a2 + 1

b2 + 1
c2 + 1

d2

≤ a + b + c + d

4
.

3. (Ireland 1998/7a) Prove that if a, b, c are positive real numbers, then

9
a + b + c

≤ 2
(

1
a + b

+
1

b + c
+

1
c + a

)
.

Solution: AM-HM or C-S by rewriting:

9
(a + b) + (b + c) + (c + a)

≤ 1
a + b

+
1

b + c
+

1
c + a

.

4. (Po 2004) Suppose that 0 < a, b, c < 4 and abc = 1. Prove that:

1
1 + a + b

+
1

1 + b + c
+

1
1 + c + a

≤ 1
4− a

+
1

4− b
+

1
4− c

.

Solution: Define the unordered lists:

S = {4− a, 4− b, 4− c},
T = {1 + b + c, 1 + c + a, 1 + a + b}.
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It suffices to show that HM(S) ≤ HM(T ), where HM denotes the harmonic mean. Yet the sets are just
translates of each other on the number line:

T = S + (a + b + c− 3),

so the following consequence of the AM-GM inequality completes our proof:

a + b + c

3
≥ (abc)1/3 = 1.

5. (Romania 1996/11) Let x1, x2, . . . , xn be positive reals, and let S be their sum. Prove that:

n∑
i=1

√
xi(S − xi) ≤

√√√√ n∑
i=1

S(S − xi).

Solution: RHS simplifies to S
√

n− 1. Divide both sides by that; now STS

n∑
i=1

√
xi

S
· 1
n− 1

(
1− xi

S

)
≤ 1.

AM-GM wrt the dot, sum both parts, get 1/2 + 1/2 = 1.

6. (Austrian-Polish Math Competition 1996/4) The real numbers x, y, z, t satisfy the equalities x + y +
z + t = 0 and x2 + y2 + z2 + t2 = 1. Prove that:

−1 ≤ xy + yz + zt + tx.

Solution: RHS groups into (x+z)(y + t). First equality tells us this is both −(x+z)2 and −(y + t)2.
Yet RMS-ineq yields that these are bounded by −2(x2+z2) and −2(y2+t2), so their average is bounded
by −1, as desired.

7. (Kiran97) Let a, b, c be positive. Prove:

1
a(1 + b)

+
1

b(1 + c)
+

1
c(1 + a)

≥ 3
1 + abc

with equality iff a = b = c = 1.

8. (Iran 1998/9) Let x, y, z > 1 and 1/x + 1/y + 1/z = 2. Prove that

√
x + y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.

Solution: C-S LHS against
√

(x− 1)/x + (y − 1)/y + (z − 1)/z.

9. (Asian Pacific Math Olympiad 1998/3) Let a, b, c be positive real numbers. Prove that

(
1 +

a

b

) (
1 +

b

c

) (
1 +

c

a

)
≥ 2

(
1 +

a + b + c
3
√

abc

)
.

Solution: Multiply out:

(a/b + a/c + a/a) + (b/c + b/a + b/b) + (c/a + c/b + c/c)− 1

≥ 2
(

a + b + c
3
√

abc

)
+

(
a + b + c

3
√

abc

)
− 1

≥ 2
(

1 +
a + b + c

3
√

abc

)
.
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10. (Vietnam 1998/4) Let x1, . . . , xn (n ≥ 2) be positive numbers satisfying

1
x1 + 1998

+
1

x2 + 1998
+ · · ·+ 1

xn + 1998
=

1
1998

.

Prove that

n
√

x1x2 · · ·xn

n− 1
≥ 1998.

Solution: Let yi = 1998/(xi + 1998); then yi ≥ 0 and 1− yi =
∑

j 6=i yj . AM-GM:

1− yi ≥ (n− 1) n−1

√∏
j 6=i

yj .

Multiply over all i and get:

n∏
1

(1− yi) ≥ (n− 1)n
n∏
1

yi.

11. (IMO 2001 Shortlist) Prove that for all positive reals a, b, c:

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Solution: Prove that each term exceeds

a(4/3)

a(4/3) + b(4/3) + c(4/3)

Cross multiply and square. Then factor the following difference of squares

(a(4/3) + b(4/3) + c(4/3))2 − (a(4/3))2

and apply AM-GM on the product. We get 8a2/3bc.

4 Convexity and Smoothing

Jensen A convex function is a function f(t) for which the second derivative is nonnegative. This is equivalent
to having the property that for any a, b in the domain, f((a + b)/2) ≤ (f(a) + f(b))/2. Then given
weights λ1, λ2, . . . , λn and positive numbers a1, a2, . . . , an:

f

(
λ1a1 + · · ·+ λnan

λ1 + · · ·+ λn

)
≤ λ1f(a1) + · · ·+ λnf(an)

λ1 + · · ·+ λn

If f is concave, then the inequality flips.

Jensen (Probabilistic interpretation) Let f(t) be a convex function, let X be a random variable, and
let E[Y ] denote the expected value of random variable Y . Then

f(E[X]) ≤ E[f(X)].

If f is concave, then the inequality flips.
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Smoothing Given an inequality, show that it becomes less true when you “squish” the values of the variables
together. Then if it’s still true after you’re done squishing, hey, it must have been true in the first
place!

1. (Ireland 1998/7b) Prove that if a, b, c are positive real numbers, then

1
a + b

+
1

b + c
+

1
c + a

≤ 1
2

(
1
a

+
1
b

+
1
c

)
.

Solution: Jensen with f(t) = 1/t:

f(a) + f(b)
2

≥ f

(
a + b

2

)
.

2. (Zvezda98) Prove for all nonnegative number a, b, c:

(a + b + c)2

3
≥ a

√
bc + b

√
ca + c

√
ab.

3. (IMO84) For x, y, z > 0 and x + y + z = 1, prove that xy + yz + xz − 2xyz ≤ 7/27.

Solution: Smooth with the following expression: x(y + z) + yz(1 − 2x). Now, if x ≤ 1/2, then we
can push y and z together. The mushing algorithm is as follows: first, if there is one of them that is
greater than 1/2, pick any other one and mush the other two until all are within 1/2. Next we will
be allowed to mush with any variable taking the place of x. Pick the middle term to be x; then by
contradiction, the other two terms must be on opposite sides of 1/3. Hence we can mush to get one of
them to be 1/3. Finally, use the 1/3 for x and mush the other two into 1/3. Plugging in, we get 7/27.

4. (Po, 2004) Prove that if X ≥ 1 is a random variable taking integer values in {1, 2, . . . , N}, then

E[X] =
N∑

k=1

P (X ≥ k).

5. (Po, 2004) Let 1 = a1 ≥ · · · ≥ an ≥ an+1 = 0 be a sequence of real numbers. Prove that:√√√√ n∑
k=1

ak ≥
n∑

k=1

√
k(ak − ak+1).

Solution: Define the random variable X such that P (X ≥ k) = ak. Then Jensen

√
E[X] ≥ E[

√
X].

6. (MOP98/5/5) Let a1 ≥ · · · ≥ an ≥ an+1 = 0 be a sequence of real numbers. Prove that:√√√√ n∑
k=1

ak ≤
n∑

k=1

√
k(
√

ak −
√

ak+1).

Solution: Since the inequality is homogeneous, we can normalize the ak so that a1 = 1. (If they are
all zero, it is trivial anyway.) Now define the random variable X such that P (X ≥ k) =

√
ak. Then

STS

√
E[min{X1, X2}] ≤ E[

√
X],
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where X, X1, X2 are i.i.d. Prove by induction on n. Base case is if n = 1, trivial. Now if you go
to n + 1 by shifting q amount of probability from P (X = n) to P (X = n + 1), RHS will increase
by exactly q(

√
n + 1 −

√
n). Yet LHS increases by exactly q2 under the square root. Now since the

probability shifted from P (X = n), the square root was originally at least q2n. In the worst case, the
LHS increases by

√
q2n + q2 −

√
q2n, which equals the RHS increase.

7. (MMO63) For a, b, c > 0, prove:

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2

Solution: Same idea as previous, except first you multiply it out and normalize a + b + c = 1. Then
you get:

(a + b)(a2 + b2 + c(a + b)) + c(c + a)(c + b) ≥ 3
2
(a + b)(b + c)(c + a)

Show that the difference is always at least 0, and if you mush together a and b, it gets better as long as
(3/2)(a + b)− c ≥ 0, which happens as long as c ≤ 3/5. Hence the same algorithm as previous works.

8. (88 Friendship Competition) For a, b, c > 0:

a2

b + c
+

b2

c + a
+

c2

a + b
≥ a + b + c

2

9. (USAMO98) Let a0, a1, . . . , an be numbers from the interval (0, π/2) such that

tan(a0 − π/4) + tan(a1 − π/4) + . . . + tan(an − π/4) ≥ n− 1

Prove that tan a0 tan a1 · · · tan an ≥ nn+1.

Solution: Let tk = tan(xk − π/4). Then tanxk = (1 + tk)/(1− tk), and we want this product to be
at least nn+1. Next the given inequality is equivalent to 1 + tk ≥

∑
j 6=k(1− tj), and by AM-GM, it is

at least n n

√∏
j 6=k(1− tj). Finally, take the product over all possible LHS and the result falls out.

5 Brute Force (stolen from Kiran98)

Weighted Power Mean Given weights λ1, λ2, . . . , λn and positive numbers a1, a2, . . . , an, and powers p
and q such that p ≤ q:

(
λ1a

p
1 + · · ·+ λnap

n

λ1 + · · ·+ λn

)1/p

≤
(

λ1a
q
1 + · · ·+ λnaq

n

λ1 + · · ·+ λn

)1/q

with equality when all of the ak are equal.

Schur’s Inequality For x, y, z positive and r real:

xr(x− y)(x− z) + yr(y − x)(y − z) + zr(z − x)(z − y) ≥ 0

with equality when x = y = z.

Now in all of these problems, all variables should be assumed positive.

1. 4(a3 + b3) ≥ (a + b)3

Solution: Expand; to get the ab(a + b) ≤ a3 + b3, take it as a product of two guys and use Weighted
Power Mean for each.
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2. 9(a3 + b3 + c3) ≥ (a + b + c)3

Solution: Expand and get:

8
∑
sym

a3 ≥ 3
∑
sym

a2b + 6abc

(count terms; it works)

Next by AM-GM, get rid of 6abc; cancels 2 of the LHS. Divide through by 3 and write out the rest (6
terms per side, split cyclically) then use rearrangement.

3. If abc = 1 then

1
a + b + 1

+
1

b + c + 1
+

1
c + a + 1

≤ 1

4. (MOP98) Prove that for x, y, z > 0,

x

(x + y)(x + z)
+

y

(y + z)(y + x)
+

z

(z + x)(z + y)
≤ 9

4(x + y + z)

5. If abc = 1 then

1
a3(b + c)

+
1

b3(a + c)
+

1
c3(a + b)

≥ 3
2

6. If abc = 1 then

c

a + b + 1
+

a

b + c + 1
+

b

c + a + 1
≥ 1

7. If abc = 1 then

1
a + ab

+
1

b + bc
+

1
c + ca

≥ 3
2

8. Prove:

a2

b + c
+

b2

c + a
+

c2

a + b
≥ a + b + c

2
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