NUMERICAL APPROXIMATION OF VISCOELASTIC FLUIDS
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Abstract. Stable finite element schemes are developed for the solution of the equations modeling the flow
of viscoelastic fluids. In contrast with classical statements of these equations, which introduce the stress as a
primary variable, these schemes explicitly involve the deformation tensor and elastic energy. Energy estimates and
existence of solutions to the discrete problem are established for schemes of arbitrary order without any restrictions
on the time step, mesh size, or Weissenberg number. Convergence to smooth solutions is established for the
classical Oldroyd-B fluid. Numerical experiments for two classical benchmark problems verify the robustness of
this approach.
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1. Introduction. Stable numerical numerical schemes are developed for systems of the form

pi — div (—pl + 2u,D(v) + (a + 5)DW(E)ET> — of,
div(v) =0, (1.1)
E—a(Vv)E - B(Vv) E 4+ —

supplemented with appropriate initial and boundary conditions. These equations model the flow
of a polymer solution where v(t,z) € R? denotes the velocity and D(v) = (1/2)(Vv + (Vo))
the symmetric part of its gradient, p denotes the pressure, and E(t,z) € R?? is a deformation
tensor that gives rise to the elastic response. The density p, solvent viscosity s, and polymer
viscosity u,, are positive constants, and the constants o and /3 characterize the polymer—solvent
interaction. The strain energy W : R%*? — R is typically an isotropic frame indifferent function;
in particular, DW(E)ET is symmetric, and W(FE) should diverge to infinity as |E| — oo or
det(E) — 0.

These equations specialize to classical models of viscoelasticity with Weissenberg number We > 0
when

W(E) = (1p/2We) (|B* — |I]* —log(det(E)?)),  DW(E) = (up/We)(E~E~T),  (1.2)

in which case the Cauchy stress, T, = (a + B)DW(E)ET = (a + B)(up/We)(EET — I), satisfies
1
—T

L= (o + 8222 D(w).

T, — a(Vu)T, — aT.(Vv)" — B(Vv) T, — BT.(Vv) + We

We
Traditionally this equation is used in place of the third equation of (1.1).

The development of stable numerical schemes using the classical statement of this problem with
very modest Weissenberg numbers is notoriously difficult, so much so that it has the appellation
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“high Weissenberg number problem” (HWNP) [24]. The energy estimate for equations (1.1) is
obtained by adding the dot product of the momentum equation with v to the Frobenious product
of the equation for the deformation with DW(FE) and integrating by parts to give

d

& | Ik + W) + [ CulDwl + 0/2)DWEPR) = [ (o0 03

In general DW(E) is very nonlinear and/or singular, so in a numerical context is not an admissible
test function for the discrete weak statement. Additional issues arise with formulations based
upon classical statements of the problem. The energy estimate is only meaningful if EET =
(We/((a + B)pp))Te + I is positive definite, and this is unlikely when T, is approximated by
polynomials.

Below we show that convexity properties of the strain energy, and monotonicity of its derivative,
can be exploited to obtain estimates on the solution of equations (1.1) that are inherited by
Galerkin approximations. Convex analysis also provides natural regularizations of singular func-
tions such as the logarithm in equation (1.2). These ideas were used in [28] to develop stable and
convergent numerical schemes for the Ericksen Leslie equations, which model the flow of nematic
liquid crystals and have a similar structure to (1.1).

Overview: The remainder of the section includes a discussion of related results and a summary
of notation used. Section 2 contains a terse derivation of (1.1) and verifies equivalence with
the classical equations. In Section 3 stable numerical numerical schemes are constructed for the
equations modeling the Oldroyd—-B fluid. Existence of solutions for the discrete problem is then
direct, and in Section 4 we establish convergence to classical solutions (when they exist). To
eliminate an excess of technical detail the analysis is presented for the Oldroyd—B fluid with
homogeneous Dirichlet boundary data. Section 5 discusses extensions to more general fluids
and addresses the numerical implementation of non-homogeneous boundary data. Numerical
examples are presented in Section 6 for two benchmark problems. These examples illustrate that
the finite element approximations of the weak statement of equations (1.1) developed in Section
3 are insensitive to the magnitude of the Weissenberg number.

1.1. Related Results. While the computational literature on high Weissenberg number
problem is vast, the source of the instability associated with the HWNP remains a point of
debate since the mathematical theory for the underlying equations is incomplete. Existence of
(weak) solutions to the equations remains an open problem, but partial results are available.
Current results fall into the following categories; local-in-time solutions for initial value problems,
global-in-time solutions for small perturbations of the rest state, and results on steady flows
of slightly perturbed Newtonian flows. Reviews of classical existence results are available in
[14, 17, 18, 25]. More recently the existence of classical solutions for the Oldroyd-B model at
infinite Weissenberg number with small initial data has been proven by Lin, Liu and Zhang
[22], and global-in-time existence results for weak solutions to the corotational Jeffrey’s model
have been obtained by Lions and Masmoudi [23]. This latter model is obtained by selecting
B = —a in the third equation of (1.1) so that only the skew part of the velocity gradient appears.
Barrett and Boyaval proved global-in-time weak solutions for a regularized Oldroyd model by
adding a dissipative term in the constitutive equation and truncating the conformation tensor
in the momentum equation. After constructing finite element approximations to the regularized
system, they prove convergence along sub—sequences to solutions of the regularized problem as
the discretization parameters tend to zero [3].



A comprehensive review of the engineering approach, where various types of finite element and
stabilization terms are proposed to circumvent the HWNP, is available in Owens and Phillips
[24]. An overview of the mathematical motivation for the various schemes and formulations
utilized may be found in the work of Renardy [25], and a survey of more recent developments
is presented in [21]. In a series of papers Ervin et. al. [7, 10, 8, 9] established convergence of
finite element schemes at optimal rates to classical (smooth) solutions of the equations for the
Oldroyd-B fluid. In this work the streamwise upwind Petrov Galerkin (SUPG) method was used
to stabilize the convective terms; however, the classical energy estimate was not established for
their schemes. Instead, error estimates were developed to prove that the numerical solution was
close to a smooth classical solution, and hence bounded provided the latter existed. A key step
in their analysis combines error and inverse estimates to develop uniform bounds on the solution.
These are required to control the nonlinear terms and we use similar arguments in Section 4 for
the same purpose.

Fattal and Kupferman [12] conjectured the HWNP instability stems from using polynomials to
approximate the exponential growth of the stress tensor in regions with a high rate of deforma-
tion or stagnation points. To circumvent this issue they used a change of variables that scale
logarithmically; more importantly, the conformation tensor remains positive definite with this
formulation. Their “log conformation representation” facilitated stable calculations with no ap-
parent limit to the value of the Weissenberg number, but the accuracy of their results in regions
of large stress and strong rotations was not clear [11, 13].

Boyaval, Lelievre and Mangoubi constructed stable (free-energy-dissipative) schemes for schemes
using the classical differential model for the stress, and established stability of Fattal and Kupfer-
man’s LCR formulation for an Oldroyd-B fluid [5]. Implicit Euler time stepping and piecewise
constant finite element approximations for the stress were essential for their proofs, which use
nonlinear functions of the solution as test functions. In [4] the same authors report that insta-
bilities associated with HWNP and loss of positivity may persist depending upon how the the
convective terms in the constitutive equation are approximated.

From a mathematical standpoint, one reason for the limited success to date is that traditional
stability (energy) estimates require the conformation tensor to be positive definite. There is
growing evidence to suggest the loss of positivity is a precursor to HWNP instability. Fattal
and Kupferman guarantee positivity by introducing the logarithm of the conformation tensor
as a primary variable and use the property that the exponential of any matrix is positive. An
alternative approach is to write the conformation matrix as B = FE' to determine an evolution
equation, such as the third equation in (1.1), satisfied by E. This is the approach taken by Balci,
Thomases, Renardy and Doering [2] who introduce a symmetric square root of the conformation
tensor as a primary variable and derive an equation for its evolution (see (2.3) in the next section).
A variation of this idea exploited in [21] is to construct a time stepping scheme for which the
updates to the conformation tensor at each time step take the form (§E)(6§E) " so that it remains
positive definite.

In [21] Lee, Xu and Zhang use semi-Lagrangian schemes so that structure preserving methods
from ODE’s [16] can be exploited to preserve the positive definite property of the conformation
tensor. Using these ideas the stability and existence of discrete solutions is established for a scheme
with implicit Euler time stepping and divergence free finite element spaces for the velocity. As
in prior work, the semi-Lagrangian schemes in [21] require piecewise constant approximations of
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Fi1a. 2.1. Transport of a fiber (left) and loop or disk (right).
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the conformation tensor, or the construction of special projections to effect similar properties for
piecewise linear elements. Numerical experiments for the drag coeflicient for flow past a cylinder
show convergence under mesh refinement for Weissenberg numbers 0.1 and 0.5. Their values
for the drag are consistent with literature for We < 0.75, and they report difficulties obtaining
convergence for Weissenberg values larger than 1.0. One may conjecture that there may not be a
stationary solution, or it may be unstable, for this choice of parameters. This would be consistent
with the numerical results in Section 6 below.

1.2. Notation. Below Q C R¢ will denote a bounded domain with Lipschitz boundary.
Standard notation is adopted for the Lebesgue spaces, LP(Q2), and the Sobolev space H'((Q).
Solutions of evolution equations will be viewed as functions from [0, 7] into these spaces, and we
adopt the usual notion, L2[0,T; H'(Q)], C[0,T; H'(Q)], etc. to indicate the temporal regularity.
Divergences of vectors and matrices are denoted div(v) = v;; and div(7T'); = Tj; ; respectively.
Here indices after the comma represent partial derivatives and the summation convention is used.
Gradients of vector valued quantities are interpreted as matrices, (Vv);; = v; ;, and the symmetric
part of the velocity gradient is written as D(u). Inner products are typically denoted as pairings
(.,.) or, for clarity, the dot product of two vectors v, w € R? may be written as v.w = v;w; and
the Frobenious inner product of two matrices A, B € R%*? ag A : B = A;jBij.

Notation from continuum mechanics [15] is used in Section 2. In this section X € Q, C R?
denotes the Lagrangian coordinate and z = x(X,t) the Eulerian coordinate. The velocity is then
v(t,z) = @(t, X); more generally, the convective time derivative is § = g; +v.Vg where V denotes
the gradient in the x variables. The density in the reference configuration is denoted p,(X) > 0
and its push forward under the flow map by p(t,z). The incompressibility assumption on the
fluid implies that p, and p are constant.

2. Viscoelastic Equations. This section motivates the non-standard statement of the
equations of viscoelasticity presented in equations (1.1), and can be read independently of the
remainder of the paper.

Letting E denote a measure of the strain (more precisely, the deformation) of a viscoelastic fluid,
Hamilton’s principle states that

to 1o B to B i i ;
s [ st ) paxa= [*[(or.00)+ 5, 00) art

under (smooth compactly supported) variations of the flow map, x — = + dx. Here T, =

2uD(v) denotes the viscous component of the Cauchy stress and W(FE) denotes the strain energy

associated with the micro-structural configuration. In order to compute the variation 6W(FE) =
4



DW(E) : 6F it is necessary to specify the change of the deformation under to the variation dx.
Classical elasticity assumes that E responds like the Jacobian, F,

SF — [8(5%} _ [8517 0z

90X, 0x; 8XJ = (Vow)F,

which models stretching of material fibers, Y — FY as illustrated in Figure 2.1. Different models
of the micro-structure give rise to different kinematics; for example, disk like particles in Stokes’
flow with (non—unit) normal n = EN satisfy én = —(Véz)T EN [19]. The general expression

SE = <oz(V5:E) + 5(v5$)T) E, (2.1)
assumed in equations (1.1) includes many of the classical viscoelastic models [20]. In this situation

5| W(E)p,dX = (DW(E), a(Véz)E + ﬁ(V&a:)TE) prdX
Q. Q

= / <(a + B)YDW(E)ET, V&a:)) pdzx,
Q(t)

where the last equality follows from the property that DW(E)E" is symmetric. The density is
constant when the fluid is incompressible and is absorbed into the definition of W.

The third equation in (1.1) is a gradient flow of the strain energy. Specifically, when E is viewed
as an element of the Lie group GLg4(R), the term a(Vdz) + B(Véx)T in equation (2.1) can be
identified with an element of the Lie algebra, and the corresponding Lie derivative becomes

E=E—a(Vo)E - (V) E.

When the polymer is passively transported E= 0, and non—zero values of E model a mismatch
between the fluid and polymer strain rates which gives rise to dissipation. A gradient flow, E=
—(1/2p,) DW(E), results when relaxation of the elastic stress is assumed to be the mechanism
driving this mismatch back to equilibrium.

2.1. Equivalence with Classical Formulation. When the strain energy is given by equa-
tion (1.2), the conformation tensor B = (a + 8) "1 (We/u,)T. + I = EE" satisfies

B~ a(Ve)B — aB(Vo) — B(Vo) B — BB(Vo) + %B - %1. (2.2)

If B(0) is symmetric positive definite, then so too is B(t), and the following lemma shows that
for any decomposition of the form B = EET the matrix E satisfies

E—EW — a(Vv)E — (Vv) ' E + ﬁ(E —~-E" =0 (2.3)

for some skew matrix W; a similar result appears in [2].
LEMMA 2.1.

1. Let E € CY[0,T; R be invertible and satisfy equation (2.3) for some W € C[0,T; Rglfg],
then B = EET satisfies (2.2).



2. Let B € C’l[O,T;Rngn@b] be symmetric positive definite and satisfy equation (2.2). If B =
EET with E € C'0,T;R¥Y, then there exists W € C’[O,T;ngxfj] such that E satisfies
(2.3). Moreover, there exists a decomposition B = EET with E € C'[0,T; R such

that equation (2.3) holds with W = 0.
Proof.
1. Using equation (2.3) to eliminate E from the identity B = EET + EET shows EE'

satisfies (2.2).
2. Substituting B = EE" into equation (2.2) shows

(2.3) 0 ET + E(2.3)] =0,

where (2.3)g denotes equation (2.3) with W = 0. It follows that (2.3)g E'' is skew, and
equation (2.3) follows upon setting (2.3)g E" = EWET.

To eliminate W, let B = EE" be any splitting of B (for example, the SPD square root),
and let W be the corresponding skew matrix. Then E = EQ satisfies (2.3)g when @Q is
selected to be the orthogonal matrix satisfying Q = WQ.

2.2. Example: Poiseuille Flow. In two dimensions the triple (v, p, T,) with

12 .2 2
v = (2(h 0 Y )> 5 p=—x, TE = |:2\A_/lei;y %py] ) (‘Tay) € Rza

is a solution of the equations governing the flow of an Oldroyd-B fluid with parameters o = 1
and # = 0 and boundary conditions v(£h) = 0.

e The pair
) 0 I A
b [ ) [, 0, ]
2 eyt

is the steady solution of equation (2.3) with E upper triangular for which EET =
(We/pp) T + 1.

e The splitting EE"T = (We/u,)T. + I satisfying equation (2.3) with W = 0 is F = EQ
where Q = Q(t,z,y) is the orthogonal matrix

~ |cos(8) —sin(0) . B
Q= [sin(@) cos(0) } ,  with  0(t,z,y) = w(y)t + Oy (m - v(y)t,y) .

Here 6y(z,y) = 6(0,x,y) is the initial value and

:h2—y2
2

and w(y) = L

/W2 11

This solution is independent of time if 6(z,y) = (w(y)/v(y)) = + C; however, v(£h) =0
so this function diverges at y = +h.

v(y)



3. Numerical Approximation. We consider the classical viscoelastic fluids for which the
strain energy takes the form shown in equation (1.2), and without loss of generality set p = 1. In
this situation a classical solution of equations (1.1) satisfies the weak statement

. . Hp _
/Q {(5.0) = (b, div(w) + 21,(D(0), D(w)) + £2(BET ~ I, aVw + 5(Vu)") } = /Q (f.w),
/Q(dz'v(v),q) =0 (3.1)

/Q (E —a(V0)E — B(Vv) ' E + ﬁ(E _ E_T),G> 0,

for all smooth test functions (w, ¢, G) with w vanishing on the boundary. Below the term
(I,aVw + B(Vw)") = (a + B)div(w)
will be absorbed into the pressure. Setting (w, ¢, G) = (v, p, (up/We)E) shows

i 1 2, Hp 2 / 2 Hp 2 _/ Hp 2
i o3 (P +alBP) + [ (2l D@P + e BP ) = [ () + b1 )

The bounds from this expression are not as sharp as those available from the classical energy
balance (1.3); however, unlike the energy balance they are inherited by Galerkin approximations
of (3.1).

3.1. Numerical Scheme. Let 0 = t° < t! < ... < t¥ = T be a partition of [0,7] and
T be a triangulation of the domain 2. On each interval of the partition approximate solutions
(v, P, En) of equations (1.1) will take values in the spaces

Polt" L4 V] x Pt 47 Pr] x Pt 7 By, (3.2)
where (V,,Pp,) C H&(Q)d x L?(Q)/R is a div-stable finite element pair and E; C Lz(Q)dXd.
While it is not necessary for the temporal dependence of Ej to have the same degree as (vp, pp),
there is no reason for it not to.

Since E; " does not exist for every Ej, € Ey, it is necessary to regularize this term. Solutions of
h

(1.1)3 have non—negative determinant, thus if det.(F) denotes a non—negative approximation of

det(F), a natural approximation of the inverse transpose is

det(E)

1
E-T=——__Cof(E h E-T.E) =
Cof(E) sothat (E.',E) ddetE(E)’

¢ det(FE)

where Cof(E) ~ det(E)E~" denotes the matrix of cofactors of E. Below we construct regular-
izations which penalize negative determinants,

det(E)

- det(E)
e—0 detE (E)

51—1>I(1) detE(E)

=1 when det(E) >0 and = —o0o when det(E) < 0. (3.3)

The discontinuous Galerkin methodology will be used to construct stable approximations of the
transport terms and time derivatives. We adopt the standard notation for the jump terms that
arise.



e Superscripts will be used to denote function values at the partition points, v}, = vp(t1)
with jumps denoted analogously,

[on]" = on(t}) —vn(t2)  [En]" = En(t}) — En(t2).

o If K € Tj and x € 0K then Ejy(x) = lims_,o, Ep(x+sn), where n is the outward normal
vector on 0K.
If F=K,.NK_is aface in T the jump of Ej, across F is denoted [E}]; terms involving
the spatial jumps will be paired so that their value is independent of the choice of face
normal.

e If a € R then a~ = max{0, —a} denotes the negative part of a and a™ = max{0,a} the
positive part.

On each temporal partition the numerical scheme to approximate solutions of equations (1.1)
seeks
(vh, Py En) € Pelt™ 87" Vi) X Pt 1, t% Py] x Py[t™ 1, ™ By,

satisfying
R <<vhvm,wh)—é«vh.vmh,vh)—<ph,div<wh>>+<2usD<vh>,D<wh>>

+W’;(EhEZ,anHB(th)T)}+/Q([vh]"—1, G //f,wh

[ [at.a=o )
-1/

/tjl{ /Q(E — o(Vop)Ep — B(Vop) " Ep, Gi) + dlv(vh)(Eh, Gr) + %(Eh ~E.T).G)
for all

(Wh, qr, G) € Po[t™ 187 V] x Pt 1 7 Pp] x Pyt " Ep).

3.2. Existence and Stability. The following notation is adopted for the terms appearing
in the weak statement.

e The bilinear dissipative term is

_ Hp
a(0n ), (w0, ) = [ 20a(D(wn). Dlwn) + Sh5 (B, ).
e The trilinear terms in the weak statement are
c((u, B), (v, F Z / { (u-V)v,w) — ;((u -V)w,v)
KeTy,
+% (a(F, Vuw E) — (G, Vo E) + B(F, (Vw) E) — B(G, (VU)TE)>

Hp Hp_ 4.
—l—We((u V)F,G) + 2Wedlv(u)(F,G)}.
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e The jump term is
T, F,G) = H2 37 / G).
KeT

This form of the trilinear term was chosen so that only the matrix F' in the second argument of
c(.,.,.) is differentiated. In place of the usual skew symmetry we have the identity

(. B), (v, F), (v, F)) + Ju(w, F.F) = 52 3~ [ fun| |[F]2,

1 Je
667;1‘1 1

where 7;Ld_1 denotes the interior edges/faces of 7. Using this notation the discrete weak statement
(3.4) can be written as

/t {(Uht,um) + L2 By, Gh) + a((n, En), (wh, G)) — (pr, div(ws)) + (g, div(vs)

n—1 We
+ c((vns En), (vn, Ep), (wn, Gr)) + Jn(vn, En, Gh)} + (wa]™ L wn(t7) (3.5)
g (B o) = [ {(foun) + SR G0}

where (.,.) denotes an L%(Q) pairing. Setting (wp, qn, Gr) = (v, ph, Ex) and summing gives the
stability estimate

n—1
n |12 NP n (|2 m||2 NP m
th_Hm(m+%\\Eh_up(m+n;<|y[vh] IZ2(0) + 357 11 En] HLZ(Q))

t'n/
+ [ {2mlDnI ey + BBl ey + 2a1det(B) et (B)lsco (3.
t7l t7l
LM © 1 I n
D N A R N e AL e A [ S~ T
F Tt Hs ¢

where it was assumed that det(E)/det.(Ep) < 1.

THEOREM 3.1. Let o, B € R, s, pp > 0, and f € L*t" L t"; H-1(Q)]. Let V x P, C

H&(Q)d x L2(2)/R be a div-stable pair of finite dimensional subspaces and let By, C LQ(Q)dXd be
a finite dimensional subspace. Let Ej, — det(E}y)/det(Ey) € (—o0,1] be continuous on Ej, and
set Ee_hT = (1/det (E}))Cof(Ey). Then for each t"~' < t" and (v" LEY) € Vi, x By, there
exists a triple

(ks Py En) € Polt™ 1" Vi) x Pt ¢ Py] X Py[t™ ', t™; By,
satisfying (3.4).
Proof. Let Zp, = {v, € Vi, | (div(vp),pr) = 0, py, € P} denote the discretely divergence free
subspace and ®j, : P[t" 1, 1" Zy, x Ep] — Py[t" 1,17 Zy, x Ep,] be characterized by

tn

®p(vn, Bn) - (wn, Gp) = /t

n—1

{(Uhtawh) + %(Ehta Gut) + a((vp, Ep), (wp, Gp))
o cl(vn, En), (0, En), (wny Gn)) + Ju(on, En, Gn) = (Frwn) = 5625 (Bl Gh) }
 (fon)™ N wn (E271) + 22 ([B,]", Ga(t27Y)),

We
9



where the dot on the left denotes an inner product on P;[t"~!,"; Z;, x Ej,]. The stability estimate

guarantees
n lu’ n
P (vn, Ep) - (v, Ep) = <||Uh(t_)\|%2(g) + WZ||Eh(t_)||i2(Q)>

n— Iu n—
(onl" 130y + ﬁﬂ&]w@@)

t7l
2
+/t {2,USHD(WL)HL2(Q) 2W2||EhHL2 Z /|Uh n| [Ep] }

n—1
Fer !

DN = DN =

1 n— I n—
—awwmﬂmam+—WEﬁ_m@mQ

B /tt {(F.on) - SE5 (B B}

The Brouwer fixed point theorem guarantees that ®j, has a zero if the right hand side is positive
when (vp, Ep,) is sufficiently large [?, Proposition I1.2.1], which is the case since the last term is
bounded below by —(11,/2We?)d|Q|. The existence of a pressure then follows from the assumption
that the pair (Vp,Py,) is div—stable. O

3.3. Regularizations of the Determinant. To complete the specification of a numerical
schemes it is necessary to select a regularization of the (reciprocal of the) determinant. Since the
term E~ T arises as the derivative of the logarithm of the determinant, and the map z — — In(z)
is convex on (0,00), it is natural to consider the Yosida approximation

1 2
detc(E) ~ \/det(B)? + € + det(E
The convergence proof below requires £ T to be bounded which can be achieved by the following
modification of the Yosida approximation;
1 B 2
dete(E)  \/det(E)2 + 4¢2 + &2|EW@ D) + det(E)
With this choice det(E)/det.(E) < 1 and E- " = (1/det.(E))Cof(E) is bounded by a constant

of the form C(d)/e. Lipschitz continuity and approximation properties of this regularization are
developed in Lemma 4.4 below.

(3.7)

To verify that this approximation penalizes negative values of the determinant, suppose det(E) <
0 and write § = —det(FE) and e = |E|. Then

—det(E) 26 25(\/62 + (4 + e2d=1))e2 4 §) - 262
dete(E) /5% + (4 + e2(@=1)e2 5 (4 + e2(d—1))¢2 T (4 + e2d1))e2’
and 5 5 52
2 2
ZT__ = (2 d=1y « 7 (94 012
e (2+et 1) @+ s (2 + ed=1)2¢2 +(2+e)
It follows that there exists a constant C' = C'(d) such that
det(E)™ < C (1 + |det(E)™ /dete(E)| + |E|*) e, d=2,
det(E)~ < C (1 + |det(E)™ /detc(E)| + | E|*) Ve, d=3.

10



Equation (3.6) bounds right hand side of these expressions for the deformation of the discrete
solution so

(et (E,) )Y@ s 1p1 0y < Ce/ 4.

4. Convergence. In this section convergence is established for solutions of the numerical
scheme (3.5) to a classical solutions of equations (1.1) with the classical elastic energy (1.2).
To reduce the technical detail we focus on the practically important case of a second order
scheme in space and time with maximal time step 7 and mesh parameter h of similar size,
¢ < h/T < C. Equation (3.7) will be used to regularize the (reciprocal of the) determinant of E
with regularization parameter e comparable to the mesh size, ¢ < ¢/(7In(1/7)) < C. With this
choice of parameters we establish the essentially optimal second order rate of convergence.

The Galerkin orthogonality condition for the error follows upon restricting the test functions in
equation (3.1) to the finite element spaces and subtracting equation (3.5);

n—1

tn
/ {(vt — Upt, Wh) + —\l}?e (Et — Ent, Gr) — (p — pry div(wy)) + a((v — vp, £ — Ey), (Wi, Gr))
t

+c((v, E), (v, E), (wy, Gn)) — c((vn, Ep) (vn, Ep), (wh, Gr)) — Jn(vp, En, Gh)}

n—1 1% n—1 1% _ _
= (lonlywns)™ " = 7z ([Bal, Gry) ™ = /tn1 2“;;2 (BT = B0 Gp), (41)

for all (wn, Gr) € Pe[t" 1, " V), x E]. The error (v — vy, E — Ej) will be decomposed into the
sum of a projection error and consistency error,

(v—vp, E—Ep) =(v—1p, E—E,)+ (v, —vp, Ep — Ey) = (ep,&p) + (en, En),

where (vp, E,) € Pg[t" 1,t"; V), x E;] is a projection or interpolant of (v, E) into the finite
element spaces. The orthogonality condition is then used to bound the consistency error by
the projection error thereby establishing convergence at the optimal rates when the solution is
smooth. While any reasonable projection can be utilized, the following choice simplifies the
analysis DG approximations of the temporal terms.

DEFINITION 4.1. The projection

dxd

P Ot 1 L) x L2(Q)7 Y — Pt 17 V), x Ep]

is characterized as
PZ(% E) = (]Pm © PZh(’U)vpn © P]Eh(E)) ’
with spatial projections

o I, : L2(Q)d — Zp, C Vy, the L?~orthogonal projection onto the discretely divergence free
subspace of Vy,

Zp = {vn, € Vy, | (div(vp,qn) =0, gn € Pr},

o [, : L2(Q)dXd — Ey, the orthogonal projection,

and for any Banach space W the temporal projection P™ : C[t" =1, " W] — P[t" 1, t", W] is
11



characterized by P™(w)(t™) = w(t™) and

tn
/ (P(w) —w)p =0, ¢ € Ppy(t" L ).
t

n—1

For the classical finite element spaces, this projection exhibits optimal rates of convergence in
HOI(Q)d X LQ(Q)dXd and the spatial and temporal projections commute, so P}(v,E) = (Pz, o
P"(v), P, o P"(E)).

THEOREM 4.2. Q C R? bounded Lipschitz domain, T > 0, and let {Ty}n>0 be a quasi-uniform
family of triangulations of Q and {t}. nNio a family of quasi—uniform partitions of [0,T]. Assume
that there exist constants 0 < ¢ < C' such that the spatial and temporal mesh parameters h and
T satisfy cr < h < Ct. Let (Vy,Pp) C Hé(Q)d x L2(Q)/R be a div-stable pair of finite element
spaces and E;, C LQ(Q)dXd be a classical finite element space. Assume that Vy, and Ej contain
the continuous piecewise quadratic functions and Py, the piecewise linear functions.

Let o, f € R and We, ps, pp > 0, and assume that (v,p, E) is a smooth solution of equa-
tions (1.1) with strain energy given in equation (1.2). Let {(vp,pp, ER)}nso be solutions of the
numerical scheme (3.4) with spaces (Vi,, P, Ep), piecewise linear DG time stepping (¢ = 1), reg-
ularization of the determinant given in equation (3.7) with reqularization parameter ctIn(1/7) <
e < CtIn(1/7), and initial data (v9, EY) to be the spatial projections of (v(0), E(0)) characterized
in Definition 4.1 for the space-time projection operator Py.

Then there ezists constants C > 0 and 1o independent of h, T and € such that the consistency
error (ep, &) = P} (v, E) — (vn, Ep) satisfies

n—1
Heh(th—)H%2(Q) + W”e\l&(th_)lliz(m + Z {||[€h ]H%?(Q) + WpeH[gh ]||%2(Q)}

m=0
ty tn
Hp h 9 h ) 11y )
We/o /}_]9 lop, - | - [Ep] ‘1‘/0 {Ns||veh||L2(Q) + 2W€2||5h||L2(Q)}
1+ Cr\n ) ) n - ,
< (T=gz) {llen(0) 72y + €00 Fay + € Y (dif +7¢') |, (4.2)

m=1
for all T < 19, where
tn ) ) )
Z = /Ll {Hp _pph||L2(Q) + ||E||L°°[t"71,t";L°°(Q)]||vep||L2(Q)

7
th,

+ <||U||iw[t”*1,t";L°°(Q)} + IV [Foo n-1 gms oo + ||VE||%°°[t"*1,t";L°°(Q)]> llepl 1220y
+ <"V”H2Loo[tn*1,t”;L°°(Q)] + HEH%OO[t"*Ht";LOO(Q)]) ngHQH(Q)
+ ||Uh||%2(g) <||vep||%°°[tn*1,t";L2(Q)] + ||ep||%°<>[tn*1,t";L2(Q)} + ||v‘€p||%<><>[tn*1,t”;L2(Q)})

+ ||Eh||%2(9) <||gp||%oo[tn*1,tn;L2(Q)} + ||V€p||%oo[tn*1,tn;L2(Q)}>

I~ Po) BB g
V02 g 1l s 2y + e gy
12




and (ep, Ep) = (I —P})(v, E) is the projection error of the solution onto the discrete finite element
spaces, and ppy, s the projection of the pressure in L2[0,T; L?(2)] onto the finite element spaces.

e For the meshes and spaces considered in this theorem

Np
Z d;LL <C (HUHI%Vz,oo[QT;WOQvOO(Q)]d + ”pH%{l [0,T;H ()] + ”EHI%VQ"X’[O,T;WQ’W(Q)}dXd) (T4+h4)7
n=1

where C only depends on ().
e The hypotheses on the regularization parameter can be relaxed to: 7/¢ < e < o(7%*) for
a sufficiently small constant ¢ which depends upon the solution.

4.1. Overview of Proof. This section presents the major steps required to prove Theorem
4.2 and the next two sections verify the estimates utilized. The latter are mostly routine appli-
cation of Holder’s inequality and estimates commonly used for the analysis of DG schemes. To
improve the readability we write ¢ instead of ¢} below.

The theorem will be established by inducting on the time step n; the case n = 0 following directly
from the assumptions on the initial data. The inductive step will follow upon selecting the test
function in the orthogonality condition (4.1) to be the consistency error, (wy, Gi,) = (ep, ). With
this choice of test function coercivity of the bilinear form a(.,.) and skew symmetry properties of
¢(.,.,.) can be used to obtain

n H n n— 1% n—
len(t2)172(0) + 3 1En A2 12 (@) + len ™ Mzz@) + 1168 2@

n

t
Hp 2 2 Hp 2
* We /tnl {Fgrgl /F [on - | - [En] +:“s”veh“L?(Q) + WH&LHB(Q)}

n— 1% n— n
< llen(t™za) + g 10 (E2 D2y + Cd

t’!L
+ [ {0 (lenla + 160 Ex) + 20— B8 (@)

n—1

If the last term was not present the result would follow from the discrete Gronwall inequality
since the time dependence is piecewise linear;

tn
/tn1 llenl|72(q) < ((1/2)”€h(t71)H%2(Q) +llen (Y72 + H[GZ_IH%Z(Q))Atnv (4.4)

and similarly for &,. In the first step of the proof we show that the determinant det(FE}) is
bounded away from zero as h — 0. We show that last term in equation (4.3) can be absorbed
into the other terms to complete the inductive step.

1. The regularization of the inverse determinant was chosen so that the map E — E- | was
a good approximation of E~" when det(F) is positive and satisfied a global Lipschitz
condition with constant C'/e in general. In this situation if |E — E,| is sufficiently small,

BT -E. T <|ETT -E |+ |E, T -E.|+|E. - E;."
< C(&+ &) + (Cfe)en, (4.5)
13



where C' = C(d,d,A) with A = ||E[ e (0,7;0(0)); and § > 0 a lower bound on det(E).
Substituting this bound into equation (4.3) gives an estimate for [|€||2(q) of the form

1ERE )220 + NER 220
14 (C/e)At™ P - o
<C <W (Heh(t_ )”LQ(Q) + || En(t™ )HLQ(Q) 4+ d” te ) ]
By hypothesis’ At"/e < C/In(1/7) — 0 in which case the inductive assumption shows
€20y + IER T2y < C(R* + 72 + €)%,

with constant independent of (h, 7, €) for 7 sufficiently small. The inverse inequality for
functions in Ej, and the assumption ¢ < h/7 < C, then provides an L*(£2) bound,

€™l zoe o) + IR Mooy < € (B +72(1 + W (1/7))) /A2 < CP(1/7)7* /2,
Since d < 3 the L*°(£2) norm of the consistency error becomes arbitrarily small as 7 — 0

and the triangle inequality then guarantees E} becomes uniformly close to F;

||E o Eh‘|Lw[tn717tn§Lw(Q)} S ||ngL°°[t"il,t”;Lw(Q)]+H5hHLoo[tn71’tn;Loo(Q)} S Cln2(1/7)7'2_d/2.

In particular, since E +— det(F) is continuous and det(E(¢,x)) > ¢ > 0 it follows that
det(Ep(t,z)) >6/2  (t,z) € (" Lt") x Q,

when 7 is sufficiently small.

2. The regularization of the inverse determinant was chosen so that the map E +— E- '
is Lipschitz with constant independent of € on bounded sets with det(F) bounded away
from zero. In this situation equation (4.5) becomes

ETT - E | <CE+E+E). (4.6)

Substituting this bound into equation (4.3) shows
ny|12 ﬂ E (7 2 n—1 & 5n—1
llen (2@ + g I€n N 2y + llleh™ Mzz) + e lz2(0)

Hp
+We /tnl F; 1/ |on - | - [ER]* + sl [ Venl 720y + 2WQ||<5’,L||L2(Q}

< len(t™ D72 () + ”5 (272 (q) + Ca

tn
2 2 2
0 [ {lenllamy + IEnlae + €}

Using equation (4.4) to bound the integrals on the last line and the inductive hypothesis
to bound the first two terms on the right completes the induction step.

In the next section the estimates needed to verify equation (4.3) are developed, and the following
section shows that the regularization of the inverse transpose given in (3.7) satisfies the Lipschitz
conditions stated in equations (4.5) and (4.6).

'The hypothesis ¢ < ¢/(71n(1/7)) is used to guarantee 1 — C¢/7 is eventually bounded away from zero; clearly
“e/7 sufficiently small” suffices.

14



4.2. Coercivity of the Weak Statement. In this section the estimates which establish
the coercivity properties stated in equation (4.3) are developed.

Bilinear Terms: Bounds on the bilinear terms in the weak statement are standard.

1. Temporal Terms: The projection in Definition 4.1 is frequently used to analyze DG time
stepping methods [27]. When the exact solution is continuous in time the temporal terms
in the orthogonality condition become

tn n— n 1 n n— n—
/t (0r = vnr, en) + (0" 1], €h+1) =3 (Heh—”%%m + [Ie, I]H%Z(Q) - ”eh—IH%Z(Q)) )

n—1

and similarly for the deformation £ — Ej,.
2. Spatial Terms: The coercivity of the bilinear terms is standard;

a((v —vn, E — Ey), (en, En)) = a((en, En), (en, En)) + al(ep, &), (en; En))

> (nlD(en) sy + hzlnlam ) - (1D + s Il )

and since ey, takes values in Zj,

(p — pn,div(ep)) = (p,div(er)) = (p — qn,div(en)), qn € Py,

Trilinear and Jump Terms: The skew symmetry properties of the trilinear term are used to
eliminate the term cubic in (ep, &,). The first step is to write

C((”? E)? (Uv E)? (ehvgh))_c((vha Eh)7 (Uhv Eh)? (eh7 5h)) (47)
=c((ep, &p); (v, E), (ens En)) + c((vn; En), (ep; Ep), (en: En))
+c((en; En), (v, E), (en, En)) + c((Un, En), (en, En), (€n, En))-
The trilinear term was constructed so that the only deformation to be differentiated is the one

in the second argument, ¢((.,.), (-, F),(.,.)). In this situation Holder’s inequality can be used to
bound the first three terms in the above as

c((ep, Ep), (v, E), (en, En)) + c((vn, En), (ep, Ep), (en, En)) + c((en, En), (v, E), (en, En))

t’!L
<cdi+ [ {2 + € (lenla + 1) }

t’!L*

When developing this expression Korn’s inequality is used to bound Ve, by its symmetric part and
the constants are managed so that the term involving D(ej) can be absorbed by a((ep,.), (en,.)).

To bound the final term in equation (4.7) note that c(.,.,.) is almost skew symmetric in the last
argument,

elan B (ens&n). e = 3 [ [ (@90880) + (/2 @l

=3 Z /ttl/ (on-n) [En— %,

KCT



and the DG scheme is engineered to stabilize the jump terms. Specifically,

c((vn, En),(en, En), (en, En)) + Jn(vn, En, En)
= c((vn, En), (ens En)s (eny En)) — In(Vhs En, En) + Jn(vn, Ep, Ep)

1 t7l
=5 [ ol e + Inon, By ).

FoTd-1 7t

To bound the final term, recall that the dependence of Jy(.,.,.) upon its second argument is
through its jump, and since P"(E) is (spatially) continuous

Jh(’Uh, Ep, 5h) = Jh(’Uh, Ep — Pn(E), 5h) = Jh(vh, Pn(P]Eh (E) — E), (“:h)
Using the finite dimensionality of Vj and Ej a parent element argument shows

o o (I — Pe,)Ell 1 o :
/ Tn(on, £, &) <C | llonllzz(ey 1€l L2 (o) max e XN R Y Fererid
tnfl tnfl K hK tnfl

4.3. Lipschitz Continuity of the Regularization. This section is devoted to the proof
of the estimates (4.5) and (4.6). The following lemma is a convenient statement of the property
that matrix inversion is locally Lipschitz on the set of non—singular matrices.

LEMMA 4.3. Let E, E, € R4 and suppose that det(E) > 6. Then there exist ¢ = ¢(d,§,|E|) > 0
and C = C(d,0,|E|) > 0 such that

|E—-E,|<c = BT — E;T| < C|E - Ey|.

The next lemma establishes the continuity properties of the regularized inverse transpose; the
estimates asserted in equations (4.5) and (4.6) follow directly from these.

LEMMA 4.4. Let EZT = (1/det.(E))Cof(E) where det.(E) is the regularization of the determi-
nant given in equation (3.7), and write

M(8,A) = {E € R™? | § < det(E) and |E| < A}.

Then for each 6, A > 0 there exists a constant C' = C(d,d, A) > 0 independent of 0 < € < 1 such
that the following holds.

1. |E=T —E-T| = O(e?) on M(5,A); that is,
E € M(5,A) = |E=T —E-T| < Cé.

2. The mapping E — E;T 1s locally Lipschitz on the set of matrices with positive determi-
nant; in particular,

E,F € M(5,A) = |E-T —FE"T|<C|E-F|.
3. The mapping E — EE_T satisfies the global Lipschitz property

Ec M(5,A) = [E-T —F-T| < (CJe)|E—F|, FeR™
16



Proof.
1. Fix EF € M(6,A) and compute

T T 11
E B = <detE detE(E)>COf(E)

_ /det(E)? + 4e2 + &|E|2d1) — det(E)
Vdet(E)2 + 4e2 + e2|E2(d-1) 1 det(E)
(14 |EPG-D) &

= Cof (E
(Vdet(E)? + 4e2 + e2|E[2d-1) 4 det(E))2 &)

Cof (E)

The right hand side is of order O(e?) uniformly for matrices E € M (5, A).

2. The mappings FE +— Cof (F) and E +— det.(FE) are smooth so their derivatives are locally
bounded. Since M(d,A) is compact and dete(E) > § on this set, Lipschitz continuity of
(1/det(E))Cof(E) follows.

3. Let E € M(6,A) and F € R¥™4, If F € M(§/2,2A) then so too is E and this reduces to
the case considered in 2 above, so it suffices to consider F' ¢ M (5/2,2A). Below we show

E e M(§,A) and F ¢ M(5/2,2A) = |E—F|>1/C.
Granted this the Lipschitz estimate follows;
|EZT — FZTI < |EZT|+|[F7 T < (Cfe) < (C/e)C|E — F.

To show |E—F'| > 1/C we consider the two possibilities which preclude F from M (6/2,2A).
(a) If |F| > 2A it is immediate that |E'— F| > A when |E| < A.
(b) If |F| < 2A it must be that det(F) < /2. Since det(E) > 4,

§/2 < |det(E) — det(F)| < C|E — F],

where C is the Lipschitz constant for the mapping E — det(E) on the (compact) set
of matrices with norm bounded by 2A.

5. Extensions. The assumption that v satisfied homogeneous boundary data circumvents
a multitude of technical and modeling issues. Since most flow problems involve inflow and out-
flow boundaries where velocity or stress components are specified this is a significant practical
limitation. Note too that boundary data for the deformation needs to be specified on the portion
of the boundary where v.n < 0 and the latter may depend implicitly upon time. One way to
accommodate these issues is to include a penalty term with parameter 7 > 0 to enforce non—zero
boundary data. Specifically, if 9Q = T'o U T and Dirichlet data for the velocity, v|r, = o, is
specified on T'y, and traction boundary data, g, is specified on I', a practical modification of (3.5)

17



is

/t {(Uhtawh) + L2 By, Gh) + a((vn, En), (wh, G)) — (pa, div(ws)) + (g, div(vs)

n—1 We
+ C((Uha Eh)7 (Uhv Eh)7 (wh7 Gh)) + Jh(’[)h, E, Gh) - 2\7\22 (E}:eTv Gh)}
t’!L 1
s [ s men + [ o) (B EGo) (5.1)
tn=1 % Jro 1 a0

tn

+ ([on]" ™ wn (£171) +%([Eh]”‘lﬂh(ti_l)) :/tnl {(f,wh)+/r (9.wn) }-

1

where Fj is boundary data for the deformation. Solutions of this weak statement satisfy
b2y + S BRIy + 2_:0 (1R W32 + BT 2
+/Otn{2MsHD(Uh)H2L2(Q) + %HEM’%Z(Q) + 2d”det(Eh)_/detE(Eh)HLl(Q)}
+ ) {5 (ol ey + 190 = wlEacry) + /6 () (B4 + | - o) }

tn
Hp 2 0 2 Hp 1m0 2 Hp n
WX [ [ o nl BB < ooy + 2N oy + gt
€ h

t7l
1 2 2 1 2 _ 9
+/0 {EH]RHH%(Q) + C||9HH—1/2(1—\1) =+ EHUOHLz(FO) + /ag(vh‘n) | Eo| }

The boundary terms in (5.1) were constructed so that the stability estimate and existence would
follow. With this choice the natural boundary condition for the momentum equation becomes
Hp.
We
If a vortex exits the domain the sign of v.n may change on I'y. This gives rise to a modeling
problem: what is the value of E on the reentrant boundary?

((p/2)v®v—p[+2,usD(v) + 22 (a+b)(EE" —I))n:g.

5.1. Higher Order Approximation. It was shown in Section 3 that numerical solutions
(vn, Ep) are bounded in L2[0,T; H' ()] x L?[0,T; L?(2)] and that (v, (£7,), Ep (1)) is bounded
in L2(Q) x L?*(Q) at the partition points. When low order (¢ < 1) polynomial approximation is
used for the time variable a bound at the partition points bounds the solution in L°°[0,T; L?(2)];
this was required for the convergence proof in Section 4. If a higher order polynomial approx-
imation is used for the time variable, then bounds in L*°[0,T; L?(Q)] are no longer immediate.
However, uniform bounds on the solutions are available if Radau quadrature is used to approx-
imate the temporal integrals of the nonlinear terms, c(.,.,.), Ju(.,.,.) and E,;T, in the discrete
weak statement (3.5).

If "1 =55 < 81 < ...< sy <t" are the (left handed) Radau points in [t"~1,¢") and {w;}{_, C
(0,1) the corresponding weights, then the quadrature rule

14
QU = (" — ) S wif (sa),
=0
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is exact on Pop(t" !, t"), so all of the bilinear terms in (3.5) are integrated exactly by this
quadrature rule. To obtain uniform bounds upon the solution let {¢;}¢_, C Pp(¢t" 1, ") denote
the Lagrange basis corresponding to the quadrature points (¢;(sj) = 6;;) and write

¢
op(t) = Zvicbi(t), v; € Y,
i=0

and similarly for Ej,. Set 6(t) =1 — (t —t"~1)/(t" —t"~1) € [0, 1] and select the test function wy,
to be

¢
wi(t) =Y O(si)vidi(t),
i=0

and similarly for Gj. Uniform bounds then follow from the following properties.

o (vne(si), wn(s:)) = 0(si)(vne(si),vn(si)) is the interpolant of @(vps, vy) € Pap(t™ 1, ") so

tn "
/ 1(Uhtawh)+([vh]awh+)n_l:/ 19(Uhtavh)+([vh]awh+)n_l
n— tn—
1/2 " 2 n—1112 n—1\2
= 1 - HUhHLZ(Q) + (1/2)||[vy ]”L2(Q) = (1/2)||vp,= ”L2(Q)=

and similarly for Ej. Left handed Radau quadrature was chosen so that the jump terms
take the form shown. The key step is to use the inverse estimate for the polynomial
||Uh(t)||%2(g) € Por(t" 1, t") to conclude

2 c i 2
HUhHLoo[tnA,tn;Lz(Q)] < pror— /tnl th”L2(Q).
e Since the weak statement is linear in the test functions the constants 6(s;) can be factored
out of the spatial operators so that the skew symmetry and monotonicity are preserved;
for example,

el(w, B), (v, F), (0,0F)) + Jo(u, F,0F) = AL 3 H/F\u.nH[FHz.

The convergence proof in Section 4 then extends to schemes of arbitrary order in space and

time. However, due the the assumption € = O(71n(1/7)), more accurate regularizations of the
determinant will be required to achieve higher rates.

5.2. Other Fluids. The analysis in Sections 3 and 4 focused on the Oldroyd-B fluids;
however, the extension to many of the classical viscoelastic fluids is direct provided the solvent
viscosity s is non—zero. The deformation of the Oldroyd-B fluid evolves according to the “max-
imum dissipation principle” which postulates a gradient flow of the elastic energy. Different
models of viscoelastic relaxation give rise to equations of the form

E —a(Vv)E — B(Vv)'E+D(E) =0,

where D(E) : DW(E) > 0 characterizes the dissipation as the stress relaxes.
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e Phan-Thien—Tanner (PPT) Fluid: D(E) = (u1,/We)(|E|?E — E~T) = DR(E) where the
“Raleighian” is

I
R(E) = e (/9B = |1]") = (1/2) In(det(E)?)) .
e Giesekus Fluid: D(E) = (u,/We)(EETE — E~T) = DR(E) with Raleighian
I
R(E) = <& ((1/(EET P = 1) = (1/2) In(det(E)?) ).

e
The extension of the analysis presented for the Oldroyd-B to these fluids is direct.
Other fluid models retain the maximal dissipation principle but modify the elastic energy W.
Typically

W(E) = S (@ (|B?) = o/ (1) log (det(E)?) ).

where 1 : (0,00) — R is a monotone increasing convex function. Then
1 _
DW(E) = £ (v (1E2) E — (1) E™T),

is frame indifferent vanishes at the identity.

e Finitely Extensible Nonlinear Elastic (FENE) Fluid: W(E) ~ In(1 — |E|*/|Ep|?) where
|Eo| > |I] is an upper bound on the deformation the polymer can sustain.

iy (o (1B~ BRY | In(det(£)?)
WE) = 5w <1“ < B =117 ) T B — 1P

with Piola stress

Ly E E-T
DW(E) = L2 - _
WIE) We<\Eo\2—rE\2 BoP TP

The Yosida approximation [?] provides a regularization of the first term with globally

Lipschitz derivative. This can be calculated using the Yosida approximation of ¢(u) =
—In(1 — u?);

elu) = -t — ) + 0(uo),

where u, is the root of 23 — uz? — (1 4+ €)z + v in (—1,1),

2 1 —2u%2+18—-9
uez—\/3—|—3e+uzcos<E+—arccos<u( Y 6)>>—|—%

3 33 2(3 + 3¢+ u2)’/?

Stable numerical schemes for these fluids can be developed from the weighted weak statement
[ (= a(vo)E - 590 B+ DWE). W (EP)G) =
Q

provided the jump terms for the DG scheme also include the weight;

/tt { /Q(E = a(Vop) By = B(Von) " By, Gr) + %div(vh)(Ehy Gh) + DW(ER), ¥ (|Ex|*)Gh)

n—1

+ 3 | e (B (B BIG) | + [ (B (B BIGHE) =0,
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The jump terms in the energy estimate take the form
(W (E+P)Er = (|E-[))E-, B4y — E-) > 0.

Weighted DG schemes to simulate gradient flows with (non-quadratic) convex energies have not
be implemented to date.

6. Numerical Examples. This section presents some preliminary numerical results for two
two dimensional benchmark problems; a 4:1 contraction and flow past a disk. While quantitative
data for these two problems computed using alternative schemes is available, a precise comparison
is complicated since it is not clear that solutions driven by non—homogeneous boundary data are
stationary.

In all of the examples the nonlinear algebraic equations were solved using Newton’s method with a
direct linear solver. In order to compare our calculations with the calculations which are typically
for inertialess (creeping or Stokes) flows we set p = 0. The regularization parameter was fixed at
e = 107% and the spatial and time steps were chosen to be of comparable magnitude. In order
to minimize transient elastic waves the initial data was taken to be (v°, E?) = (0,1) and the
non—homogeneous boundary data was ramped up to the desired magnitude with a trigonometric
profile, (1/2)(1 — cos(nt))vp(z) for 0 < t < 1. If the Newton scheme for a particular time step
failed it was subdivided into two steps recursively until convergence was attained.
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Fi1G. 6.1. Geometry of 4:1 Contraction

6.1. 4:1 Contraction Flow. We consider the planar flow of an Oldroyd-B fluid through
the 4:1 contraction illustrated in Figure 6.1. The large stresses at the re-entrant corner adjacent
to the very weak lip vortices challenge the fidelity of numerical schemes. In all of the examples
Poiseuille flow was specified on the inlet and outlet, the normal component of the velocity was
specified on the lower boundary (center line), and homogeneous velocity boundary data specified
on the rest of the boundary.

The numerical stability and convergence of the Newton scheme were very robust with respect

to the Weissenberg number. The solutions shown in Figure 6.1 for We = 1, 10, and 100 (and

all other parameters fixed) each took a similar number (384, 385 and 408) of Newton iterations
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Fi1a. 6.2. Contraction flow for We =1, 10, and 100 (streamlines over velocity magnitude).

ps = 0.1, up =09, p=0, =105

T = 2, 128 time steps,

Implicit Euler time stepping, (¢ = 0),
S=s====sammssascas Vi X Pp X Ep = Q,Q X Q1 X Q1,

(1000 elements),

Parabolic inlet and outlet profiles with unit
center line velocity at the outlet.

F1G. 6.3. Mesh and data for solutions in Figure 6.1.

and CPU time, and the Newton scheme converged without any subdivision of the time steps.
The mesh and parameters for this example are given in Figure 6.1. While solutions with such a
coarse mesh and large time steps at a short time do not represent a steady converged solution, 4-7
Newton iterations per time step is typical when 7 ~ h. For highly refined meshes having elements
much smaller than the time step, subdivision was required for certain time steps in order for the
solution from the previous time step to be an adequate starting value for the Newton scheme.

Fi1G. 6.4. Mesh and refinement near the reentrant corner, 4200 elements.

To exhibit the formation of lip vortices studied in [1, 6] it is necessary to significantly refine the
mesh near the reentrant corner as illustrated in Figure 6.4. Figures 6.6-6.7 show the lip vortex
that forms for different Weissenberg numbers. These figures show the streamlines in the refined
area near the reentrant corner shown in Figure 6.4. Figure 6.5 shows the macroscopic streamline
plot for We = 5, which is prototypical, and lists the rheological properties, taken from [1], and
numerical parameters used for these calculations.

Figures 6.6-6.7 clearly exhibit the dependence of the lip vortex with Weissenberg number. These

flows appear to exhibit significant fine scale structure and, as stated above, it is not clear that

steady state solutions, if they exist, are stable. The flows illustrated here were still exhibiting
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ps =1/9, i, =8/9, p=10, e =105

T =8, 128 time steps, 7 = T/N = 0.0625,
Implicit Euler stepping, (¢ = 0),

Vi x P x B, = Q5 x Q1 X Q1,

(2688 elements, 56,835 degrees of freedom),
Parabolic inlet and outlet profiles with center
line velocity at the outlet 3/2.

F1G. 6.5. Typical streamlines and numerical and rheological data for lip vortex calculations

L —

Fi1G. 6.6. 4:1 Contraction with We = 0.1 and We = 1.

small fluctuations in their elastic stress consistent with elastic oscillation.

Fi1c. 6.7. 4:1 Contraction with We =15 and We = 10.

6.2. Flow Past a Disk. The drag on the flow past a cylinder is a standard benchmark
problem. If T', C 99 is the boundary of an obstacle, the drag in a direction e € R? is given by

Drag = / Tn.e= / (—pI + 2usD(v) + %(a +b)(EET — I)) n.e.

The numerical scheme approximates weak solutions of

pe+ (p/2)(0-V)o — div (~(p/2) (v ® ) +T) = pf.
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F1G. 6.8. Mesh of for the drag calculation.

120

1101 ] ps = 0.51, up, =049, p=10, e =107

T = 64, 1028 time steps

Linear DG time stepping, (¢ = 1),

100 | 1 Vi xPpxEp=Q5 x Q1 x @,

2624 elements, 206,272 degrees of freedom,
Parabolic inlet and outlet profiles with center
90 | | line velocity at the outlet 3/2.

20 40 60

F1G. 6.9. Drag on cylinder verses time for We =1/2.

so if ¢ : Q — R? satisfies ¢|p, = e and ¢| oo\r, = 0, integration by parts shows

Drag = /Qp (v + (1/2)(0.V)o = ) .0+ (—(p/2)(v @) + T) : V¢,

when v|p, = 0. A refinement of the mesh shown in Figure 6.8 was used to compute the drag
as a function of time on the cylinder, which is shown in Figure 6.9. The rectangular region is
[—30,30] x [—2,2] and the cylinder has unit radius. Numerical values for the drag reported in
[21, 24, 26] for this problem lie in the range [117.9,120.6] which are consistent with the values
plotted in the figure. However, it is clear that the flow has not achieved a steady state, and the
small oscillations observable in the plot persist for long times.
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