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Abstract. We propose and analyze a semi Lagrangian method for the convection-diffusion equation. Error
estimates for both semi and fully discrete finite element approximations are obtained for convection dominated
flows. The estimates are posed in terms of the projections constructed in [7, 8] and the dependence of various
constants upon the diffusion parameter is characterized. Error estimates independent of the diffusion constant are
obtained when the velocity field is computed exactly.
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1. Introduction. We consider the approximation of solutions of the convection diffusion
equation:

ut + V.∇u− ǫ∆u = f, (t, x) ∈ (0, T ) × Ω,(1.1)

subject to boundary and initial conditions

u|Γ0 = g0, ∂u/∂n|Γ1 = g, u|t=0 = u0.

Here Ω ⊂ R
d is a Lipschitz domain, Γ̄0 ∪ Γ̄1 = ∂Ω, and V : Ω → R

d is a prescribed velocity field.
We are particularly interested in the situation where the coefficient ǫ > 0 is small. Approximations
of this equation experience many of the problems encountered in fluid simulations; for example,
boundary layers form when competition between the convection and viscous terms gives rise to
large gradients. Convection dominated flows typically exhibit features on scales too fine to resolve
with a practical mesh, so the analysis of any numerical scheme for this problem should be valid
for coarse meshes with mesh size h >> ǫ (large cell Peclet numbers).

Issues that complicate the analysis of schemes to approximate the convection diffusion equation
include:

1. The diffusion (or coercivity) constant ǫ frequently appears in the denominator of constants
bounding the error. For example, Gronwall arguments typically give rise to constants of
the form exp(Ct/ǫ).
Eliminating this undesirable dependence is the focus of this paper. We analyze “semi-
Lagrangian” algorithms and develop error estimates with constants bounded as ǫ → 0
when the velocity field is computed exactly. The schemes are “semi-Lagrangian” in the
sense that the transformation from Eulerian to Lagrangian coordinates is reinitialized
at each time step. This is required since the “flow map” relating these two coordinate
systems loses regularity (at an exponential rate) for all but the simplest velocity fields.

2. When the diffusion constant is small the solutions are not regular in the sense higher
Sobolev norms of the solution are unbounded as ǫ→ 0.
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A practical way to circumvent this issue is to use a posteriori error estimates to drive local
mesh refinement. The a priori estimates (independent of ǫ) obtained here are required as
a first step of this approach.

The use of Lagrangian and Eulerian-Lagrangian descriptions for incompressible fluids has been
proposed by several authors for both analytical and computational purposes. In [1, 17, 18],
several issues regarding the implementation of the finite element method for the Navier Stokes
equations in a Lagrangian coordinate system were discussed. In particular, note that in [17] a
dynamic-mesh finite element method has been proposed and several computational issues were
addressed in the Lagrangian framework.

The main advantage of posing equation (1.1) in Lagrangian coordinates is that the convective term
vanishes and interfaces are naturally tracked; however, as time evolves this change of variables
becomes very badly conditioned in the sense that the norm of the Jacobian and its inverse
grow exponentially. In the context of a numerical scheme this results in tangled meshes causing
the algorithm to fail. To circumvent this problem the algorithm in [17] remeshes the domain
at each time step. This naturally leads to the study of moving mesh discontinuous in time
finite element methods in the Lagrangian frame. Despite the extensive literature, especially in
engineering, rigorous numerical analysis of such algorithms has not been addressed before even for
the convection-diffusion equations. The theory for discontinuous Galerkin schemes1 [23] provides
a natural setting for the analysis of such schemes and this approach is adopted below. Results
for an algorithm for incompressible fluids using an Eulerian-Lagrangian description with implicit
Euler time steps were presented in [10, 11]. The main focus of our analysis is the development of
error estimates applicable to higher order elements; these results appear to be new.

1.1. Symmetric Error Estimates and Related Results. When the parameter ǫ > 0
in (1.1) is small the solution loses regularity in the sense that various Sobolev norms become
unbounded; indeed, physically interesting problems exhibit layers and other irregular structures.
Since these norms appear in interpolation estimates, the classical theory breaks down. This
motivated the development of “symmetric” error estimates by DuPont and Liu [14]. In general,
if u ∈ U is approximated by uh ∈ Uh, then a symmetric estimate for a norm ‖.‖ takes the form

‖u− uh‖ ≤ C inf
vh∈Uh

‖u− vh‖,(1.2)

or more generally

‖u− uh‖ ≤ C‖u− Ph(u)‖,

where Ph : U → Uh is a projection. This is motivated by the fact that the solution u is often
piecewise smooth, and symmetric estimates then show that high order numerical schemes com-
bined with mesh refinement can be used to effectively reduce the size of the right hand side. This
contrasts with classical approaches which would typically dismiss higher order approximations
due to a lack of global regularity.

A second problem encountered with numerical approximations of (1.1) is the dependence of
various constants upon ǫ. A well known example of this arises with Galerkin approximations of

1Classically discontinuous Galerkin methods for parabolic problems were discontinuous only in time, and this
is the approach considered here. Recently methods were developed that include discontinuous in both space and
time [2].
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the classical weak statement:
∫ T

0

∫

Ω

(

(ut + V.∇u) v + ǫ∇u.∇v
)

=

∫ T

0

∫

Ω
fv +

∫ T

0

∫

Γ1

gv, v|Γ0 = 0.(1.3)

The constant appearing in (1.2) for approximate solutions computed using this weak statement
takes the form C ∼ exp(t‖V ‖L∞(Ω)/ǫ). Numerical experiments show that, for coarse meshes,
Gibbs phenomena associated with the layers grow exponentially, indicating that this constant is
sharp. It is also well known that for fine meshes (cell Peclet number small) the classical scheme
gives very good answers; however, such meshes may be prohibitively fine.

To circumvent the exponential dependence of constants upon 1/ǫ formulations have been de-
veloped to better accommodate the convective term. Such formulations include moving mesh
methods [14, 16], time dependent basis functions [2], and Lagrangian or semi-Lagrangian (also
called characteristic Galerkin) methods [3, 13, 15]. An overview of these methods is given in
Section 2 below. One feature common to all of these methods is the introduction of coordinates
aligned with the characteristic directions of the vector field V . In unit time the Jacobian of this
change of variables becomes ill conditioned, even for smooth vector fields V . Frequently this
degeneracy is neglected so the resulting analysis should only be considered applicable for short
times. This omission may be subtle since it can implicitly appear in hypotheses concerning the
norm of various projection operators or hypotheses on mesh quality. The development of fast
and reliable parallel meshing algorithms [17, 22] provides a practical solution to this problem.
Below we show that the projection errors associated with frequent remeshing of the domain can
be controlled and derive error estimates with constants independent of ǫ.

1.2. Notation. Below C denotes a constant depending only on the (bounded Lipschitz)
domain Ω which may change from occurrence to occurrence. The space of square integrable
functions on Ω is denoted by L2(Ω), and the Sobolev space of functions having m > 0 square
integrable derivatives on Ω is denoted by Hm(Ω). The subspace of functions in H1(Ω) which
vanish on the boundary is denoted by H1

0 (Ω), and the dual of H1
0 (Ω) is denoted by H−1(Ω).

The L2(Ω) inner product is written as (·, ·) and 〈·, ·〉 ≡ 〈·, ·〉(H−1(Ω),H1
0 (Ω)) denotes the duality

paring between the indicated spaces. If X is a Banach space, notation of the form L2[0, T ;X],
H1[0, T ;X], etc. is used to denote the spaces of functions from [0, T ] to X with the indicated
regularity.

To accommodate transformations between the Eulerian and Lagrangian coordinates equivalent
weighted L2(Ω) and H1(Ω) norms are introduced which are denoted as H(t) = (H, ‖ · ‖H(t)) and
U(t) = (U, ‖ · ‖U(t)) respectively. The norms of these spaces depend upon time. The pivot spaces
H(t) have inner product (u, v)H(t) = (J(t)u, v)H for an appropriate mapping J (related to the
transformation). It is assumed that U(t) ⊂ H(t) with embedding constant independent of time,
and we will frequently use notation of the form

‖u‖2
L2[0,T ;U(.)] =

∫ T

0
‖u(t)‖2

U(t) dt,

to indicate the temporal regularity of functions with values in U(.). The dual of space of U(.) is
denoted by U ′(.).

2. Moving Meshes, Time Dependent Bases, and Lagrangian Methods. In this sec-
tion we survey some of the ideas proposed to enhance the performance of numerical schemes for
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the convection diffusion equation. In particular, the similarities between numerical schemes that
exploit moving meshes, Lagrangian coordinates, and time dependent basis functions are high-
lighted. These formulations are related through changes of variable conveniently described by
“flow maps”, which we introduce next. While this material is standard, it is convenient to recall
the constructions and introduce notation to distinguish the various subtitles that arise.

2.1. Flow Maps. Given a smooth velocity field Ṽ = Ṽ (t, x) the associated flow map, x =
χ(t,X), satisfies

ẋ(t,X) = Ṽ (t, x(t,X)), x(0, X) = X,(2.1)

(the dot indicating the partial derivative with respect to time with X fixed). Recall that when
Ṽ is smooth χ(t, .) : R

d → R
d is a diffeomorphism, and the Jacobian F = F (t,X) = [∂xi/∂Xα]

satisfies
Ḟ (t,X) = (∇xṼ (t, x))F (t,X), F (0, X) = I, x = χ(t,X).(2.2)

The determinant J = det(F ) satisfies J̇ = J divx(Ṽ ). In the mechanics literature X is referred
to as the Lagrangian or reference variable and x the Eulerian or spatial variable.

For a fixed domain Ωr ⊂ R
d let Ω(t) = χ(t,Ωr). The normal nr = nr(X) to Ωr and normal

n = n(t, x) to Ω are related by the formula

n(t, x) =

(

F−Tnr

|F−Tnr|

)

(t,X), X ∈ ∂Ωr, x = χ(t,X).

If
Ṽ (t, x).nr(X) = 0, X ∈ ∂Ωr, x = χ(t,X),

then Ωr = Ω(t) = Ω is invariant, so χ is a diffeomorphism from Ωr to itself. To minimize the
technical detail, it will be assumed that Γ0 = χ(t,Γ0r) and Γ1 = χ(t,Γ1r) are independent of
time. This requires Ṽ to vanish on Γ̄0 ∩ Γ̄1.

Introducing the change of variables u(t, x(X, t)) = û(t,X) we compute

ût = ut + Ṽ .∇xu, ∇xu = F−T∇X û, ∆u =
1

J
divX(JF−1F−T∇X û).

2.2. Lagrangian Formulation. If u = u(t, x) is the solution of (1.1), then û(t,X) ≡
u(t, x(t,X)) satisfies

ût + (V − Ṽ )F−T .∇X û− (ǫ/J) divX

(

JF−1F−T∇X û
)

= f̂ , (t,X) ∈ (0, T ) × Ωr,

where f̂(t,X) = f(t, x(t,X)). Upon recalling that J̇ = Jdivx(Ṽ ) this equation can be recast into
the form considered in [7].

(Jû)t +
(

− divx(Ṽ )û+ (V − Ṽ )F−T .∇X û
)

J − ǫ divX

(

JF−1F−T∇X û
)

= Jf̂ .(2.3)

The natural weak problem associated with this description is (û− ĝ0)|Γ0r = 0

∫ T

0

∫

Ωr

(

(ût + (V − Ṽ ).F−T∇X û)v̂ + ǫ(F−T∇X û).(F
−T∇X v̂)

)

J

=

∫ T

0

∫

Ωr

Jf̂ v̂ +

∫ T

0

∫

Γ1r

ĝv̂J |F−Tnr|.(2.4)
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By analogy with the classical weak problem (1.3) we expect the constant appearing in the error es-
timate for approximations of this weak statement to be of the form exp(t‖V − Ṽ ‖2

L∞[0,T ;L∞(Ω)]/ǫ).

While the choice of Ṽ ≃ V eliminates the ǫ dependence in the “Gronwall constant”, other con-
stants associated with the change of variables occur; for example,

‖J−1/2‖−1
L∞(Ωr)‖û‖L2(Ωr) ≤ ‖u‖L2(Ω) ≤ ‖J1/2‖L∞(Ωr)‖û‖L2(Ωr),

and
‖J−1/2F T ‖−1

L∞(Ωr)‖∇X û‖L2(Ωr) ≤ ‖∇xu‖L2(Ω) ≤ ‖J1/2F−T ‖L∞(Ωr)‖∇X û‖L2(Ωr).

Upon recalling that the Jacobian satisfies (2.2) we expect

‖F±1(t)‖L∞(Ωr) ≃ exp
(

‖∇xṼ ‖∞t
)

, and ‖J±1(t)‖L∞(Ωr) ≃ exp
(

‖divx(Ṽ )‖∞t
)

,

where ‖.‖∞ ≡ ‖.‖L∞[0,T ;L∞(Ω)]. The constants appearing in various error estimates will suffer
from the same deterioration with large t. However, if F (0) = I (so that J(0) = 1), then for short
times the norms are comparable and this motivates semi-Lagrangian schemes which re-initialize
the transformation to the identity at the beginning of each time step.

2.2.1. Semi-Lagrangian or Characteristic Galerkin Methods. The characteristic Galerkin
method of [3] can be viewed as an Euler time discretization of the Lagrangian form of the equa-
tions. If the initial condition for the flow map is taken as x(tn, X) = X, then F (tn, X) = I and
J(tn, X) = 1 so that ∇X û(t

n, X) = ∇xu(t
n, x). The implicit Euler approximation of the weak

problem (2.4) with Ṽ = V on the interval (tn−1, tn) becomes

∫

Ω(tn)
(1/τ)(un − un−1(χ(tn−1, .))v + ǫ∇un.∇v =

∫

Ω(tn)
f(tn)v +

∫

Γ1(tn)
g(tn)v, v|Γ0(tn)=0.

It is common to approximate un−1(χ(tn−1, x)) by un−1(x− V (tn, x)τ) where τ = tn − tn−1 is the
time step [3]; however, more accurate quadrature formulae can be used [21].

2.3. Time Dependent Basis Functions. Traditional finite element approximations of
evolution problems construct time dependent functions as tensor products. That is, approximate
solutions uh = uh(t, x) take the form

uh(t, x) =
∑

i

φi(x)ui(t),

where, for example, {φi} may be the traditional Lagrange interpolation functions. One approach
to circumventing the difficulties encountered with traditional Galerkin approximations of the
convection diffusion problems is to modify the basis functions {φi} so that they are better adapted
to the solution. One possibility is to consider basis functions that may depend additionally upon
time (see e.g. [2])

uh(t, x) =
∑

i

φi(t, x)ui(t).

Denote this semi-discrete class of space-time basis functions by Uh. then

uht + V.∇uh =
∑

i

φiu̇i +
(

φit + V.∇φi

)

ui.
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R

φ : K → Rφ̂ : K̂ → R

K
K̂

x = χ(X)

x1

x2

X1

X2

Fig. 2.1. Classical finite element basis functions are constructed by composing basis functions on the reference
simplex with a map χ : K̂ → K.

When φit +V.∇φi = 0 it follows that uht +V.∇uh ∈ Uh. To see how this simplifies the convection
terms, let ũh be the L2[0, T ;L2(Ω)] projection of u onto Uh and set ẽh = ũh − uh. If V.n vanishes
on ∂Ω then

∫ T

0

∫

Ω
(ẽht + V.∇ẽh) vh =

∫

Ω
ẽhvh|T0 −

∫ T

0

∫

Ω
ẽh (vht + V.∇vh) + div(V )ẽhvh

=

∫

Ω
ẽhvh|T0 −

∫ T

0

∫

Ω
div(V )ẽhvh.

The final expression doesn’t contain gradients, so could be used to derive error estimates inde-
pendent of ǫ. Notice that requiring φit + V.∇φi = 0 is just the statement that φi is independent
of t in the Lagrangian coordinates (t,X). In this context it is clear that algorithms with such
time dependent basis functions will give similar results to algorithms based upon Lagrangian
variables. Of course it is not clear how to construct such basis functions which also belong to
L2[0, T ;H1(Ω)]; the moving meshes discussed next is one possibility.

2.4. Moving Meshes. One method of adapting the mesh to the solution of an evolution
equation is to let the mesh evolve with the solution, [5, 20, 19]. For convection dominated
problems it is natural to let the mesh points flow along the streamlines (characteristics) of (an
approximation of) the velocity.

Recall that for each mesh cell K, the classical finite element construction introduces a reference
simplex K̂ and a mapping χ : K̂ → K determined by

x = χ(X) =
∑

i

ψ̂i(X)xi X ∈ K̂.

Here {xi} are the nodes of K and {ψ̂i}, are Lagrange basis functions with ψ̂i(Xj) = δij , where
{Xi} are the corresponding nodes of K̂ (see Figure 2.1). The approximation, uh(t, x), of u(t, x)
on x ∈ K is typically given by

uh(t, x(X)) =
∑

i

φ̂i(X)ui(t) ≡
∑

i

φi(x)ui(t), X ∈ K̂,
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where {ui(t)} are the values of uh at the grid points and φi = φ̂i ◦ χ−1 are the corresponding
basis functions on K.

Consider next the situation where the grid points may move, xi = xi(t). Then

x = χ(t,X) =
∑

i

ψ̂(X)xi(t), and ẋ(t,X) =
∑

i

ψ̂(X)vi(t),

where vi(t) = ẋi(t) is the velocity of the ith node. Let K(t) = χ(t, K̂) be the mesh cell at time t
and let ψi(t, .) : K(t) → R be given by ψi(t, .) = ψ̂i ◦χ−1(t, .). Define the velocity field Ṽ on K(t)
by Ṽ = ẋ ◦ χ−1 so that Ṽ (t, x(t,X)) = ẋ(t,X). Then χ is the flow map associated with Ṽ and if
ẋi(t) = V (t, xi(t)) for a specified velocity field V , then Ṽ is the (isoparametric) interpolant of V
on K; Ṽ (t, x) =

∑

i ψi(t, x)V (t, xi(t)).

Next, define the approximation uh of u by

ûh(t,X) = uh(t, x(t,X)) =
∑

i

φ̂i(X)ui(t), X ∈ K̂,

and introduce the time dependent basis functions φi(t, x) = φ̂i ◦ χ−1(t, x). Then

uh(t, x) =
∑

i

φi(t, x)ui(t), x ∈ K(t),

gives a representation in terms of time dependent basis functions as in the previous section. The
relationship with the Lagrangian formulation is apparent from the computation

ûht(t,X) = uht(t, x) − Ṽ (t, x).∇xuh(t, x) =
∑

i

φi(t, x)u̇i(t), x = χ(t,X).

3. Semi-Discrete Scheme. In this section error estimates are developed for numerical
schemes based upon the weak problem (2.4). Specifically, if Ûh ⊂ H1(Ωr) is a finite dimensional
subspace of functions vanishing on Γ0r with basis {φi} we seek ûh of the form

ûh(t,X) = ĝ0h(t,X) +
∑

i

φi(X)ûi(t)

satisfying

∫ T

0

∫

Ωr

(

(

ûht + (V − Ṽ ).F−T∇X ûh

)

v̂h + ǫ(F−T∇X ûh).(F−T∇X v̂h)

)

J(3.1)

=

∫ T

0

∫

Ωr

f̂ v̂hJ +

∫ T

0

∫

Γ1r

ĝv̂hJ |F−Tnr|,

for all v̂h ∈ L2[0, T ; Ûh]. Here ĝ0h ∈ H1(Ωr) is an approximate lifting of the non-homogeneous
boundary values g0 to the Lagrangian coordinates. The velocity Ṽ is an approximation of the
velocity field V (for example the isoparametric approximation appearing in Section 2.4) and F is
the Jacobian of the flow map introduced in Section 2.1.
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Notice that writing (3.1) in terms of the Eulerian variables gives a Galerkin approximation of
weak problem (1.3) with time dependent basis functions on a moving mesh.

To reduce the technical detail it will be assumed that Ṽ .n = V.n = 0 on ∂Ω, so that Ω = Ωr and
Ṽ |Γ0∩Γ1 = 0 so that Γ0r and Γ1r are independent of time. The major simplification realized by this
assumption occurs with the fully discrete scheme where the reference configuration is updated
every (few) time step(s) to the current configuration, Ω(tn), and remeshed. This assumption
eliminates the error associated with approximating the domain Ω(tn) by a finite element mesh
Ωh(tn) and constructing subspaces of functions which vanish on Γ0r . While Ωr and Ω coincide
as sets, it is convenient to retain the notational distinction to distinguish between integrals with
respect to the Lagrangian and Eulerian variables.

Notation: Integrals over the reference domain Ωr will be with respect to the Lagrangian variable
X and integrals over Ω will be with respect to x. That is,

∫

Ωr

û ≡
∫

Ωr

û(X) dX, and

∫

Ω
u ≡

∫

Ω
u(x) dx.

3.1. Projections. Projections will be used in an essential fashion to derive error estimates
that do not depend upon ut. The Jacobian of the flow map χ : Ωr → Ω corresponding to the
veloicty field Ṽ is denoted by F , and its determinant by J .

Define the weighted projections P̂ h(t) : L2(Ωr) → Ûh by:

P̂ h(t)v̂ ∈ Ûh,

∫

Ωr

J(t, .)(v̂ − P̂ h(t)v̂)v̂h = 0 ∀v̂h ∈ Ûh.

Let the corresponding time dependent (Eulerian) subspaces Uh(t) ⊂ L2(Ω) be those obtained
under the change of variable Uh(t) = {ûh◦χ−1|ûh ∈ Ûh}. The (unweighted) orthogonal projection
P h(t) : L2(Ω) → Uh(t) is related to P̂ h by P hu = (P̂ hû) ◦ χ−1.

We emphasize that the functions in Ûh are constructed using standard finite element basis func-
tions. The time dependent (Eulerian) subspaces Uh(t) are only implicitly defined, and are only
used in the analysis.

Similarly, we define the generalized weighted L2(Ω) projections Q̂h(t) : Û ′ → Ûh by

Q̂h(t)v̂ ∈ Ûh,

∫

Ωr

J(t, .)(Q̂h(t)v̂)ŵh = 〈v̂, ŵh〉 ∀ŵh ∈ Ûh.

Q̂h(t) is an extension of P̂ h when Û →֒ H(t) →֒ Û ′, and H(t) is the space L2(Ωr) with weighted
inner product,

(û, v̂)H(t) =

∫

Ωr

ûv̂J(t, .).

This projection will be used to derive error estimates for the time derivative in L2[0, T ;U ′]. By
changing variables the corresponding generalized projection Qh(t) : U ′ → Uh(t) in the Eulerian
variables may be defined. The relationship between the operators is illustrated in the commutative
diagram shown in Figure 3.1.

In Figure 3.1 ι : Uh(t) → U is the inclusion map and ι′ : U ′ → Uh(t)′ is the dual map: ι′(u′)(vh) =
u′(vh ◦ ι) = u′(vh), and the notation (◦χ) : U → Û is used to indicate the mapping (◦χ)(u) = u◦χ
and (◦χ)′ : Û ′ → U ′ is the dual map: (◦χ)′(û′)(v) = û′(v ◦ χ). The rightmost two columns of the
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Uh(t)
ι→֒ U →֒ H = L2(Ω) →֒ U ′ ι′→ Uh(t)′

RH↔ Uh(t)
◦χ ↓ ◦χ ↓ ↑ (◦χ)′ ↑ (◦χ)′ ↓ ◦χ
Ûh

ι̂→֒ Û →֒ H(t) = (L2(Ωr), ‖.‖H(t)) →֒ Û ′ ι̂′→ Û ′
h

RH(t)↔ Ûh

Fig. 3.1. Commutative diagram relating the dual and pivot spaces. The embeddings →֒ are injective, and the
mappings → are surjective.

diagram illustrate the Reisz isomorphism between the finite dimensional spaces and their duals
associated with the indicated inner product. The composite mapping from the leftmost column
to the rightmost is the identity map (so the diagram commutes if the first and last column are
identified). The projection Qh(t) is the mapping from U ′ to Uh(t) on the top row, and Q̂(t) is
the corresponding map on the bottom row.

The approximation properties of P̂ h and Q̂h in various norms are considered in Section 3.3 below.

3.2. Error Estimates for Weak Problem (3.1). In this section error estimates for ap-
proximate solutions of weak problem (2.4) computed using (3.1) are developed. Estimates of the
error ‖u− uh‖L∞[0,T ;L2(Ω)] and its convective time derivative ‖u̇− u̇h‖L2[0,T ;U ′] are established.

If û is a solution of (2.4) and ûh a solution of (3.1), the orthogonality condition will be used
frequently,

∫

Ωr

(

(

êt + (V − Ṽ ).F−T∇X ê
)

v̂h + ǫ(F−T∇X ê).(F
−T∇X v̂h)

)

J = 0 ∀ v̂h ∈ Ûh,(3.2)

where ê = û− ûh. The next theorem bounds the errors in the natural norms L2[0, T ;L2(Ω)] and
L2[0, T ;H1(Ω)] even though the approximate solution is computed in Lagrangian coordinates.

Theorem 3.1. Let Ûh ⊂ H1(Ωr) be a finite dimensional subspace of functions vanishing on Γ0r,
and assume that V , Ṽ ∈ L2[0, T ;L∞(Ω)] and div(Ṽ ) ∈ L1[0, T ;L∞(Ω)] and V.n = Ṽ .n = 0 on
∂Ω.

If û, ûh are the solutions of (2.4) and (3.1) respectively and e = u− uh, then

‖e‖2
L∞[0,T ;L2(Ω)] + (ǫ/2)‖∇xe‖2

L2[0,T ;L2(Ω)](3.3)

≤ C2
(

‖e(0)‖2
L2(Ω) + 2‖ep‖2

L∞[0,T ;L2(Ω)] + 2ǫ‖∇xep‖2
L2[0,T ;L2(Ω)]

)

,

where ep = (u− g0h) − P h(.)(u− g0h) and

C = exp
(

(1/ǫ)‖V − Ṽ ‖2
L2[0,T ;L∞(Ω)] + (1/2)‖div(Ṽ )‖L1[0,T ;L∞(Ω)]

)

.

In the above the hat (̂.) denotes a Lagrangian variable related to the corresponding Eulerian
variable by û = u◦χ where χ is the the flow map associated with Ṽ (equation (2.1)). In particular,
Uh(t) = {û ◦ χ−1 | û ∈ Ûh}, and P h(t) : L2(Ω) → Uh(t) is the orthogonal projection.

Proof. Write ûp = ĝ0h + P̂ h(û− ĝ0h), and decompose the error as

ê ≡ û− ûh = (û− ûp) + (ûp − ûh) = êp + êh.

9



By construction êh ∈ Ûh, and selecting v̂h = ê− êp in the orthogonality condition (3.2) shows
∫

Ωr

(

êt + (V − Ṽ ).F−T∇X ê
)

êJ + ǫ|F−T∇X ê|2J(3.4)

=

∫

Ωr

(

êt + (V − Ṽ ).F−T∇X ê
)

êpJ + ǫ(F−T∇X ê).(F
−T∇X êp)J.

Note that
∫

Ωr

êtêJ =

∫

Ωr

(

ê2

2
J

)

t

−
∫

Ωr

ê2

2
Jt

=
d

dt

∫

Ωr

ê2

2
J −

∫

Ωr

ê2

2
Jdivx(Ṽ )

=
d

dt

∫

Ω

e2

2
−
∫

Ω

e2

2
divx(Ṽ ).

We emphasize that êh(t) ∈ Ûh for a.e t ∈ (0, T ], and, since Ûh is independent of t, êht ∈ Ûh. Also,

êp = û− ûp = (û− ĝ0h) − P̂ h(.)(û− ĝ0h) ⊥ Ûh,

where, at each time, the orthogonality is with respect to the J–weighted L2(Ωr) norm. Therefore
∫

Ωr

êtêpJ =

∫

Ωr

(êpt + êht)êpJ =

∫

Ωr

êptêpJ

=
d

dt

∫

Ω
(1/2)e2p −

∫

Ω
(1/2)divx(Ṽ )e2p,

where ep = (u− g0h) − P h(.)(u− g0h) is the Eulerian projection error; êp = ep ◦ χ.

The convective terms may be bounded as:
∫

Ωr

(

(V − Ṽ ).F−T∇X ê
)

êJ =

∫

Ω
((V − Ṽ ).∇xe)e

≤
‖V − Ṽ ‖2

L∞(Ω)

ǫ
‖e‖2

L2(Ω) +
ǫ

4
‖∇xe‖2

L2(Ω),

and similarly,

∫

Ωr

(

(V − Ṽ ).F−T∇X ê
)

êpJ ≤
‖V − Ṽ ‖2

L∞(Ω)

ǫ
‖ep‖2

L2(Ω) +
ǫ

4
‖∇xe‖2

L2(Ω).

Furthermore,
∫

Ωr

ǫ(F−T∇X ê).(F
−T∇X êp)J ≤ ǫ

4
‖∇xe‖2

L2(Ω) + ǫ‖∇xep‖2
L2(Ω).

Substituting the above estimates into (3.4)

1

2

d

dt

(

‖e‖2
L2(Ω) − ‖ep‖2

L2(Ω)

)

+
ǫ

2

(

(1/2)‖∇xe‖2
L2(Ω) − 2‖∇xep‖2

L2(Ω)

)

≤
(

(1/ǫ)‖V − Ṽ ‖2
L∞(Ω) + (1/2)‖divx(Ṽ )‖L∞(Ω)

)

(‖e‖2
L2(Ω) + ‖ep‖2

L2(Ω)).
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This estimate takes the form

d

dt
(a− α) + (b− β) ≤ C(t)(a+ α) = C(t)(a− α) + 2C(t)α,

where each quantity is non-negative. Gronwall’s argument shows

a(T ) +

∫ T

0
µ(s, T )b(s) ds ≤ µ(0, T )a(0) + 2µ(0, T ) max

0≤s≤T
α(s) +

∫ T

0
µ(s, T )β(s) ds,

where µ(s, t) = exp(
∫ t
s C(ξ) dξ) is the integrating factor.

The above result contains constants similar to the those in [14, 16], which take the form “approx-
imation of convection/diffusion”. For convective dominated flows the exponential dependence
on the diffusion constant ǫ can be eliminated using a sufficiently accurate approximation of the
velocity field.

Using the projections introduced above, an error estimate for the convective time derivative can
be obtained in L2[0, T ;U ′].

Theorem 3.2. In addition to the assumptions of Theorem 3.1 assume div(V ) and div(Ṽ ) are in
L2[0, T ;L∞(Ω)], and let CQ = CQ(T ) be the stability constant of the projection Qh with respect
to the H1(Ω) norm characterized by

‖Qh(t)w‖H1(Ω) ≤ CQ‖w‖H1(Ω), and ‖w −Qh(t)w‖H1(Ω) ≤ CQ‖w‖H1(Ω),

for all w ∈ U and 0 ≤ t ≤ T . Then

‖ė‖2
L2[0,T ;U ′] ≤ 3C2

Q

(

‖u̇−Qhu̇‖2
L2[0,T ;U ′]

+
(

‖V − Ṽ ‖2
L2[0,T ;L∞(Ω)] + ‖div(V − Ṽ )‖2

L2[0,T ;L∞(Ω)]

)

‖e‖2
L∞[0,T ;L2(Ω)] + ǫ2‖∇xe‖2

L2[0,T ;L2(Ω)]

)

,

where e = u− uh and ė = et + Ṽ .∇xe denotes the convective derivative.

Remark: In Section 3.3 explicit bounds are obtained for the constant CQ in terms of the flow
map and its derivatives.

Proof. If ŵ ∈ Û , the orthogonality condition (3.2) may be used to obtain
∫

Ωr

êtŵJ =

∫

Ωr

êt(ŵ − Q̂hŵ)J +

∫

Ωr

êtQ̂
hŵJ

=

∫

Ωr

êt(ŵ − Q̂hŵ)J −
∫

Ωr

(V − Ṽ ).(F−T∇X ê)Q̂
hŵJ + ǫ(F−T∇X ê).(F

−T∇XQ̂
hŵ))J.

The definition of the projection allows the first term on the right to be written as
∫

Ωr

êt(ŵ − Q̂hŵ)J =

∫

Ωr

ût(ŵ − Q̂hŵ)J =

∫

Ωr

(ût − Q̂hût)(ŵ − Q̂hŵ)J

=

∫

Ω
(u̇−Qhu̇)(w −Qhw).

Substituting this into the previous expression and writing the right hand side in terms of Eulerian
variables gives

∫

Ωr

êtŵJ =

∫

Ω
(u̇−Qhu̇)(w −Qhw) − (V − Ṽ ).(∇xe)Q

hw + ǫ(∇xe).(∇xQ
hw)

=

∫

Ω
(u̇−Qhu̇)(w −Qhw) − e divx

(

Qhw(V − Ṽ )
)

+ ǫ(∇xe).(∇xQ
hw).
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The last line was obtained upon integration by parts and noting that the boundary term vanishes
since (V − Ṽ ).n = 0 on Γ1. Then

∫

Ω
ėw ≤ ‖u̇−Qhu̇‖U ′‖w −Qhw‖H1(Ω)

+‖e‖L2(Ω)

(

‖V − Ṽ ‖2
L∞(Ω) + ‖div(V − Ṽ )‖2

L∞(Ω)

)1/2
‖Qhw‖H1(Ω) + ǫ‖∇xe‖L2(Ω)‖∇xQ

hw‖L2(Ω).

Using the stability hypothesis to bound ‖Qhw‖H1(Ω) by CQ‖w‖H1(Ω), and taking the supremum
over w ∈ U shows

‖ė‖U ′ ≤ CQ

(

‖u̇−Qhu̇‖U ′

+
(

‖V − Ṽ ‖2
L∞(Ω) + ‖divx(V − Ṽ )‖2

L∞(Ω)

)1/2
‖e‖L2(Ω) + ǫ‖∇xe‖L2(Ω)

)

.

Squaring both sides and integrating with respect to time completes the proof.

While there is no direct dependence on F and J , an implicit dependence appears through the
approximation properties of the projections P h(t) and Qh(t).

3.3. Interpolation in Weighted Spaces. In this section the approximation properties of
the time dependent projections P̂ h(t) are considered. The approximate solutions are constructed
using standard finite element meshes to triangulate Ωr; however, the standard approximation
theory is not immediately applicable since the ‖.‖L2(Ω) and ‖.‖H1(Ω) norms appearing in the error
estimate become time dependent weighted norms when expressed in terms of the Lagrangian
variables.

Define the norm ‖.‖H(t) and semi-norm |.|U(t) on Û by

‖û‖2
H(t) =

∫

Ωr

û2J(t, .) and |û|2U(t) =

∫

Ωr

(∇X û)
TF (t, .)−1F (t, .)−T∇X û J(t, .).

As above J = det(F ) where F is the Jacobian of the flow map x = χ(t,X) satisfying equation
(2.1) with velocity field Ṽ . If û(X) = u(x(t,X)) then

‖u‖L2(Ω) = ‖û‖H(t), and |u|H1(Ω) = |û|U(t).

Error estimates in the weighted norms are obtained by showing that ‖.‖H(t) is equivalent to
the unweighted norm ‖.‖H(0) = ‖.‖L2(Ωr), and similarly for |.|U(t). The following elementary
application of Gronwall’s inequality is used to accomplish this.

Proposition 3.3. Let X be a linear space and {|.|X(t)}t≥0 be family of semi norms on X, and
suppose there exists CX(t) ≥ 0 such that for each x ∈ X

−CX(t)|x|2X(t) ≤ (1/2)(d/dt)|x|2X(t) ≤ CX(t)|x|2X(t).

Then for each x ∈ X and s ≤ t,

|x|X(s)e
−

R t
s CX(.) ≤ |x|X(t) ≤ |x|X(s)e

R t
s CX(.).
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Upon recalling that J̇ = J divx(Ṽ ) and Ḟ = (∇xṼ )F , so that2 (F−T ). = −(∇xṼ )TF−T , direct
calculation shows that for û ∈ Û fixed,

(d/dt)‖û‖2
H(t) =

∫

Ωr

û2J divx(Ṽ ),(3.5)

and

(d/dt)|û|2U(t) =

∫

Ωr

(∇X û)
TF−1

(

−∇xṼ − (∇xṼ )T + divx(Ṽ )I
)

F−T∇X û J.(3.6)

In the mechanics literature D(Ṽ ) = (1/2)(∇xṼ + (∇xṼ )T ) is called the stretching tensor and
measures the shearing rate. It follows that

‖û‖H(0)e
−C0(t) ≤ ‖û‖H(t) ≤ ‖û‖H(0)e

C0(t), and |û|U(0)e
−C1(t) ≤ |û|U(t) ≤ |û|U(0)e

C1(t),

where

C0(t) = (1/2)‖divx(Ṽ )‖L1[0,t,L∞(Ω)], and C1(t) = C0(t) + ‖D(Ṽ )‖L1[0,t,L∞(Ω)].(3.7)

The following lemma combines these estimates with standard finite element interpolation esti-
mates, [9], to bound the various projection estimates in the weighted spaces.

Lemma 3.4. Let {Th}h>0 be a quasi-regular family of triangulations of Ωr, and for each h > 0
let Ûh ⊂ Û = {û ∈ H1(Ωr) | û|Γ0r = 0} be a classical finite element space constructed over
Th containing piecewise polynomials of degree ℓ ≥ 0 on each K ∈ Th. If ĝ0 ∈ H1(Ωr) then the
translate ĝ0 + Û is denoted by Û(ĝ0).

1. (Estimates in H(t)) If û ∈ Û ∩Hℓ+1(Ωr) then there exists C = C(ℓ)

‖û− P̂ h(t)û‖H(t) = ‖û− Q̂h(t)û‖H(t) ≤ CeC0(t)|û|Hℓ+1(Ωr)h
ℓ+1,

where C0(t) and C1(t) are the constants appearing in equation (3.7).
Let ĝ0 ∈ Hℓ+1(Ωr) and ĝ0h ∈ H1(Ωr) be the finite element interpolant of ĝ0. If û ∈
Û(ĝ0) ∩Hℓ+1(Ωr) then

‖û− ĝ0h − P̂ h(t)(û− ĝ0h)‖H(t) ≤ CeC0(t)|û|Hℓ+1(Ωr)h
ℓ+1.

2. (Inverse Inequality) If the triangulations {Th}h>0 are quasi-uniform then there exists C =
C(ℓ) such that

|ûh|U(t) ≤ (C/h)eC0(t)+C1(t)‖ûh‖H(t) ∀ ûh ∈ Ûh.

3. (Estimates in U(t)) If the triangulations {Th}h>0 are quasi-uniform then there exists
C = C(ℓ) such that

|û− P̂ h(t)û|U(t) = |û− Q̂h(t)û|U(t) ≤ Ce2C0(t)+C1(t)|û|Hℓ+1(Ωr)h
ℓ, ∀ û ∈ Û ∩Hℓ+1(Ωr).

Let ĝ0 ∈ Hℓ+1(Ωr) and ĝ0h ∈ H1(Ωr) be the finite element interpolant of ĝ0. If û ∈
Û(ĝ0) ∩Hℓ+1(Ωr) then

|û− ĝ0h − P̂ h(t)(û− ĝ0h)|U(t) ≤ Ce2C0(t)+C1(t)|û|Hℓ+1(Ωr)h
ℓ.

2The derivative of F−T is found by differentiating F T F−T = I.
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Proof. (1) Using Proposition 3.3 and equation (3.5), estimates in L2(Ωr) follow directly, since if
û ∈ Û ∩Hℓ+1(Ωr),

‖û− P̂ h(t)û‖H(t) = inf
ŵh∈Ûh

‖û− ŵh‖H(t)

≤ eC0(t) inf
ŵh∈Ûh

‖û− ŵh‖H(0)

= eC0(t) inf
ŵh∈Ûh

‖û− ŵh‖L2(Ωr)

≤ CeC0(t)|û|Hℓ+1(Ωr)h
ℓ+1.

The last inequality follows since the finite element interpolant, wh = Ih(û) ∈ Ûh, satisfies this
estimate [9]. The corresponding estimate for the translate û− ĝ0 is

‖(û− ĝ0h) − P̂ h(t)(û− ĝ0h)‖H(t) ≤ eC0(t) inf
ŵh∈Ûh

‖û− ĝ0h − ŵh‖L2(Ωr) ≤ CeC0(t)|û|Hℓ+1(Ωr)h
ℓ+1.

The last inequality following since it is possible to select ĝ0h−ŵh = Ih(û) when ĝ0h|Γ0h
= Ih(û)|Γ0h

.

(2) If ûh ∈ Ûh

|ûh|U(t)

‖ûh‖H(t)
≤ eC0(t)+C1(t)

|ûh|U(0)

‖ûh‖H(0)
= eC0(t)+C1(t)

|ûh|H1(Ωr)

‖ûh‖L2(Ωr)
≤ eC0(t)+C1(t)(C/h),

where C = C(ℓ) is the constant associated with the classical inverse estimate [9].

3) The inverse estimate is used to estimate |û− P̂ hû|U(t).

|û− P̂ h(t)û|U(t) ≤ |û− ŵh|U(t) + |ŵh − P̂ h(t)|U(t) wh ∈ Ûh

≤ |û− ŵh|U(t) + eC0(t)+C1(t)(C/h)‖ŵh − P̂ h(t)‖H(t)

≤ |û− ŵh|U(t) + eC0(t)+C1(t)(C/h)
(

‖û− P̂ h(t)‖H(t) + ‖û− ŵh‖H(t)

)

≤ |û− ŵh|U(t) + 2eC0(t)+C1(t)(C/h)‖û− ŵh‖H(t)

≤ eC1(t)|û− ŵh|U(0) + 2e2C0(t)+C1(t)(C/h)‖û− ŵh‖H(0)

= eC1(t)|û− ŵh|H1(Ωr) + 2e2C0(t)+C1(t)(C/h)‖û− ŵh‖L2(Ωr)

≤ Ce2C0(t)+C1(t)|û|Hℓ+1(Ωr)h
ℓ.

Estimate on translates û ∈ Û(ĝ0) follow as in the proof of (1) above.

Remarks: The quasi-uniform assumption on the mesh is used solely to guarantee that the L2(Ωr)
projection onto the finite element subspace Ûh is stable when restricted H1(Ωr). Stability of the
projection can established under much weaker restrictions on the mesh geometry [4, 6]. In this
situation the proof of (3) would proceed directly as in the proof of (1).

Estimates for the projection errors appearing in Theorems 3.1 and 3.2 and the stability constant
CQ of Theorem 3.2 now follow.

Corollary 3.5. Let u0 ∈ Hℓ+1(Ω) and assume that the initial value, uh0, of the approximate
solution is the finite element interpolant of u0. Under the hypotheses of the Lemma 3.4 and
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Theorem 3.1 there exists a constant C > 0 such that the approximate solutions uh of the convection
diffusion equation satisfy

‖u− uh‖L∞[0,T ;L2(Ω)] +
√
ǫ‖∇x(u− uh)‖L2[0,T ;L2(Ω)] ≤ C‖û‖L∞[0,T ;Hℓ+1(Ωr)](h+

√
ǫ)hℓ,

and if additionally the hypotheses of Theorem 3.2 hold then

‖u̇− u̇h‖L2[0,T ;U ′] ≤ C‖ût‖L2[0,T ;Hℓ+1(Ωr)]h
ℓ+2

+C‖û‖L∞[0,T ;Hℓ+1(Ωr)]

(

(‖V − Ṽ ‖L2[0,T ;L∞(Ω)] + ‖div(V − Ṽ )‖L2[0,T ;L∞(Ω)])h+ ǫ
)

hℓ,

provided û = u ◦ χ ∈ L∞[0, T ;Hℓ+1(Ωr)] and ût = u̇ ∈ L2[0, T ;Hℓ+1(Ωr)]. The constant C
depends upon the flow, ǫ, and T through

exp
(

‖divx(Ṽ )‖L1[0,T ;L∞(Ω)] + ‖D(Ṽ )‖L1[0,T ;L∞(Ω)] + (1/ǫ)‖V − Ṽ ‖2
L2[0,T ;L∞(Ω)]

)

,

where D(Ṽ ) = (1/2)(∇xṼ + (∇xṼ )T ).

Proof. Combining the estimates of Lemma 3.4 and the identities ‖u‖L2(Ω) = ‖u ◦ χ(t, .)‖H(t), and
|u|H1(Ω) = |u ◦ χ(t, .)|U(t), with the bound from Theorem 3.1 gives the first estimate.

The bound on the time derivative requires estimates for u̇ − Qh(t)u̇ in the dual norm and the
stability constant. The dual norm is estimated as

‖u̇−Qh(t)u̇‖U ′ = sup
w ∈ U
w 6= 0

(u̇−Qh(t)u̇, w)L2(Ω)

‖w‖H1(Ω)

= sup
ŵ ∈ Û
ŵ 6= 0

(ût − Q̂h(t)ût, ŵ)H(t)

‖ŵ‖U(t)

= sup
ŵ ∈ Û
ŵ 6= 0

(ût − Q̂h(t)ût, ŵ − ŵh)H(t)

‖ŵ‖U(t)
ŵh ∈ Ûh

≤ CeC0(t)|ût|Hℓ+1(Ωr)h
ℓ+1 × CeC0(t)(|ŵ|H1(Ωr)/|ŵ|U(t))h

≤ C2e2C0(t)+C1(t)|ût|Hℓ+1(Ωr)h
ℓ+2,

where C = C(ℓ) is the constant from Lemma 3.4. The stability constant is estimated by substi-
tuting ℓ = 0 into the third statement in Lemma 3.4.

|u−Qh(t)u|H1(Ω) = |û− Q̂h(t)û|U(t)

≤ Ce2C0(t)+C1(t)|û|H1(Ωr)

≤ Ce2C0(t)+2C1(t)|û|U(t)

= Ce2C0(t)+2C1(t)|u|H1(Ω).

It follows that the stability constant may be bounded as CQ(t) ≤ C exp (2C0(t) + 2C1(t)) where
C = C(ℓ).

Remarks:
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1. The exponential growth in the constants appearing in the approximation estimates is
undesirable. This problem persists even for the simple situation where Ṽ is constant, and
is implicitly present in the analyses in [14, 16].

2. In the next section this problem is eliminated by redefining the reference configura-
tion at each time step. Essentially, this corresponds to replacing the initial condition
x(0, X) = X with x(tn−1, X) = X at each time step. The constants then take the form
exp(‖div(Ṽ )‖L∞(Ω)τ

n) where τn = tn − tn−1 is the time step.
3. The error estimates contain Sobolev norms ‖û‖Hℓ+1(Ωr) which involve derivatives of the

solution with respect to the Lagrangian variables. It is possible to bound derivatives with
respect to the Lagrangian variables by derivatives with respect to the Eulerian variables;
however, the constants involve higher derivatives of Ṽ which grow exponentially in time.
Moreover, it is possible that the solution in the Lagrangian coordinates is smoother than
the solution written in terms of Eulerian coordinates so bounds in the Eulerian coordinates
may be undesirable.

4. Fully Discrete Approximations. In the Lagrangian context, the discontinuous Galerkin
method allows redefinition of the reference configuration at each step. The mapping from the
reference configuration to the present configuration will then remain close to the identity map.
When viewed as a moving mesh method, this scheme projects the solution defined on the distorted
mesh ∪K∈T n−1χ(tn,K) onto a function defined over the mesh T n.

The theory developed in [7] will be used to develop error estimates for the semi-Lagrangian scheme
with constants bounded independently of ǫ. Since homogeneous Dirichlet boundary data was
assumed in [7] this will be assumed here (g0 = 0). However, as illustrated in the previous section,
inclusion of non-homogeneous Dirichlet data does not introduce any significant difficulties.

4.1. Semi-Lagrangian Scheme. Let 0 = t0 < t1 < .. < tN = T be a partition of [0, T ], and
set Ij = (tj−1, tj ] and τ j = tj − tj−1. If {Ûn

h }N
n=0 are subspaces of Û = {û ∈ H1(Ωr) | û|Γ0r = 0},

then approximate solutions of equation (2.4) are constructed in the space

Ûh = {v̂ ∈ L2[0, T ; Û ] | v̂|In ∈ Pk[t
n−1, tn; Ûn

h ]},

where Pk[t
n−1, tn; Ûn

h ] denotes the set of polynomials of degree k ∈ N in time into Ûn
h . Notice

that, by convention, functions in Ûh are left continuous with right limits. For functions ûh ∈ Ûh

we write ûn ≡ ûh(tn−), and ûn
+ ≡ ûh(tn+).

The (classical) discontinuous finite element method for the parabolic equation (2.4) is to find
ûh ∈ ĝ0h + Ûh ≡ {ĝ0h + û | û ∈ Ûh} such that

∫

Ωr

ûnv̂nJn +

∫

In

∫

Ωr

(

−v̂htûh + (V − Ṽ ).(F−T∇X ûh)v̂h + ǫ(F−T∇X ûh).(F−T∇X v̂h)
)

J

−
∫

Ωr

ûn−1v̂n−1
+ Jn−1

+ =

∫

In

∫

Ωr

f̂ v̂hJ +

∫

In

∫

Γr1

ĝv̂h J |F−Tnr|,(4.1)

for all v̂h ∈ Ûh. Here J = det(F ) where F is the Jacobian of the flow map x = χn(t,X) on
each interval which satisfies ẋ(t,X) = Ṽ (t, x(t,X)) on Ij with x(tn−1, X) = X. With this choice
Jn−1

+ = 1.
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4.2. Error estimates for the DG scheme for implicit parabolic PDE. In this section
we quote error estimates from [7] for approximations of implicit parabolic PDE’s computed using
the discontinuous Galerkin method. The theorem below concerns approximate solutions of the
equation

(M(t)u)t +A(t)u = F (t), u(0) = u0.(4.2)

The operators act on Hilbert spaces related through the standard pivot construction, U →֒ H ≃
H ′ →֒ U ′, where each embedding is continuous and dense. Then, A(.) : U → U ′ is a linear map,
F (.) ∈ U ′, and M(.) : H → H is a self adjoint positive definite operator. To characterize the time
dependence of A(.) equivalent norms of the form ‖u‖2

U(t) = ‖u‖2
H(t) + |u|2U(t) are introduced on U

where |.|U(t) is a seminorm on U (the principal part) and ‖.‖H(t) = (M(t)., .)H is the norm on H
with Riesz map M(t). The natural bilinear forms associated with A(.) is denoted by a(.;u, v).

The following assumptions are required on the operators and data.

Assumption 1. The operators M(·) are non negative, self adjoint, and there exist constants
c(t) > 0 such that

(M(t)u, u)H ≥ c(t)‖u‖2
H .

It follows that for each t ≥ 0 that (M(t)u, v) is an inner product on H which is denoted by
(., .)H(t).

Definition 4.1. H(t) is the Hilbert space with underlying set H and inner product (u, v)H(t) =
(M(t)u, v)H .

With this notation it is possible to state the structural hypotheses which guarantee that (4.2) is
parabolic in nature and facilitate the development of error estimates.

Assumption 2.

1. Smoothness of M(t): For each t > 0 there exists a symmetric bilinear form, µ(t, ., .),
satisfying

d

dt
(u, v)H(t) = (ut, v)H(t) + (u, vt)H(t) + µ(t;u, v)

for u, v ∈ H1[0, T ;H], and there exists Cµ > 0 independent of time such that

|µ(t, u, v)| ≤ Cµ‖u‖H(t)‖v‖H(t).

2. Equivalence of norms on U(t): For each 0 < τ ≤ T there exists Cu = Cu(τ) > 0 such that
for all s, t ≥ 0 with |t− s| < τ

(1/Cu)|v|U(s) ≤ |v|U(t) ≤ Cu|v|U(s), ∀ v ∈ U.

3. Continuity of the bilinear form and data: There exist non-negative constants 0 ≤ ca ≤ Ca

such that

|a(t;u, v)| ≤
(

ca|u|2U(t) + Ca‖u‖2
H(t)

)1/2(

ca|v|2U(t) + Ca‖v‖2
H(t)

)1/2

and the data F is bounded in the weighted dual norm ‖.‖∗ (equivalent to ‖.‖U ′) character-
ized by

|〈F (t), u〉| ≤ ‖F (t)‖∗
(

ca|u|2U(t) + Ca‖u‖2
H(t)

)1/2
.
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4. Coercivity of the bilinear form: There exist constants Cα ∈ R and cα > 0 such that

a(t;u, u) ≥ cα|u|2U(t) − Cα‖u‖2
H(t)

Remarks: (1) The weighted norm ‖.‖∗ is the natural one required if bounds on the solution of
(4.2) are sought which depend upon the coercivity constant only through the ratio ca/cα. In the
present context this hypothesis is not required for the error estimate.

(2) The differentiability of ‖u‖H(t) (and Gronwall’s inequality) shows that the analog of hypothesis
2 holds with ‖.‖H(.) in place of ‖.‖U(.). Specifically, if 0 ≤ s ≤ t ≤ T ,

exp(−Cµ(t− s)) ≤ ‖v‖H(t)/‖v‖H(s) ≤ exp(Cµ(t− s)), ∀ v ∈ H.(4.3)

As above, discrete spaces are constructed from a partition 0 = t0 < t1 < .. < tN = T of [0, T ],
and a collection of subspaces {Un

h }N
n=0 of U . Approximate solutions are then sought in the space

Uh = {u ∈ L2[0, T ;U ] | u|In ∈ Pk[t
n−1, tn, Un

h ]}.

If uh ∈ Uh we write un for uh(tn) = uh(tn−), and let un
+ denote u(tn+). This notation is also used

with functions like the error e = u−uh. It is assumed that the exact solution, u, is in C[0, T ;H(.)]
so that the jump in the error at tn, denoted by [en], is equal to [un] = un

+ − un.

Approximate solutions uh ∈ Uh of equation (4.2) are then required to satisfy

(un, vn)H(tn) +

∫ tn

tn−1

(

− (uh, vht)H(t) + a(.;uh, vh)
)

(4.4)

− (un−1, vn−1
+ )H(tn−1) =

∫ tn

tn−1

〈F, vh〉 ∀ vh ∈ Uh.

The following projections onto the discrete spaces {Un
h }N

n=0 and inverse inequalities appear in the
analysis of the above scheme.

Definition 4.2. (1) Pn(t) : H(t) → Un
h are the orthogonal projections, i.e. Pn(t)u ∈ Un

h , and
(Pn(t)u, vh)H(t) = (u, vh)H(t) for all vh ∈ Un

h .

(2) The projection P
loc
n : C[tn−1, tn;H] → Pk[t

n−1, tn;Un
h ] satisfies (Ploc

n u)n = Pn(tn)u(tn), and

∫ tn

tn−1

(u− P
loc
n u, vh)H(.) = 0, ∀ vh ∈ Pk−1[t

n−1, tn;Un
h ].

Here we have used the convention (Ploc
n u)n ≡ (Ploc

n u)(tn).

(3) The projection P
loc
h : C[0, T ;H] → Uh satisfies

P
loc
h u ∈ Uh and (Ploc

h u)|(tn−1,tn] = P
loc
n (u|(tn−1,tn]).

(4) The inverse hypothesis constant Cinv(h) is

Cinv(h) = max
0≤n≤N

sup
uh∈Un

h

sup
t∈(tn−1,tn]

|uh|U(t)

‖uh‖H(t)
.
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The next theorem, taken from [7], bounds the approximation error with respect to norms of the
form

9e92
∞ = sup

0≤s≤T
‖e(s)‖2

H(s) + ca

∫ T

0
eC(T−s)|e(s)|2U(s) ds,

and

9e92
2 =

∫ T

0
eC(T−s)‖e(s)‖2

H(s) ds+ ca

∫ T

0
eC(T−s)|e(s)|2U(s) ds,

and the dependence of the constant C > 0 upon the constants appearing in the hypotheses is
characterized.

Theorem 4.3. Let U(.) →֒ H →֒ U ′(.) be a dense embedding of Hilbert spaces satisfying Assump-
tion 1. Assume each norm ‖.‖U(.) is equivalent to ‖.‖U , and let Uh be the subspace of L2[0, T ;U ]
defined above. Let the bilinear form a : U(.) × U(.) → R and linear form F : U(.) → R satisfy
Assumptions 2. Let u ∈ {u ∈ C[0, T ;H(.)] | M(.)u ∈ H1[0, T ;U ′(.)]} be the solution of (4.2) and
uh ∈ Uh be the approximate solution computed using the discontinuous Galerkin scheme (4.4) on
the partition 0 = t0 < t1 < . . . < tN = T , and set τ ≡ maxn t

n − tn−1.

Then there exists a positive constant C > 0 depending only on T , k, the constants Ca, Cα, Cµ,
Cu, the ratio ca/cα, and the product

√
caτCinv(h) such that the following estimate holds:

9u− uh92
∞ ≤ C

(

‖P0(u0) − u0
h‖H(0) + 9u− P

loc
h u 92

∞

+
N−1
∑

i=0

min
(

‖(I − Pi)u(t
i)‖2

H(ti), 1/(τ
i+1ca)‖Pi+1(I − Pi)u(t

i)‖2
U

′
(ti)

))

,

where P
loc
h u is the local projection defined in Definition 4.2, and Pi(t) : H(t) → Un

h is the or-
thogonal projection. (In the estimate Pi+1(I −Pi)u(ti) ≡ Pi+1(ti)(I −Pi(ti))u(ti) etc.) A similar
estimate also holds with 9.92 in place of 9.9∞.

Remark: The constant C = C(T, k, Ca, Cα, Cµ, Cu, ca/cα,
√
caτCinv(h)) can be selected to be

monotone increasing in each argument. Specifically, if ca/cα is bounded, then C is bounded as
the constants ca, cα → 0.

4.2.1. Estimates for u − P
loc
h u. The (space-time) projection P

loc
h : C[0, T ;H] → Uh is not

standard. In this section it is shown that the error u− P
loc
h u can be decomposed into a temporal

error and spatial error. Estimating the error u−P
loc
h u directly using the Bramble Hilbert lemma

leads to estimates involving time derivatives of M(t)u(t). This would require the mapping M(.)
to be smooth which is not the case for the convection diffusion problem. Care is also required
when estimating errors in the norms ‖.‖U(t) since direct use of the inverse estimate results in a
reduced rate of convergence with respect to τ . The proof below circumvents this problems.

To simplify notation it is convenient to consider the interval [0, τ) and to consider the projection
Ph : C[0, τ ;H] → Pk[0, τ ;Uh] characterized by uh = Phu if uh(0) = Ph(0)u(0), and

∫ τ

0
(u− uh, vh)H(.) = 0, ∀ vh ∈ Pk−1[0, τ ;Uh].(4.5)

The change of variables t 7→ tn−t transforms P
loc
h |(tn−1,tn] to this canonical case with τ = tn−tn−1.

As a first step, stability of the projection Ph is established. The following lemma is standard and
follows from finite dimensionality of Pk(0, τ) and classical scaling arguments.
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Lemma 4.4. Let Ĥ be a Hilbert space, 1 ≤ p ≤ ∞, 1/p+ 1/p′ = 1, and k > 0. Then there exists
C(k) (independent of p and Ĥ) such that

‖ũ‖Lp[0,τ ;Ĥ]‖ũ‖Lp′ [0,τ ;Ĥ] ≤ (C(k)/τ)

∫ τ

0
t‖ũ(t)‖2

Ĥ
dt,

for all ũ ∈ Pk−1[0, τ, Ĥ] where 1/p+ 1/p′ = 1.

The following lemma from [7] will also be required.

Lemma 4.5. Let the spaces {H(t)}0≤t≤τ satisfy Assumptions 1 and 21, and let w, z ∈ H and
s ≤ t. Then eCµ(s−t) ≤ ‖z‖2

H(t)/‖z‖2
H(s) ≤ eCµ(t−s) and

|(w, z)H(t) − (w, z)H(s)| ≤ (t− s)Cµe
Cµ(t−s)‖w‖H(ξ1)‖z‖H(ξ2), ∀ ξ1, ξ2 ∈ [s, t].

Lemma 4.6. (Stability of Ph) Let the spaces {H(t)}0≤t≤τ satisfy Assumptions 1 and 21 and
1 ≤ p ≤ ∞. Then there exist constants C = C(k) depending only upon k ≥ 0 such that the
projection characterized by equation (4.5) satisfies

‖Phu‖Lp[0,τ ;H(.)] ≤ C(k)e2Cµτ‖u‖Lp[0,τ ;H(.)],

for all u ∈ C[0, τ ;H(.)] satisfying (Phu)(0) = 0.

If additionally the spaces {U(t)}T
t=0 satisfy Assumption 22, and the inverse inequality of Definition

4.2, holds, and the orthogonal projections Ph(t) : H(t) → Uh restricted to U are stable in the sense
that there exists CP > 0 independent of h and t such that |Ph(t)u|U(t) ≤ CP ‖u‖U(t), then there
are constants C(. . .) > 0 such that

|Phu|Lp[0,τ ;U(.)] ≤ C(k,Cu, CP , e
Cµτ )

(

‖u‖Lp[0,τ ;U(.)] + CµτCinv(h)‖u− Phu‖Lp[0,τ ;H(.)]

)

≤ C
(

k,Cu, CP , e
Cµτ
)

(1 + CµτCinv(h))‖u‖Lp[0,τ ;U(.)].

Proof. Step 1: Write uh = Phu. Since uh(0) = 0, uh ∈ Pk[0, τ ;Uh] may be factored as uh(t) =
tũh(t) where ũh ∈ Pk−1[0, τ ;Uh]. Setting vh = ũh in equation (4.5) yields

∫ τ

0
t‖ũh(t)‖2

H(t) dt =

∫ τ

0
(u, ũh)H(.) ≤ ‖u‖Lp[0,τ ;H(.)]‖ũh‖Lp′ [0,τ ;H(.)].(4.6)

Application Lemma 4.4 with Ĥ = H(τ/2) shows

‖ũh‖Lp[0,τ ;H(.)]‖ũh‖Lp′ [0,τ ;H(.)] ≤ eCµτ‖ũh‖Lp[0,τ ;Ĥ]‖ũh‖Lp′ [0,τ ;Ĥ]

≤ (C(k)/τ)eCµτ

∫ τ

0
t‖ũh(t)‖2

Ĥ
dt

≤ (C(k)/τ)e2Cµτ

∫ τ

0
t‖ũh(t)‖2

H(t) dt

≤ (C(k)/τ)e2Cµτ‖u‖Lp[0,τ ;H(.)]‖ũh‖Lp′ [0,τ ;H(.)],

so
‖ũh‖Lp[0,τ ;H(.)] ≤ (C(k)/τ)e2Cµτ‖u‖Lp[0,τ ;H(.)].
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Then
‖uh‖Lp[0,τ ;H(.)] = ‖tũh(t)‖Lp[0,τ ;H(.)] ≤ C(k)e2Cµτ‖u‖Lp[0,τ ;H(.)],

which establishes stability of Ph in Lp[0, τ ;H(.)] when uh(0) = 0.

Step 2: To estimate ‖u− Phu‖Lp[0,τ ;U(.)], rearrange equation (4.5) to read

∫ τ

0
(uh, vh)Ĥ =

∫ τ

0
(u, vh)Ĥ + (u− uh, vh)H(t) − (u− uh, vh)Ĥ , vh ∈ Pk−1[0, τ ;Uh].(4.7)

Fix Û = U(τ/2) and select vh to be the “discrete Û -Laplacian” of ũh, where uh = tũh. That is,
vh(t) ∈ Uh satisfies

(vh(t), wh)Ĥ = (ũh(t), wh)Û , for all wh ∈ Uh,

where (., .)Û is the semi-inner product on Û . Notice that ũh ∈ Pk−1[0, τ ;Uh] implies vh ∈
Pk−1[0, τ ;Uh], and

‖vh‖2
Ĥ

= (ũh, vh)Û ≤ |ũh|Û |vh|Û ≤ |ũh|ÛCinv(h)‖vh‖Ĥ ,

so ‖vh‖Ĥ ≤ Cinv(h)|ũh|Û . With this choice of vh equation (4.7) becomes

∫ τ

0
t|ũh|2Û =

∫ τ

0
(P̂hu, ũh)Û + (u− uh, vh)H(t) − (u− uh, vh)Ĥ

≤
∫ τ

0
|P̂hu|Û |ũh|Û + (Cµτ/2)eCµτ/2‖u− uh‖H(t)‖vh‖Ĥ

≤
(

CP ‖u‖Lp[0,τ ;Û ] + (Cµτ/2)eCµτ/2Cinv(h)‖u− uh‖Lp[0,τ ;H(.)]

)

|ũh|Lp′ [0,τ ;Û ],

where Lemma 4.5 was used to obtain the second line. This is the analog of equation (4.6), and
repeating the argument of Step 1 above (with Cu used in place of exp(Cµτ)) completes the proof.

Remark: There is a subtlety here. In order for the projection to make sense u(0) must be defined,
so requires u ∈ C[0, τ ;H(.)]. While this does not explicitly appear in the stability estimates, it is
implicitly present in the assumption uh(0) = 0.

Lemma 4.7. Let the spaces {H(t)}0≤t≤τ satisfy Assumptions 1 and 21. Then the there exists a
constant C(k), depending only upon k, such that the projection characterized by equation (4.5)
satisfies

‖u− Phu‖Lp[0,τ ;H(.)] ≤ C(k)e3Cµτ
(

‖u− Ph(0)u‖Lp[0,τ ;H(0)] + τk+1‖u(k+1)‖Lp[0,τ ;H(0)]

)

,

provided the time derivative u(k+1) ≡ Dk+1
t u(t, .) is in Lp[0, τ ;H(0)].

If the discrete subspaces {Uh}h>0 satisfy the inverse inequality of Definition 4.2, and restrictions
of the orthogonal projections Ph : H(t) → Uh to U(t) have bound CP independent of h, then there
exists C = C

(

k,Cu, CP , e
Cµτ
)

> 0 such that

‖u− Phu‖Lp[0,τ ;U(.)] ≤ C(1 + CµτCinv(h))
(

‖u− Ph(0)u‖Lp[0,τ ;U(0)] + τk+1‖u(k+1)‖Lp[0,τ ;U(0)]

)

,

provided the time derivative u(k+1) ≡ Dk+1
t u(t, .) is in Lp[0, τ ;U(0)].
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Proof. To decompose the error into a spatial plus temporal part it is convenient to write Ĥ = H(0)
and P̂ = Ph(0). Then let Tk ∈ Pk[0, τ ;H(.)] be the Taylor polynomial of u and T̂k = P̂ (Tk) be
the projection of Tk onto Uh.

Note the following:

• T̂k = Ph(T̂k) since T̂k ∈ Pk[0, τ ;Uh].
• Since Tk(0) = u(0) it follows that

Ph(u− T̂k)(0) = Ph(0)
(

u(0) − T̂k(0)
)

= P̂
(

u(0) − P̂ (u(0))
)

= 0,

so the stability estimates of Lemma 4.6 apply to u− T̂k.
• Taylor’s theorem states

u(t) − Tk(t) = (1/k!)

∫ t

0
(t− s)ku(k+1)(s) ds,

and direct calculation shows

‖(1/k!)
∫ t

0
(t− s)ku(k+1)(s) ds‖Lp[0,τ ;Ĥ] ≤ (τk+1/(k + 1)!)‖u(k+1)‖Lp[0,τ ;Ĥ],

for any 1 ≤ p ≤ ∞, for any normed linear space Ĥ.

Using these properties we compute

‖u− Phu‖Lp[0,τ ;H(.)] ≤ ‖u− T̂k‖Lp[0,τ ;H(.)] + ‖T̂k − Phu‖Lp[0,τ ;H(.)]

= ‖u− T̂k‖Lp[0,τ ;H(.)] + ‖Ph(T̂k − u)‖Lp[0,τ ;H(.)]

≤ (1 + C(k)e2Cµτ )‖u− T̂k‖Lp[0,τ ;H(.)].(4.8)

The term on the right can be estimated as

‖u− T̂k‖Lp[0,τ ;H(.)] ≤ eCµτ‖u− T̂k‖Lp[0,τ ;Ĥ]

≤ eCµτ
(

‖u− P̂ u‖Lp[0,τ ;Ĥ] + ‖P̂ (u− Tk)‖Lp[0,τ ;Ĥ]

)

≤ eCµτ
(

‖u− P̂ u‖Lp[0,τ ;Ĥ] + ‖u− Tk‖Lp[0,τ ;Ĥ]

)

.(4.9)

Bounds for the error in Lp[0, τ ;U(.)] are obtained similarly. The analog of equation (4.8) is

‖u− Phu‖Lp[0,τ ;U(.)] ≤ (1 + CPh
)‖u− T̂k‖Lp[0,τ ;U(.)],

where CPh
is the stability constant of Ph on Lp[0, τ ;U(.)], and the analog of equation (4.9) is

‖u− T̂k‖Lp[0,τ ;U(.)] ≤ Cu

(

‖u− P̂ u‖Lp[0,τ ;Û ] + CP ‖u− Tk‖Lp[0,τ ;Û ]

)

.

Corollary 4.8. Let the spaces {H(t)}T
t=0 satisfy Assumptions 1 and 21 and suppose the sub-

spaces {Uh}h>0 satisfy the inverse assumption of Definition 4.2. Then there exist constants C0 =
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C0(k, e
Cµτ ) and C1 = C1

(

k,Cu, CP , e
Cµτ , eCT

)

such that the projection P
loc
h : C[0, T ;H] → Uh of

Definition 4.2 satisfies

9u− P
loc
h u9∞ ≤ Ĉ0 max

1≤n≤N

(

‖u− Pn(tn)u‖L∞[tn−1,tn;H(tn)] + τk+1‖u(k+1)‖L∞[tn−1,tn;H(tn)]

)

+Ĉ1
√
ca(1 + CµτCinv(h))





(

N
∑

n=1

‖u− Pn(tn)u‖2
L2[tn−1,tn;U(tn)]

)1/2

+ τk+1

(

N
∑

n=1

‖u(k+1)‖L2[tn−1,tn;U(tn)]

)1/2


 .

whenever u(k+1) ∈ L∞[0, T ;H]∩L2[0, T ;U ]. Here ca and C are the constants in the definition of
9.9∞, and Pn(t) : H(t) → Un

h is the orthogonal projection. Similarly

9u− P
loc
h u92 ≤ Ĉ0





(

N
∑

n=1

‖u− Pn(tn)u‖2
L2[tn−1,tn;H(tn)]

)1/2

+ τk+1

(

N
∑

n=1

‖u(k+1)‖L2[tn−1,tn;H(tn)]

)1/2




+Ĉ1
√
ca(1 + CµτCinv(h))





(

N
∑

n=1

‖u− Pn(tn)u‖2
L2[tn−1,tn;U(tn)]

)1/2

+ τk+1

(

N
∑

n=1

‖u(k+1)‖L2[tn−1,tn;U(tn)]

)1/2


 .

4.3. Fully-Discrete Estimate for the Convection Diffusion Equation. In this sec-
tion the general results of the previous section are adapted to analyze approximations of the
convection-diffusion equation. In particular, it is shown that the approximate scheme (4.1) sat-
isfies the hypotheses of Theorem 4.3.

We begin by identifying the spaces and bilinear forms. Since Theorem 4.3 will be used to analyze
approximations of the convection diffusion equation in Lagrangian coordinates (X, t), it is to
be understood that the spaces and functions of the previous section are to depend upon these
variables. Accordingly hats will be used to denote these functions (u(x, t) = û(X, t) etc.). Then,
as in Section 3.3, the space H(t) is taken to be L2(Ωr) with the inner product

(û, v̂)H(t) =

∫

Ωr

ûv̂J(t, .) =

∫

Ω
uv,

so that M(t)û = ûJ(., t). Even though a different change of variables x = χ(X, t) may be used
over each interval (tn−1, tn], the bilinear form M(t) is continuous in the sense that

∫

Ωr

ûn−1(X, tn−1)2Jn−1(tn−1, X)dX =

∫

Ω
u2(x)dx =

∫

Ωr

ûn(X, tn−1
+ )2Jn(tn−1

+ , X)dX,

when u : Ω → R is fixed, and ûn(X, t) = u(χ(X, t)) is the representation in the Lagrangian
configuration on (tn−1, tn].

The semi-norm |.|U(.) of the previous section is taken to be

|û|2U(.) =

∫

Ωr

|F−T∇X û|2J dX =

∫

Ω
|∇xu|2 dx,

and the bilinear form a(.; ., .) corresponding to the convection diffusion operator is

a(.; û, v̂) =

∫

Ωr

(

− divx(V )ûv̂ + (V − Ṽ ).(F−T∇X û)v̂ + ǫ(F−T∇X û) · (F−T∇X v̂
)

J.
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The first term on the right hand side arises from the identity

ûtJ = (ûJ)t − Jtû = (M(.)û)t − divx(V )ûJ.

With the given identification of spaces and operators, the norms 9.9∞ and 9.92 become

9ê92
∞ = sup

0≤s≤T
‖ê(s)‖2

H(s) + 2ǫ

∫ T

0
eC(T−s)|ê(s)|2U(s) ds

= sup
0≤s≤T

‖e(s)‖2
L2(Ω) + 2ǫ

∫ T

0
eC(T−s)|e(s)|2H1(Ω) ds,

and

9ê92
2 =

∫ T

0
eC(T−s)‖ê(s)‖2

H(s) ds+ 2ǫ

∫ T

0
eC(T−s)|ê(s)|2U(s) ds

=

∫ T

0
eC(T−s)‖e(s)‖2

L2(Ω) ds+ 2ǫ

∫ T

0
eC(T−s)|e(s)|2H1(Ω) ds

In the above we have anticipated that ca will be equal to 2ǫ for the convection diffusion problem.

In the statement of the following theorem the L∞[0, T ;L∞(Ω)] norm of the coefficient Ṽ and its
derivatives is written as ‖Ṽ ‖L∞ , ‖∇xṼ ‖L∞ etc. We remind the reader that

D(Ṽ ) = (1/2)
(

∇xṼ + (∇xṼ )T
)

, and divx(Ṽ ) = trace(D(Ṽ )).

Theorem 4.9. Let V , Ṽ ∈ L∞[0, T ;W 1,∞(Ω)] and assume that V.n = Ṽ .n = 0 on ∂Ω. Let u ∈
L2[0, T ;H1(Ω)]∩H1[0, T ;H1(Ω)

′
] be the solution of equation (1.1) with data f ∈ L2[0, T ;L2(Ω)],

homogeneous Dirichlet data, g0 = 0, and Neumann boundary data g ∈ L2[0, T ;H1/2(Γ1)], and let
uh ∈ Uh be the solution computed using equation (4.1) and spaces constructed in Section 4.1.

Then there exists a constant C > 0 whose dependence on the coefficients V , Ṽ , ǫ, and parameters
h and τ = max1≤n≤N tn − tn−1 is of the form

C = C(‖divx(Ṽ )‖L∞ , ‖V − Ṽ ‖L∞/
√
ǫ, exp(‖D(Ṽ )‖L∞τ),

√
ǫτ/h),

(monotone increasing in each argument) such that

9û− ûh92
∞ ≤ C

(

‖P0(û0) − û0
h‖H(0) + 9û− P

loc
h û 92

∞

+
N−1
∑

i=0

min
(

‖(I − Pi)û(t
i)‖2

H(ti), 1/(τ
i+1ǫ)‖Pi+1(I − Pi)û(t

i)‖2
U

′
(ti)

))

.

A similar estimate also holds with 9.92 in place of 9.9∞.

Proof. The hypotheses introduced in Section 4.2 will be verified with constants ca = 2ǫ, cα = ǫ/2,
and

Cµ = ‖divx(Ṽ )‖L∞ , Cu = exp
(

(τ/2)‖divx(Ṽ )‖L∞ + τ‖D(Ṽ )‖L∞

)

,
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Cα = ‖divx(Ṽ )‖L∞ + ‖V − Ṽ ‖2
L∞/ǫ, Ca = max(1, Cα), Cinv(h) = C(Ω, ℓ)eCµτCu/h.

To bound the “inverse hypothesis constant”, Cinv(h), recall that the beginning of each time step
the Lagrange and Eulerian coordinates coincide since x = χ(X, tn−1

+ ) = X. Since quasi-uniform

finite element meshes are used to construct the subspace Ûn
h , the inverse hypothesis [9] guarantees

the existence of C > 0 independent of h such that

|ûh|U(tn−1
+ )

‖ûh‖H(tn−1
+ )

=
|uh|H1(Ωr)

‖uh‖L2(Ωr)
≤ C(Ω, ℓ)/h,

for ûh ∈ Ûn
h . Statement 2 of Hypothesis 2 and the corresponding identity (4.3) for ‖.‖H(.) imply

|ûh|U(s)

‖ûh‖H(s)
≤ C(Ω, ℓ)eCµτCu/h, tn−1 < s ≤ tn, ûh ∈ Un

h ,

which shows that Cinv(h) ≤ C(Ω, ℓ)eCµτCu/h.

It remains to verify the hypotheses of Section 4.2 with the spaces and operators tailored to the
convection diffusion equation. To verify that M(.) satisfies Assumption 1 recall that J(.) satisfies
J̇ = Jdivx(Ṽ ) so that

−‖divx(Ṽ )‖L∞ ≤ J̇/J ≤ ‖divx(Ṽ )‖L∞ .

It follows that

exp
(

−‖divx(Ṽ )‖L∞(t− tn−1)
)

≤ J(., t)/J(., tn−1
+ ) ≤ exp

(

‖divx(Ṽ )‖L∞(t− tn−1)
)

.

The reference configuration on each time interval (tn−1, tn] is selected to satisfy χ(X, tn−1
+ ) = X,

so J(., tn−1
+ ) = 1 and

c(t)‖û‖2
L2(Ωr) ≤ (J(., t)û, û)L2(Ωr) = (M(t)û, û)L2(Ωr),

where c(t) = exp
(

−‖divx(Ṽ )‖L∞(t− tn−1)
)

.

Assumptions 2 are next verified.

1. The smoothness assumption on the bilinear form µ(., û, v̂) follows from the differentiability
of J . Since J̇ = divx(Ṽ )J

|µ(., û, v̂)| =

∣

∣

∣

∣

∫

Ωr

ûv̂J̇

∣

∣

∣

∣

≤ Cµ‖û‖H(.)‖v̂‖H(.),

where Cµ = ‖divx(Ṽ )‖L∞ .
2. Uniform continuity of |.|U(t) was established in Section 3.3. Equation (3.7) states

1/Cu ≤ |û|U(t)/|û|U(s) ≤ Cu,

where Cu = exp
(

τ(1/2‖divx(Ṽ )‖L∞ + ‖D(Ṽ )‖L∞)
)

.
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3. The Cauchy Schwarz inequality shows that

|a(., û, v̂)| ≤ ‖div(Ṽ )‖L∞‖û‖H(.)‖v̂‖H(.) + ‖V − Ṽ ‖L∞ |û|U(.)‖v̂‖H(.) + ǫ|û|U(.)|v̂|U(.)

≤
(

2ǫ|û|2U(.) + ‖div(Ṽ )‖L∞‖û‖2
H(.)

)1/2

×
(

ǫ|v̂|2U(.) + (‖div(Ṽ )‖L∞ + ‖V − Ṽ ‖2
L∞/ǫ)‖û‖2

H(.)

)1/2
.

It follows that the bilinear form satisfies the continuity hypothesis of Assumption 2 with
constants ca = 2ǫ and Ca = max(1, ‖div(Ṽ )‖L∞ + ‖V − Ṽ ‖2

L∞/ǫ).
In order for the solution to be bounded independently of ǫ, it is necessary that the forcing
term f and Neumann boundary data g be suitably bounded. Since Ω is Lipschitz, the

trace theorem states ‖v‖H1/2(Γ1) ≤ Ct‖v‖1/2
L2(Ω)

‖v‖1/2
H1(Ω)

so that

|F (v)| =

∣

∣

∣

∣

∫

Ω
fvJ +

∫

Γ1

gv

∣

∣

∣

∣

≤ ‖f‖L2(Ω)‖v‖L2(Ω) + Ct‖g‖H1/2(Γ1)‖v‖
1/2
L2(Ω)

‖v‖1/2
H1(Ω)

≤
(

(4/3)‖f‖2
L2(Ω) + (C2

t /
√
ǫ)‖g‖2

H1/2(Γ1)

)1/2 (

(3/4)‖v‖2
L2(Ω) +

√
ǫ‖v‖L2(Ω)‖v‖H1(Ω)

)1/2

≤
(

(4/3)‖f‖2
L2(Ω) + (C2

t /
√
ǫ)‖g‖2

H1/2(Γ1)

)1/2 (

‖v‖2
L2(Ω) + ǫ‖v‖2

H1(Ω)

)1/2
.

It follows that

|F (.; v̂)| ≤
(

(4/3)‖f‖2
L2(Ω) + (C2

t /
√
ǫ)‖g‖2

H1/2(Γ1)

)1/2 (

ca|v̂|2U(.)| + Ca‖v̂‖2
H(.)

)1/2
.

This calculation shows, for example, that if quadrature errors for f and g/ǫ1/4 are bounded
in L2[0, T ;L2(Ω)] and L2[0, T ;H1/2(Γ1)], then the error in the solution will be bounded
in the norms 9.9∞ and 9.92.

4. Direct calculation shows

a(.; û, û) = ǫ|û|2U(.) +

∫

Ωr

(

− div(Ṽ )û2 + (V − Ṽ ).(F−T∇X û)û
)

J.

Bounding the latter term as

∫

Ωr

(

− div(Ṽ )û2 + (V − Ṽ ).(F−T∇X û)û
)

J

≤ ‖divx(Ṽ )‖L∞‖û‖2
H(.) + ‖V − Ṽ ‖L∞ |û|U(.)‖û‖H(.)

≤
(

‖divx(Ṽ )‖L∞ + ‖V − Ṽ ‖2
L∞/2ǫ

)

‖û‖2
H(.) + (ǫ/2)|û|2U(.),

shows

a(.; û, û) ≥ (ǫ/2)|û|2U(.)−
(

‖divx(Ṽ )‖L∞ + ‖V − Ṽ ‖2
L∞/2ǫ

)

‖û‖2
H(.) ≡ cα|û|2U(.)−Cα‖û‖2

H(.).
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4.4. Rates of Convergence. Theorem 4.9 characterizes the error of the solution in terms
of various projections in weighted spaces. In this section it is shown that these projections exhibit
optimal approximation properties for smooth solutions when the subspaces {Ûn

h }N
n=0 are classical

finite element subspaces of H1(Ωh). Since different meshes may be used for each time step the
following convention will be adopted. A family of meshes of Ωr, {Th}h>0, takes the form

Th = {T n
h }N

n=1, N = N(h),

and the index h is the diameter of the largest element in Th = ∪nT n
h . Quasi-uniformity of the

family {Th}h>0 requires each mesh to be quasi-uniform [9].

Estimates for û − Pi(.)û were obtained in Section 3.3 and are used to estimate the jump terms
that arise when the Lagrangian variables are reinitialized at each time step. The space-time
projection error û− P

loc
h û is bounded by specializing Corollary 4.8 to the present setting.

Corollary 4.10. Let {Th}h>0 be a family of quasi-uniform triangulations of Ωr and for each
n = 0, 1, . . . , N(h) let Ûn

h ⊂ Û = {û ∈ H1(Ωr) | û|Γ0r = 0} be a classical finite element space
constructed over T n

h containing the polynomials of degree less than or equal to ℓ > 0 on each
element K ∈ T n

h .

Let the hypotheses of Theorem 4.9 and Lemma 3.4 hold and suppose that the initial value û0
h

satisfies ‖û0
h − P0(0)û(0)‖L2(Ωr) ≤ C‖û(0)‖Hℓ+1(Ωr)h

ℓ+1. Assume that the time steps are quasi-

uniform in the sense that there exists 0 < θ ≤ 1 such that θτ ≤ tn − tn−1 ≤ τ where τ = τ(h) is
the maximum time step size for each h. Then there exists a constant C > 0 whose dependence
on the coefficients V , Ṽ , ǫ, and parameters k, ℓ, h and τ is of the form

C = C
(

k, ℓ, T, ‖divx(Ṽ )‖L∞ , ‖V − Ṽ ‖L∞/
√
ǫ, e‖D(Ṽ )‖L∞τ ,

√
ǫτ/h)

)

such that approximate solutions computed using equation (4.1) satisfy

9û− ûh9∞ ≤ C



 max
1≤i≤N

|û(k+1)|L∞[ti−1,ti;L2(Ωr)] +
√
ǫ(1 + τ/h)

(

N
∑

i=1

|û(k+1)|2L2[ti−1,ti;H1(Ωr)]

)1/2


 τk+1

+C



 max
1≤i≤N

|û|L∞[ti−1,ti;Hℓ+1(Ωr)]

(

h+ min(h/
√
τ , h2/τ

√
ǫ)
)

+
√
ǫ(1 + τ/h)

(

N
∑

i=1

|û|2L2[ti−1,ti;Hℓ+1(Ωr)]

)1/2


hℓ.

Proof. Classical finite element spaces, Uh, constructed over quasi-uniform meshes satisfy an
inverse estimate of the form ‖ûh‖H1(Ωr) ≤ C(Ω, ℓ)‖ûh‖L2(Ωr)/h so that the restriction of the
orthogonal projection Ph : L2(Ωr) → Uh to H1(Ωr) is bounded [9]. It follows that Corollary 4.8
is applicable; specifically,

9û− P
loc
h û9∞ ≤ Ĉ0 max

1≤n≤N

(

‖û‖L∞[tn−1,tn;Hℓ+1(Ωr)]h
ℓ+1 + ‖û(k+1)‖L∞[tn−1,tn;L2(Ωr)]τ

k+1
)

+Ĉ1

√
ǫ(1 + τ/h)





(

N
∑

n=1

‖û‖2
L2[tn−1,tn;Hℓ+1(Ωr)]

)1/2

hℓ +

(

N
∑

n=1

‖û(k+1)‖L2[tn−1,tn;H1(Ωr)]

)1/2

τk+1



 .

In the above Lemma 3.4 was used to bound the projection errors û− Pn(tn)û.

27



The estimates developed in Lemma 3.4 are also used to estimate the jump terms. When ǫ << h
the jump term is estimated as

(

N
∑

i=0

‖(I − Pi)û(t
i)‖2

H(ti)

)1/2

≤ C(ℓ)e1/2‖divx(Ṽ )‖L∞τ |û|L∞[0,T ;Hℓ+1(Ωr)]

√
Nhℓ+1.

When the time steps are quasi-uniform, N ≤ T/θτ . For large values of ǫ, a better estimate is
achieved using the second term in the summand since, as in the proof of Corollary 3.5, an extra
power of h is obtained when estimating the error in the weaker norm norm U ′(ti).

(

N
∑

i=0

(1/τ i+1ǫ)‖Pi+1(I − Pi)û(t
i)‖2

U ′(ti)

)1/2

≤ C|û|L∞[0,T ;Hℓ+1(Ωr)]

(

N
∑

i=1

1/τ i

)1/2

hℓ+2/
√
ǫ.

When the time steps are quasi-uniform the right hand side is of order hℓ+2/τ
√
ǫ.

5. Numerical Examples. We present two numerical examples with velocity fields V in-
dependent of time. For the first example a smooth solution is constructed with a divergence
free velocity field, V = curl(ψ), and rates of convergence are verified for both the classical and
Lagrangian algorithms. In general both methods are expected to work well when the velocity
is divergence free. For the second example V = ∇φ is chosen so that u develops a steep layer.
On coarse meshes the classical Galerkin method diverges exponentially with time when ǫ is small
while the Lagrangian scheme remains stable.

For the examples below Ω = [0, 1]2 and uniform rectangular meshes were used to construct the
discrete subspaces. For each h > 0 the same mesh was used for each time step and discrete
subspaces constructed using the classical space-time tensor product decomposition:

uh(t,X) =
∑

i

φi(X)ui(t) =
∑

i,j

φi(X)ηj(t)uij .

The functions {φi} restricted to each element were taken to be the standard piecewise quadratic
tensor product basis, and the functions {ηj} restricted to each time interval (tn−1, tn) were chosen
to be quadratic polynomials.

5.1. Implementation. In the current context the velocity V is specified so it is possible
to select Ṽ = V . If the space-time integrals are approximated using Gaussian quadrature then
x(t,X) (required for terms like f̂(t,X) = f(t, x(t,X))) and the Jacobian F (t,X) can be computed
as follows.

• For each Gauss point X ∈ K, set (x, F ) = (X, I).
• For each Gauss points in (tn−1, tn)

– Advance (x, F ) to the current time by taking one Runge Kutta step of the equation
(ẋ, Ḟ ) = (V (t, x),∇xV (t, x)F ).

– Accumulate the integrands of the space-time integrals

The jump term
∫

un−1
h v

(n−1)+
h requires un−1

h , defined on a mesh T n−1, to be integrated against
a basis function φi defined on a mesh T n. This integral is also approximated using Gaussian
quadrature over the triangles K ∈ T n as follows (see Figure 5.1):

1. For each Gauss point x ∈ K ∈ T n
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tn−1

tn−2

un−1(X)

X

x = χ(tn−1, X)

Fig. 5.1. Changing from Lagrangian to Eulerian variables.

Classical Galerkin Scheme Lagrange Galerkin Scheme
h = τ ‖eh(1)‖L2(Ω) ‖eh(1)‖H1

0 (Ω) ‖eh(1)‖L2(Ω) ‖eh(1)‖H1
0 (Ω)

1/8 3.332410e-04 1.292982e-02 7.122739e-04 2.344960e-02
1/16 3.367982e-05 2.967840e-03 4.689015e-05 4.385801e-03
1/32 3.816188e-06 7.219712e-04 4.858834e-06 9.780879e-04
1/64 4.591580e-07 1.789749e-04 5.653414e-07 2.330012e-04
Rate 3.1652 2.0564 3.4168 2.2124

Fig. 5.2. Errors for Example 1: Rotating Gaussian with ǫ = 0.05. (‖u(1)‖L2(Ω) = 0.635327, ‖u(1)‖H1

0
(Ω) =

1.362237)

2. Use a Runge Kutta scheme to determine X = x(tn−2), the solution of ẋ(t) = V (t, x(t)),
x(tn−1) = x (i.e. integrate backwards in time to determine the Lagrangian coordinate of
x).

3. Locate the triangle K̂ ∈ T n−1 containing X and the local coordinates ξ̂ = ξ̂(X) corre-
sponding to the location of X in K̂.

4. Compute
∑

i φ̂i(ξ̂)ui(t
n−1), the value of un−1 at (tn−1, x). Here {φ̂i} are the basis functions

supported on K̂, and ui(t
n−1) =

∑

j η(t
n−1)uij .

5. The weighted products of un−1 and φi(x) are then accumulated.

In step 3 it is assumed that the mesh data structure supports (efficient) point location. For an
arbitrary mesh the first Gauss point can be located in log(N) steps, where N is the number of
elements [12]. Locality arguments show that subsequent points can be located in constant time
by searching from the most recently identified triangle.

5.2. Example 1: Rotating Gaussian. A divergence free velocity field V = curl(ψ) =
(ψy,−ψx) is computed from the stream function ψ(x, y) = (1/

√
2) sin(πx) sin(πy). An exact

solution to the convection diffusion equation is then constructed by setting

u(t, x, y) =
1

4π(t+ 1/2)ǫ
exp

(

− (x− 1/2 − cos(2πt)/4)2 + (y − 1/2 − sin(2πt)/4)2

4(t+ 1/2)ǫ

)

and f = ut +V.∇u− ǫ∆u. Figure 5.3 presents plots the velocity field and the u(t, .) with ǫ = 0.05
at several times.

Figures 5.2 and 5.4 tabulate the L2(Ω) and H1(Ω) errors at time t = 1 for the solutions computed
using each scheme with ǫ = 0.05 and ǫ = 0.005 respectively. For the meshes with h = τ = 1/8,
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Fig. 5.3. Example 1: Rotating Gaussian, ǫ = 0.05, solution at t = 0, 0.34, 0.68, and the velocity field.

Classical Galerkin Scheme Lagrange Galerkin Scheme
h = τ ‖eh(1)‖L2(Ω) ‖eh(1)‖H1

0 (Ω) ‖eh(1)‖L2(Ω) ‖eh(1)‖H1
0 (Ω)

1/8 1.003933e-01 2.380503e+00 5.567560e-02 1.970484e+00
1/16 7.423257e-03 4.952956e-01 4.596848e-03 4.705719e-01
1/32 5.719924e-04 1.118243e-01 5.239205e-04 1.147995e-01
1/64 5.717871e-05 2.384598e-02 6.407732e-05 2.830298e-02
Rate 3.6032 2.2071 3.2422 2.0340

Fig. 5.4. Errors for Example 1: Rotating Gaussian with ǫ = 0.005. (‖u(1)‖L2(Ω) = 2.301052, ‖u(1)‖H1

0
(Ω) =

18.703792)

1/16, 1/32 and 1/64 the expected rates of convergence of 3 and 2 were observed in the L2(Ω) and
H1(Ω) norms for each scheme.

5.3. Example 2: Converging Flow. The velocity specified for a second numerical example
has V = ∇φ where φ(x, y) = (1 − cos(2πx))(1 − cos(2πy)). The streamlines of this velocity
field converge to a “sink” in the middle of the square along trajectories that become parallel to
the diagonal. The velocity field and contours of φ are plotted in Figure 5.5. The initial data
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Fig. 5.5. Velocity field and initial data for Example 2

time Classical Galerkin Lagrange Galerkin
t ‖uh(t)‖H1(Ω) ‖uh(t)‖H1(Ω)

0 1.4493 1.4493
1/4 6.5101 3.4658
1/2 16.8268 3.4960
3/4 84.4373 3.5002
1 671.8893 3.5011

Fig. 5.6. Example 2: ‖uh(t)‖H1(Ω) of solutions computed with h = τ = 1/16, ǫ = 0.001.

u0(x, y) = u(0, x, y) transitions from u0(0, 0) = 0 to u0(1, 1) = 1 according to

u0(x) =







0 if ξ < 0
(1/2)(1 − cos(πξ) 0 ≤ ξ ≤ 1

1 1 < ξ,

where ξ = x1 + x2 − 1/2. Contours of u0 are plotted in Figure 5.5, and Dirichlet boundary data
u(t, .) = u0(.) was specified for all 0 ≤ t ≤ T = 1. Approximate solutions were computed with
diffusion constant ǫ = 0.001.

For coarse meshes approximate solutions computed with the classical Galerkin scheme are unsta-
ble. This is illustrated in Figure 5.6 which tabulates the H1(Ω) norm of the computed solution for
both the classical and Lagrangian based schemes with τ = h = 1/16. The Lagrangian Galerkin
scheme is stable for all of the meshes, and gave qualitatively correct solutions even for coarse
meshes.

For fine meshes both schemes gave similar solutions. Figure 5.7 plots the approximate solutions
at t = 1 computed using each scheme when h = τ = 1/32. This mesh does not accurately resolve
the steep layer that forms along the diagonal of the square, so Gibbs phenomena is observed on
the plots of the sections x 7→ uh(t = 1, x, y = 1/2) also shown in Figure 5.7. Unlike the classical
Galerkin scheme, the oscillations produced by the Lagrange Galerkin scheme are located near the
transition layer.
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