Test 1 Solutions

1) Let R be the subring $\{a+b \sqrt{10}: a, b \in Z\}$ of the field of real numbers.

Let $N: R \rightarrow Z$ be given by $N(a+b \sqrt{10})=a^{2}-10 b^{2}$.
a) Show that N is multiplicative, i.e., $N(u v)=N(u) N(v)$ for all $u, v \in R$, and show that $N(u)=0$ if and only if $u=0$.
b) Show that u is a unit in R if and only if $N(u)= \pm 1$.
c) Is 2 an irreducible element of R ? What about $4+\sqrt{10}$? Prove or disprove in each case.

Solution:
a) Let $u=a+b \sqrt{10}$ and $v=c+d \sqrt{10}$. Then
$N(u) N(v)=\left(a^{2}-10 b^{2}\right)\left(c^{2}-10 d^{2}\right)=N(a c+10 b d+(b c+a d) \sqrt{10})=N(u v)$.
b) Suppose that u is a unit. Then there is $v \in R$ with $u v=1$ so by part
a) $N(u v)=N(u) N(v)=1$. Now $N(u)= \pm 1$. In the other direction, if $u=a+b \sqrt{10}$ and $a^{2}-10 b^{2}= \pm 1$, then $\pm(a-b \sqrt{10})$ is the inverse of u.
c) If $2=u v$, then $4=N(2)=N(u) N(v)$ so one of $|N(u)|$ or $|N(v)|$ is 1 or both are 2. In the first case, one of them is a unit, and in the second case, $a^{2}-10 b^{2}= \pm 2$. But such an equation is impossible with a, b integers (consider the equation mod 10). So 2 is irreducible. Now $N(4+\sqrt{10})=6$ so if it can be factored, then one of the products has norm ± 2 which is impossible.
2) Let R be an integral domain with quotient field F. Let T be an integral domain such that $R \subset T \subset F$. Prove that F is (isomorphic to) the quotient field of T.

Solution: Let F_{T} be the quotient field of T. Define $f: F_{T} \rightarrow F$ by $f(x / y)=$ $a d / b c$ where $x=a / b, a, b \in R$ and $y=c / d, c, d \in R$. It is easy (though tedious) to show that $f\left(x_{1} / y_{1}\right) f\left(x_{2} / y_{2}\right)=f\left(x_{1} x_{2} / y_{1} y_{2}\right)$ and that $f\left(x_{1} / y_{1}\right)+$ $f\left(x_{2} / y_{2}\right)=f\left(x_{1} / y_{1}+x_{2} / y_{2}\right)$. Thus f is a ring homomorphism. It is surjective since the preimage of a / b is x / y where $x=a c / c$ and $y=b d / d$ for some $c, d \in R$. Now if $f(x / y)=0$ where $x=a / b$ and $y=c / d$, then $a d=0$ and since R is an integral domain, and $d \neq 0$, we have $a=0$. Thus $x=0$ and $x / y=0$. Consequently, $\operatorname{Ker}(f)=0$ and therefore F_{T} is isomorphic to F.
3) Let F be a field and $f, g \in F[x]$ with $\operatorname{deg} g \geq 1$. Prove that there exist unique polynomials $f_{0}, f_{1}, \ldots, f_{r} \in F[x]$ such that $\operatorname{deg} f_{i}<\operatorname{deg} g$ for all i and

$$
f=f_{0}+f_{1} g+f_{2} g^{2}+\cdots+f_{r} g^{r}
$$

Solution: There is an integer r such that $\operatorname{deg}\left(g^{r}\right) \leq \operatorname{deg}(f)<\operatorname{deg}\left(g^{r+1}\right)$ so by the division algorithm we get $f=f_{r} g^{r}+q_{r}$ where $\operatorname{deg}\left(q_{r}\right)<\operatorname{deg}\left(g^{r}\right)$. Now let q_{r} play the role of f. We then get an integer r_{1} such that $\operatorname{deg}\left(g^{r_{1}}\right) \leq$ $\operatorname{deg}\left(q_{r}\right)<\operatorname{deg}\left(g^{r_{1}+1}\right)$ and $r_{1}<r$. Also $q_{r}=f_{r_{1}} g^{r_{1}}+q_{r_{1}}$. When this process terminates we have $f=\sum_{i=0}^{r} f_{i} g^{i}$ with $\operatorname{deg}\left(f_{i}\right)<\operatorname{deg}(g)$.
Now suppose that $f=\sum f_{i} g^{i}=\sum h_{i} g^{i}$. Then $\sum\left(f_{i}-h_{i}\right) g^{i}=0$. Note that for $i<j,\left(f_{i}-h_{i}\right) g^{i}$ and $\left(f_{j}-h_{j}\right) g^{j}$ share no common power of x, so $\left(f_{i}-h_{i}\right) g^{i}=0$ for all i. But F is a field, so $F[x]$ is a domain which means that $g^{i}=0$ or $f_{i}-h_{i}$. Since $g \neq 0$, the latter holds and we're done with the proof of uniqueness.
4) Suppose that there are m red clubs $R_{1}, \ldots R_{m}$ and m blue clubs B_{1}, \ldots, B_{m} in a town of n citizens. Assume that the clubs satisfy the following rules:
(a) $\left|R_{i} \cap B_{i}\right|$ is odd for every i;
(b) $\left|R_{i} \cap B_{j}\right|$ is even for every $i \neq j$.

Prove an upper bound for m in terms of n and give an example achieving it.

Solution: Let v_{i} be the incidence vector (over F_{2}) for club R_{i} and w_{j} be the incidence vector for club B_{j}. Suppose we have a linear combination $\sum c_{i} v_{i}=0$. Dot product each side with w_{j}. The conditions of the theorem imply that we get $c_{j}=0$. Thus the v_{i} 's are linearly independent. Since they lie in a space of dimension n, there are at most n of them, so $m \leq n$. Letting $R_{i}=B_{i}=\{i\}$ for all i achieves this bound.

