Homework Set 5

1) Let A be a nonzero hermitian matrix. Show that $\operatorname{tr}\left(A A^{*}\right)>0$.

2 a) Show that the absolute value of the determinant of a real unitary matrix is 1 .
b) If A is a complex square matrix, then show that $\operatorname{Det}(\bar{A})=\overline{\operatorname{Det}(A)}$. Conclude that the absolute value of the determinant of a complex unitary matrix is 1 .
3) Let $A: V \rightarrow V$ be a symmetric linear map. Show that the index of nullity of the form

$$
(v, w) \rightarrow\langle A v, w\rangle
$$

is equal to the dimension of the kernel of A. Show that the index of positivity is equal to the number of eigenvectors in a spectral basis having a positive eigenvalue.
4) If A and B are submodules of M, then show that:
(a) $A \cap B$ is a submodule of M
(b) $A+B=\{a+b: a \in A, b \in B\}$ is a submodule of M
(c) $(A+B) / B$ is isomorphic to $A /(A \cap B)$.

