
Solutions to Homework Set 4

1) Suppose that Eventown has fewer than 2bn/2c clubs. Prove that there is
room for a new club without violating the Eventown rules.

Solution: It suffices to show that every maximal totally isotropic subspace of
F n

2 has dimension bn/2c. Let U be a totally isotropic subspace of dimension
≤ (n − 2)/2. So dim(U⊥) ≥ 2 + dim(U). This means that we can find
two vectors u, v ∈ U⊥ such that no nontrivial linear combination of them
belongs to U . If either u or v is isotropic, then adding them to U contradicts
maximality of U . Otherwise, (u + v) · (u + v) = u · u + v · v = 0 and we can
add u + v to U .

2) Show that if n is even, then there exist at least 2n(n+2)/8/(n!)2 nonisomor-
phic solutions to the Oddtown problem of size n. Prove that for large n this
is greater than 2n2/9.

Solution: Let n = 2k. Let A be any symmetric k by k matrix with 0-1
entries, and let

B =
(

A + Ik A
A A + Ik

)
.

Then it is easy to see that BBT = In (over the field of 2 elements), so
B is an oddtown incidence matrix. The number of of such A is 21+···+k =
2k(k+1)/2 = 2n(n+2)/8, since the entries in the lower half including the diagonal
determine A. We must divide this by (n!)2 to obtain a lower bound on
the number of pairwise nonisomorphic matrices, since any permutation of
the rows and columns does not change the isomorphism class. For large n,
2n(n+2)/8/(n!)2 > 2n2/9, since(

n(n + 2)

8
− n2

9

)
ln 2 =

(
n2

72
+

n

4

)
ln 2 > (2− o(1))n ln n.

(here you need the estimate log(n!) ∼ n log n).

3) Let V be a vector space of dimension n over K. Let V ∗∗ be the dual space
of V ∗. Give an explicit isomorphism between V and V ∗∗.

Solution: To each element w ∈ V , assign the element gv ∈ V ∗∗, defined by
gv(f) = f(v), for all f ∈ V ∗. It is standard to check that this is linear and
1-1. So V is isomorphic to some subspace of V ∗∗. But we know that V and
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V ∗∗ have the same dimension, so they must be isomorphic. (I dont think this
uses the existence of a scalar product on V )

4) Let V be finite dimensional over R with positive definite scalar product.
Let A be an operator on V . Show that the image of AT is the orthogonal
space to the kernel of A.

Solution: For every v ∈ V and w ∈ ker(A) we have

〈AT v, w〉 = 〈v, Aw〉 = 〈v, 0〉 = 0

so AT (V ) ⊂ ker(A)⊥. On the other hand, if v ∈ AT (V )⊥ and x ∈ V ,
then 〈Av, x〉 = 〈v, AT x〉 = 0 so Av = 0 and v ∈ ker(A). Thus AT (V )⊥ ⊂
ker(A). Taking the orthogonal complement of both sides yields the opposite
containment.
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