Homework Set 4

1) Suppose that Eventown has fewer than $2^{\lfloor n / 2\rfloor}$ clubs. Prove that there is room for a new club without violating the Eventown rules.
2) Show that if n is even, then there exist at least $2^{n(n+2) / 8} /(n!)^{2}$ nonisomorphic solutions to the Oddtown problem of size n. Prove that for large n this is greater than $2^{n^{2} / 9}$.
3) Let V be a vector space of dimension n over K. Let $V^{* *}$ be the dual space of V^{*}. Give an explicit isomorphism between V and $V^{* *}$.
4) Let V be finite dimensional over R with positive definite scalar product. Let A be an operator on V. Show that the image of A^{T} is the orthogonal space to the kernel of A.
