
Solutions to Homework Set 3

1) Let R be a commutative ring with unit element. Prove that f(x) =
a0 + a1x + · · ·+ amxm ∈ R[x] is a unit in R[x] if and only if a0 is a unit in R
and a1, . . . , an are nilpotent elements in R (an element is nilpotent if some
power of it is zero).
Solution. First suppose that a0 is a unit and all other ai’s are nilpotent, say
ani

i = 0 for all i ≥ 1. Let g(x) = f(x) − a0. Let r = m × maxi ni. Consider
the polynomial

h(x) = a−1
0 − g(x)a−2

0 + · · ·+ (−1)r−1g(x)r−1a−r
0 .

Then f(x)h(x) = 1 + (−1)r−1g(x)ra−r
0 . Now a typical term in g(x)r is of the

form
∏r

j=1 aijx
ij . Since the number of variables is at most m, the coefficient

involves some term of the form a
r/m
ij and since r/m ≥ nij , this term is 0.

Hence g(x)r = 0 and f(x)h(x) = 1.
For the other direction, suppose that f(x) is a unit. Let us prove by induction
on m that a0 is a unit and all the other ai’s are nilpotent. Since the constant
term is 1, we clearly obtain that a0 is a unit. Suppose that f(x)g(x) =
1, where g(x) = b0 + b1x + · · · + bnx

n. Then clearly ambn = 0 and also
am−1bn + bn−1am = 0. Multiplying this by am yields bn−1a

2
m = 0. The

coefficient of xm+n−2 gives am−2bn +am−1bn−1 +ambn−2 = 0. Multiplying this
by a2

m gives bn−2a
3
m = 0. Continuing in this way we get b0a

n+1
m = 0 which

implies that am is nilpotent. Now we have ((f(x)− amxm) + amxm)g(x) = 1
which gives (f(x)−amxm)g(x) = 1−amxmg(x). Since am is nilpotent, every
coefficient of 1−amxmg(x) except the constant one is nilpotent. By what we
previously showed, this polynomial is therefore a unit. Now by induction on
m, all other coefficients of f(x) except a0 are nilpotent.

2) Let V be a finite dimensional vector space over the reals and W =
{w1, . . . , wm} be an orthonormal set in V such that

m∑
i=1

|〈wi, v〉|2 = ||v||2

for every v ∈ V . Prove that W is a basis of V .
Solution. Let ci = 〈v, wi〉. Then

||v||2 = ||v −
∑

i

ciwi||2 + ||
∑

i

ciwi||2 = ||v −
∑

i

ciwi||2 +
∑

i

c2
i ,

1



where the first equality holds because of the definition of ci and the second
because W is orthonormal. Now the hypothesis implies that v−∑

i ciwi = 0
and so v is in the span of W . Since W is clearly a linearly independent set,
it is a basis.

3) Let V be the set of real functions y = f(x) satisfying

d2y

dx2
+ 9y = 0.

a) Prove that V is a two-dimensional real vector space.
b) In V , define

〈u, v〉 =
∫ π

0
uv dx.

Show that this defines an inner product on V and find an orthonormal basis
for V .
Solution.
a) Let z = dy/dx. Then the equation dz/dx + 9y = 0 translates, by the
chain rule, to dz/dy × dy/dx + 9y = 0. Substituting z this gives z(dz/dy) +
9y = 0. Now we claim that all solutions z = z(y) to this satisfy z2 =
C − 9y2 for some constant C. Indeed, suppose z is a solution, then d(z2 +
9y2)/dy = 2z(dz/dy) + 18y = 0 and so clearly z2 + 9y2 = C. This gives
us z =

√
C − 9y2, or dy/dx = ±

√
C − 9y2. Solving this gives ±3x + c′ =

sin−1(y/
√

C) for some constant c′ and thus y =
√

C sin(±3x+c) = A sin 3x+
B cos 3x for appropriate constants A, B. The uniqueness of this solution
follows by differentiating sin−1(y/

√
C)±3x with respect to x and obtaining a

constant as before. We have shown that every solution is a linear combination
of sin 3x and cos 3x. Since these two vectors are clearly linearly independent
(tan 3x is not a constant function), V is a two-dimensional real vector space.

b) By properties of integrals, it is an inner product. Since
∫ π
0 cos 3x sin 3x dx =

0, the vectors cos 3x and sin 3x are already orthogonal. It suffices to normal-
ize them. Easy computations show that || sin 3x||2 = || cos 3x||2 = π/2, so we

must divide each vector by
√

π/2 to get an orthonormal basis for V .

4) Let W be a subspace of V and v ∈ V satisfy 2〈v, w〉 ≤ 〈w,w〉 for every
w ∈ W . Suppose that the inner product is positive definite. Prove that v
lies in the orthogonal complement of W .
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Solution. Write v = p + (v − p) where p is the projection of v onto W .
Now apply the hypothesis with w = p. This gives 2〈p + (v − p), p〉 ≤ 〈p, p〉.
Since v − p is orthogonal to p, this simplifies to 2〈p, p〉 ≤ 〈p, p〉. By positive
definiteness, we conclude that p = 0 and so v is orgthogonal to W .

3


