Homework Set 3

1) Let R be a commutative ring with unit element. Prove that $a_{0}+a_{1} x+$ $\cdots+a_{m} x^{m} \in R[x]$ is a unit in $R[x]$ if and only if a_{0} is a unit in R and a_{1}, \ldots, a_{n} are nilpotent elements in R (an element is nilpotent if some power of it is zero).
2) Let V be a finite dimensional vector space over the reals and $W=$ $\left\{w_{1}, \ldots, w_{m}\right\}$ be an orthonormal set in V such that

$$
\sum_{i=1}^{m}\left|\left\langle w_{i}, v\right\rangle\right|^{2}=\|v\|^{2}
$$

for every $v \in V$. Prove that W is a basis of V.
3) Let V be the set of real functions $y=f(x)$ satisfying

$$
\frac{d^{2} y}{d x^{2}}+9 y=0
$$

a) Prove that V is a two-dimensional real vector space.
b) In V, define

$$
\langle u, v\rangle=\int_{0}^{\pi} u v d x
$$

Show that this defines an inner product on V and find an orthonormal basis for V.
4) Let W be a subspace of V and $v \in V$ satisfy $2\langle v, w\rangle \leq\langle w, w\rangle$ for every $w \in W$. Prove that v lies in the orthogonal complement of W.

