Solutions to Homework Set 2

1) Let R be the ring of 2×2 matrices with rational entries. Prove that the only ideals of R are (0) and R.
Solution Suppose I is an ideal of R and $0 \neq A \in I$. Let α be a non-zero entry in A, and assume that it lies in row r and column s. Let $E_{1} \in R$ have all entries 0 except for the $(1, r)$ entry which is 1 . Let $E_{2} \in R$ have all entries 0 except for the ($s, 1$) entry which is 1 . Since I is a (two sided) ideal, $B=E_{1} A E_{2} \in I$. But B is the matrix with all entries 0 except for the $(1,1)$ entry which is α. Using a similar argument, we conclude that $C \in I$, where C is the matrix with all entries 0 except for the $(2,2)$ entry which is α. Thus $B+C \in I$. Since $B+C$ is invertible, we conclude that $I=R$.
2) Let R be the ring of all real valued continuous functions on $[0,1]$. Let M be a maximal ideal of R. Prove that there is a real number $\gamma \in[0,1]$ such that $M=\{f(x) \in R: f(\gamma)=0\}$. Hint: Proceed by contradiction. Use the fact that $[0,1]$ is compact, so every open cover of it has a finite subcover.
Solution For each $\gamma \in[0,1]$ we may suppose, for contradiction, that there exists $f \in M$ which does not vanish at γ (else M contains all functions that vanish at γ and we have already shown that this is maximal, so M is the desired ideal). Since f is continuous, there is a neighborhood N_{γ} around γ in which $f(x)>y_{\gamma}>0$. This produces a collection of open sets that cover $[0,1]$ and by compactness, there is a finite subcover T_{1}, \ldots, T_{n}. We also have functions f_{1}, \ldots, f_{n}. Now define $g(x)=\sum_{i=1}^{n}(f(x))^{2} \in M$. By definition, there exists $c>0$ such that $g(x)>c$ for all $x \in[0,1]$. Consequently, $1 / g(x) \in M$ since it is continuous. Thus $1 \in M$ and so $M=R$.
3) Let R be a Euclidean ring and $a, b \in R$. The least common multiple c of a and b is an element of R such that $a \mid c$ and $b \mid c$ and such that whenever $a \mid x$ and $b \mid x$ for $x \in R$, then $c \mid x$. Prove that such a c exists with $c \times(a, b)=a b$, where (a, b) is the gcd of a and b.
Solution Clearly $a b$ is a multiple of both a and b. Let c be a multiple of both a and b with $d(c)$ as small as possible. Now suppose x is a multiple of both a and b. Then $x=l c+r$. If $r=0$ then we are done. Otherwise, $d(r)<d(c)$ but a and b each divide both x and $l c$ so they also divide r. This contradicts the choice of c. Now consider $a b /(a, b)$. Since $(a, b) \mid a$ we have $a=(a, b) q$ and so $a b=(a, b) q b$. Thus $b \mid a b /(a, b)$ and similarly $a \mid a b /(a, b)$. Now write $a b /(a, b)=c q+r$. Then since $a \mid c$ and $b \mid c$, the previous observation implies
that $a \mid r$ and $b \mid r$. By definition of c, we conclude that $c \mid r$ and hence $c \mid a b /(a, b)$. Next we will show that $a b /(a, b) \mid c$, which is equivalent to $a b \mid(a, b) c$. Write $(a, b)=a x+b y$. Then clearly $a b \mid a x c$ and $a b \mid b y c$ so $a b \mid(a, b) c$. We conclude that $a b /(a, b) \times u=c$ for some unit u. If c has the property of an 1 cm , then certainly $c u^{-1}$ does as well, so the proof is complete.
4) Define the derivative $f^{\prime}(x)$ of the polynomial $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ as $f^{\prime}(x)=$ $\sum_{i=1}^{n} i a_{i} x^{i-1}$. Prove that if $f(x) \in F[x]$, where F is the field of rational numbers, then $f(x)$ is divisible by the square of a polynomial (of positive degree) if and only if $f(x)$ and $f^{\prime}(x)$ have a $\operatorname{gcd} d(x)$ of positive degree.
Solution First suppose that $h^{2} \mid f$ for some h of positive degree. Then $f=h^{2} g$ so using the product rule for derivatives, we have $f^{\prime}=h^{2} g^{\prime}+2 g h h^{\prime}$ and so clearly h divides both f and f^{\prime}. For the other direction, we will proceed by induction on the degree of f. The base case $\operatorname{deg}(f)=1$ is vacuous, so suppose that $\operatorname{deg}(f)>1$. Let $d=\left(f, f^{\prime}\right)$ and note that $\operatorname{deg}(d)<\operatorname{deg}(f)$. Since $d \mid f$, we conclude that $f=d q$, and so $f^{\prime}=d q^{\prime}+q d^{\prime}$. But $d \mid f^{\prime}$ as well, and hence $d \mid q d^{\prime}$. Now if $\left(d, d^{\prime}\right)=1$, then we have that $d \mid q$ and so $d^{2} \mid f$. But if (d, d^{\prime}) has positive degree, then by induction d is divisible by a square and so f is as well.
