Solutions to Homework Set 2

1) Let R be the ring of 2×2 matrices with rational entries. Prove that the only ideals of R are (0) and R.

Solution Suppose I is an ideal of R and $0 \neq A \in I$. Let α be a non-zero entry in A, and assume that it lies in row r and column s. Let $E_1 \in R$ have all entries 0 except for the (1, r) entry which is 1. Let $E_2 \in R$ have all entries 0 except for the (s, 1) entry which is 1. Since I is a (two sided) ideal, $B = E_1AE_2 \in I$. But B is the matrix with all entries 0 except for the (1, 1) entry which is α . Using a similar argument, we conclude that $C \in I$, where C is the matrix with all entries 0 except for the (2, 2) entry which is α . Thus $B + C \in I$. Since B + C is invertible, we conclude that I = R.

2) Let R be the ring of all real valued continuous functions on [0, 1]. Let M be a maximal ideal of R. Prove that there is a real number $\gamma \in [0, 1]$ such that $M = \{f(x) \in R : f(\gamma) = 0\}$. Hint: Proceed by contradiction. Use the fact that [0, 1] is compact, so every open cover of it has a finite subcover.

Solution For each $\gamma \in [0, 1]$ we may suppose, for contradiction, that there exists $f \in M$ which does not vanish at γ (else M contains all functions that vanish at γ and we have already shown that this is maximal, so M is the desired ideal). Since f is continuous, there is a neighborhood N_{γ} around γ in which $f(x) > y_{\gamma} > 0$. This produces a collection of open sets that cover [0, 1] and by compactness, there is a finite subcover T_1, \ldots, T_n . We also have functions f_1, \ldots, f_n . Now define $g(x) = \sum_{i=1}^n (f(x))^2 \in M$. By definition, there exists c > 0 such that g(x) > c for all $x \in [0, 1]$. Consequently, $1/g(x) \in M$ since it is continuous. Thus $1 \in M$ and so M = R.

3) Let R be a Euclidean ring and $a, b \in R$. The least common multiple c of a and b is an element of R such that a|c and b|c and such that whenever a|x and b|x for $x \in R$, then c|x. Prove that such a c exists with $c \times (a, b) = ab$, where (a, b) is the gcd of a and b.

Solution Clearly ab is a multiple of both a and b. Let c be a multiple of both a and b with d(c) as small as possible. Now suppose x is a multiple of both a and b. Then x = lc + r. If r = 0 then we are done. Otherwise, d(r) < d(c) but a and b each divide both x and lc so they also divide r. This contradicts the choice of c. Now consider ab/(a,b). Since (a,b)|a we have a = (a,b)q and so ab = (a,b)qb. Thus b|ab/(a,b) and similarly a|ab/(a,b). Now write ab/(a,b) = cq + r. Then since a|c and b|c, the previous observation implies

that a|r and b|r. By definition of c, we conclude that c|r and hence c|ab/(a, b). Next we will show that ab/(a, b)|c, which is equivalent to ab|(a, b)c. Write (a, b) = ax + by. Then clearly ab|axc and ab|byc so ab|(a, b)c. We conclude that $ab/(a, b) \times u = c$ for some unit u. If c has the property of an lcm, then certainly cu^{-1} does as well, so the proof is complete.

4) Define the derivative f'(x) of the polynomial $f(x) = \sum_{i=0}^{n} a_i x^i$ as $f'(x) = \sum_{i=1}^{n} i a_i x^{i-1}$. Prove that if $f(x) \in F[x]$, where F is the field of rational numbers, then f(x) is divisible by the square of a polynomial (of positive degree) if and only if f(x) and f'(x) have a gcd d(x) of positive degree.

Solution First suppose that $h^2|f$ for some h of positive degree. Then $f = h^2g$ so using the product rule for derivatives, we have $f' = h^2g' + 2ghh'$ and so clearly h divides both f and f'. For the other direction, we will proceed by induction on the degree of f. The base case deg(f) = 1 is vacuous, so suppose that deg(f) > 1. Let d = (f, f') and note that deg(d) < deg(f). Since d|f, we conclude that f = dq, and so f' = dq' + qd'. But d|f' as well, and hence d|qd'. Now if (d, d') = 1, then we have that d|q and so $d^2|f$. But if (d, d') has positive degree, then by induction d is divisible by a square and so f is as well.