
Solutions to Homework Set 2

1) Let R be the ring of 2 × 2 matrices with rational entries. Prove that the
only ideals of R are (0) and R.

Solution Suppose I is an ideal of R and 0 6= A ∈ I. Let α be a non-zero
entry in A, and assume that it lies in row r and column s. Let E1 ∈ R
have all entries 0 except for the (1, r) entry which is 1. Let E2 ∈ R have all
entries 0 except for the (s, 1) entry which is 1. Since I is a (two sided) ideal,
B = E1AE2 ∈ I. But B is the matrix with all entries 0 except for the (1, 1)
entry which is α. Using a similar argument, we conclude that C ∈ I, where
C is the matrix with all entries 0 except for the (2, 2) entry which is α. Thus
B + C ∈ I. Since B + C is invertible, we conclude that I = R.

2) Let R be the ring of all real valued continuous functions on [0, 1]. Let M
be a maximal ideal of R. Prove that there is a real number γ ∈ [0, 1] such
that M = {f(x) ∈ R : f(γ) = 0}. Hint: Proceed by contradiction. Use the
fact that [0, 1] is compact, so every open cover of it has a finite subcover.

Solution For each γ ∈ [0, 1] we may suppose, for contradiction, that there
exists f ∈ M which does not vanish at γ (else M contains all functions that
vanish at γ and we have already shown that this is maximal, so M is the
desired ideal). Since f is continuous, there is a neighborhood Nγ around γ
in which f(x) > yγ > 0. This produces a collection of open sets that cover
[0, 1] and by compactness, there is a finite subcover T1, . . . , Tn. We also have
functions f1, . . . , fn. Now define g(x) =

∑n
i=1(f(x))2 ∈ M . By definition,

there exists c > 0 such that g(x) > c for all x ∈ [0, 1]. Consequently,
1/g(x) ∈ M since it is continuous. Thus 1 ∈ M and so M = R.

3) Let R be a Euclidean ring and a, b ∈ R. The least common multiple c of
a and b is an element of R such that a|c and b|c and such that whenever a|x
and b|x for x ∈ R, then c|x. Prove that such a c exists with c × (a, b) = ab,
where (a, b) is the gcd of a and b.

Solution Clearly ab is a multiple of both a and b. Let c be a multiple of both
a and b with d(c) as small as possible. Now suppose x is a multiple of both
a and b. Then x = lc + r. If r = 0 then we are done. Otherwise, d(r) < d(c)
but a and b each divide both x and lc so they also divide r. This contradicts
the choice of c. Now consider ab/(a, b). Since (a, b)|a we have a = (a, b)q
and so ab = (a, b)qb. Thus b|ab/(a, b) and similarly a|ab/(a, b). Now write
ab/(a, b) = cq + r. Then since a|c and b|c, the previous observation implies
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that a|r and b|r. By definition of c, we conclude that c|r and hence c|ab/(a, b).
Next we will show that ab/(a, b)|c, which is equivalent to ab|(a, b)c. Write
(a, b) = ax + by. Then clearly ab|axc and ab|byc so ab|(a, b)c. We conclude
that ab/(a, b) × u = c for some unit u. If c has the property of an lcm, then
certainly cu−1 does as well, so the proof is complete.

4) Define the derivative f ′(x) of the polynomial f(x) =
∑n

i=0 aix
i as f ′(x) =∑n

i=1 iaix
i−1. Prove that if f(x) ∈ F [x], where F is the field of rational

numbers, then f(x) is divisible by the square of a polynomial (of positive
degree) if and only if f(x) and f ′(x) have a gcd d(x) of positive degree.

Solution First suppose that h2|f for some h of positive degree. Then f = h2g
so using the product rule for derivatives, we have f ′ = h2g′ + 2ghh′ and so
clearly h divides both f and f ′. For the other direction, we will proceed
by induction on the degree of f . The base case deg(f) = 1 is vacuous, so
suppose that deg(f) > 1. Let d = (f, f ′) and note that deg(d) < deg(f).
Since d|f , we conclude that f = dq, and so f ′ = dq′ + qd′. But d|f ′ as well,
and hence d|qd′. Now if (d, d′) = 1, then we have that d|q and so d2|f . But
if (d, d′) has positive degree, then by induction d is divisible by a square and
so f is as well.
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