Solutions to Homework Set 1

1) Let R be a ring and $e \in R$ such that $e^{2}=e$. Show that $(x e-e x e)^{2}=$ $(e x-e x e)^{2}=0$ for all $x \in R$.

Solution:

$$
\begin{gathered}
(x e-e x e)^{2}=(x e-e x e)(x e-e x e)=x e x e-\text { xeexe }- \text { exexe }+ \text { exeexe }= \\
=\text { xexe }- \text { xexe }- \text { exexe }+ \text { exexe }=0 \\
=\text { exex }- \text { exexe }- \text { exex }+ \text { exexe }=\text { exex }- \text { exexe }- \text { exeex }+ \text { exeexe }= \\
=(e x-e x e)(e x-e x e)=(e x-e x e)^{2} .
\end{gathered}
$$

2) Let D be an integral domain with unit of characteristic $p \neq 0$. Prove that p is prime. Extra credit: What if D has no unit?
Solution: Suppose that $p=r s$ with $r, s>1$. Then $0=p(1)=(r s)(1)=$ $r(s 1)=(r 1)(s 1)$. Since D is a domain, either $r 1=0$ or $s 1=0$, assume the former. Then for any $x \in R$, we have $r x=r(1 x)=(r 1) x=0 x=0$. Since $r<p$, this is a contradiction, hence p is prime.
3) Let D be a commutative ring. Prove that D is an integral domain if and only if the following holds: for every $a, b, c \in D$ with $a \neq 0$, if $a b=a c$ then $b=c$.
Solution: If $a b=a c$, then $a(b-c)=0$ and since D is a domain and $a \neq 0$, we conclude that $b-c=0$ or $b=c$. For the converse, suppose that $a b=0$, then $a b=a 0$ so by the cancellation property $a=0$ or $b=0$.
4) Let R be a ring in which $x^{3}=x$ for every $x \in R$. Prove that R is commutative.
Solution: By 1), we know that $(x e-e x e)^{2}=0$. Multiplying by another factor of $x e-e x e$ and using $a^{3}=a$ gives $x e=e x e$. The same argument applied to the equation $(e x-e x e)^{2}=0$ yields $e x=e x e$. Putting these together gives $x e=e x$ whenever e is a square. Now

$$
\begin{gathered}
a b=a b^{3}=(a b) b^{2}=b^{2}(a b)=b^{2}\left(a^{3} b\right)=b^{2} a\left(a^{2} b\right)= \\
=b^{2} a\left(b a^{2}\right)=b\left((b a)^{2} a\right)=b\left(a(b a)^{2}\right)=(b a)^{3}=b a .
\end{gathered}
$$

