The Sizes of Infinity

C.J. Argue

Western PA ARML
September, 112016

A Story

A Story

A man named Zero walks into a hotel...

A Story

A man named Zero walks into a hotel... Then, Zero walks into Hilbert's Hotel...

What is 'Size' Anyways?

We won't define 'size,' only comparative size.

What is 'Size' Anyways?

We won't define 'size,' only comparative size.
Let A and B be sets.

- B is at least as big as A (denoted $|A| \leq|B|)$ if there is an injection (one-to-one function) $f: A \rightarrow B$.

What is 'Size' Anyways?

We won't define 'size,' only comparative size.
Let A and B be sets.

- B is at least as big as A (denoted $|A| \leq|B|$) if there is an injection (one-to-one function) $f: A \rightarrow B$.
- A is the same size as B (denoted $|A|=|B|)$ if $|A| \leq|B|$ and $|B| \leq|A|$. This can be shown by either
- An injection $f_{1}: A \rightarrow B$ and an injection $f_{2}: B \rightarrow A$.

What is 'Size' Anyways?

We won't define 'size,' only comparative size.
Let A and B be sets.

- B is at least as big as A (denoted $|A| \leq|B|)$ if there is an injection (one-to-one function) $f: A \rightarrow B$.
- A is the same size as B (denoted $|A|=|B|)$ if $|A| \leq|B|$ and $|B| \leq|A|$. This can be shown by either
- An injection $f_{1}: A \rightarrow B$ and an injection $f_{2}: B \rightarrow A$.
- A bijection (one-to-one and onto function) $g: A \rightarrow B$.

What is 'Size' Anyways?

We won't define 'size,' only comparative size.
Let A and B be sets.

- B is at least as big as A (denoted $|A| \leq|B|$) if there is an injection (one-to-one function) $f: A \rightarrow B$.
- A is the same size as B (denoted $|A|=|B|)$ if $|A| \leq|B|$ and $|B| \leq|A|$. This can be shown by either
- An injection $f_{1}: A \rightarrow B$ and an injection $f_{2}: B \rightarrow A$.
- A bijection (one-to-one and onto function) $g: A \rightarrow B$.
- B is bigger than A (denoted $|A|<|B|)$ if $|A| \leq|B|$ and $|A| \neq|B|$.

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

- Proof: $f: A \rightarrow B$ defined by $f(a)=a$ is injective.

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

- Proof: $f: A \rightarrow B$ defined by $f(a)=a$ is injective.
- Corollary: $|A|=|A|$.

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

- Proof: $f: A \rightarrow B$ defined by $f(a)=a$ is injective.
- Corollary: $|A|=|A|$.

Q: If $A \subsetneq B$, then is $|A|<|B|$?

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

- Proof: $f: A \rightarrow B$ defined by $f(a)=a$ is injective.
- Corollary: $|A|=|A|$.

Q: If $A \subsetneq B$, then is $|A|<|B|$?

- A: If B is finite, yes.

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

- Proof: $f: A \rightarrow B$ defined by $f(a)=a$ is injective.
- Corollary: $|A|=|A|$.

Q: If $A \subsetneq B$, then is $|A|<|B|$?

- A: If B is finite, yes.If B is infinite, maybe not.
E.g. $|\{1,2,3, \ldots\}|=|\{0,1,2,3, \ldots\}|$.

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

- Proof: $f: A \rightarrow B$ defined by $f(a)=a$ is injective.
- Corollary: $|A|=|A|$.

Q: If $A \subsetneq B$, then is $|A|<|B|$?

- A: If B is finite, yes.If B is infinite, maybe not.
E.g. $|\{1,2,3, \ldots\}|=|\{0,1,2,3, \ldots\}|$.
- This gives us a definition of 'infinite set'!

The Most Basic Rule of Size

Fact: If $A \subseteq B$ then $|A| \leq|B|$

- Proof: $f: A \rightarrow B$ defined by $f(a)=a$ is injective.
- Corollary: $|A|=|A|$.

Q: If $A \subsetneq B$, then is $|A|<|B|$?

- A: If B is finite, yes.If B is infinite, maybe not.
E.g. $|\{1,2,3, \ldots\}|=|\{0,1,2,3, \ldots\}|$.
- This gives us a definition of 'infinite set'! That is, a set B is infinite if $\exists A \subsetneq B$ such that $|A|=|B|$.

Countable Sets

A set S is countable if it $|S|=|\mathbb{N}|$.

Countable Sets

A set S is countable if it $|S|=|\mathbb{N}|$.

- Another way of thinking it is that we can write down an (infinitely long) list that contains every element of S.

Countable Sets

A set S is countable if it $|S|=|\mathbb{N}|$.

- Another way of thinking it is that we can write down an (infinitely long) list that contains every element of S.
Examples:
- The natural numbers $\mathbb{N}=\{1,2, \ldots\}$

Countable Sets

A set S is countable if it $|S|=|\mathbb{N}|$.

- Another way of thinking it is that we can write down an (infinitely long) list that contains every element of S.
Examples:
- The natural numbers $\mathbb{N}=\{1,2, \ldots\}$
- The whole numbers $\mathbb{W}=\{0,1,2,3, \ldots\}$

Countable Sets

A set S is countable if it $|S|=|\mathbb{N}|$.

- Another way of thinking it is that we can write down an (infinitely long) list that contains every element of S.
Examples:
- The natural numbers $\mathbb{N}=\{1,2, \ldots\}$
- The whole numbers $\mathbb{W}=\{0,1,2,3, \ldots\}$
- The integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$

Countable Sets

A set S is countable if it $|S|=|\mathbb{N}|$.

- Another way of thinking it is that we can write down an (infinitely long) list that contains every element of S.
Examples:
- The natural numbers $\mathbb{N}=\{1,2, \ldots\}$
- The whole numbers $\mathbb{W}=\{0,1,2,3, \ldots\}$
- The integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Proof: $0,-1,1,-2,2,-3,3, \ldots$

Countable Sets

A set S is countable if it $|S|=|\mathbb{N}|$.

- Another way of thinking it is that we can write down an (infinitely long) list that contains every element of S.
Examples:
- The natural numbers $\mathbb{N}=\{1,2, \ldots\}$
- The whole numbers $\mathbb{W}=\{0,1,2,3, \ldots\}$
- The integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Proof: $0,-1,1,-2,2,-3,3, \ldots$
- In general, if A, B are countable, then $A \cup B$ is countable (Here: $A=\{0,1,2, \ldots\}$ and $B=\{-1,-2,-3, \ldots\}$).

The Rational Numbers

Our first really interesting example is the rational numbers,

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

Does $|\mathbb{Q}|=|\mathbb{N}|$?

The Rational Numbers

Our first really interesting example is the rational numbers,

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

Does $|\mathbb{Q}|=|\mathbb{N}|$? Yes!

The Rational Numbers

Our first really interesting example is the rational numbers,

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

Does $|\mathbb{Q}|=|\mathbb{N}|$? Yes!

- Proof by picture

The Rational Numbers

Our first really interesting example is the rational numbers,

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

Does $|\mathbb{Q}|=|\mathbb{N}|$? Yes!

- Proof by picture
- $f\left(\frac{p}{q}\right)=\left\{\begin{array}{lll}2^{p} 3^{q} & : & p \geq 0 \\ 5^{p} 7^{q} & : & p<0\end{array}\right.$

The Rational Numbers

Our first really interesting example is the rational numbers,

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

Does $|\mathbb{Q}|=|\mathbb{N}|$? Yes!

- Proof by picture
- $f\left(\frac{p}{q}\right)=\left\{\begin{array}{lll}2^{p} 3^{q} & : & p \geq 0 \\ 5^{p} 7^{q} & : & p<0\end{array}\right.$
- $g\left(\frac{p}{q}\right)=\operatorname{sgn}(p) 2^{|p|}(2 q-1)$
- Almost, but not quite a bijection $\mathbb{Q} \rightarrow \mathbb{Z}$.

Less Basic Rules of Size

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.
2. If $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=|\mathbb{N}|$ then $\left|A_{1} \cup A_{2} \cup \ldots\right|=|\mathbb{N}|$

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.
2. If $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=|\mathbb{N}|$ then $\left|A_{1} \cup A_{2} \cup \ldots\right|=|\mathbb{N}|$

Q: How many finite subsets of \mathbb{N} are there?

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.
2. If $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=|\mathbb{N}|$ then $\left|A_{1} \cup A_{2} \cup \ldots\right|=|\mathbb{N}|$

Q: How many finite subsets of \mathbb{N} are there?
A: $|\mathbb{N}|$ many

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.
2. If $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=|\mathbb{N}|$ then $\left|A_{1} \cup A_{2} \cup \ldots\right|=|\mathbb{N}|$

Q: How many finite subsets of \mathbb{N} are there?
A: $|\mathbb{N}|$ many

- Let $S_{i}=\{i$-element subsets of $\mathbb{N}\},\left|S_{i}\right| \geq|\mathbb{N}|$.

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.
2. If $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=|\mathbb{N}|$ then $\left|A_{1} \cup A_{2} \cup \ldots\right|=|\mathbb{N}|$

Q: How many finite subsets of \mathbb{N} are there?
A: $|\mathbb{N}|$ many

- Let $S_{i}=\{i$-element subsets of $\mathbb{N}\},\left|S_{i}\right| \geq|\mathbb{N}|$.
- Then $S_{i} \subseteq \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ (\mathbb{N} repeats i times).

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.
2. If $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=|\mathbb{N}|$ then $\left|A_{1} \cup A_{2} \cup \ldots\right|=|\mathbb{N}|$

Q: How many finite subsets of \mathbb{N} are there?
A: $|\mathbb{N}|$ many

- Let $S_{i}=\{i$-element subsets of $\mathbb{N}\},\left|S_{i}\right| \geq|\mathbb{N}|$.
- Then $S_{i} \subseteq \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ (\mathbb{N} repeats i times).
- By (1), $|\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}|=|\mathbb{N}|$, so $\left|S_{i}\right| \leq|\mathbb{N}|$, so $\left|S_{i}\right|=|\mathbb{N}|$.

Less Basic Rules of Size

From the proof that $|\mathbb{Q}|=|\mathbb{N}|$, we can see that

1. If $|A|=|B|=|\mathbb{N}|$ then $|A \times B|=|\mathbb{N}|$

If $|C|=|\mathbb{N}|$ then $|A \times B \times C|=|(A \times B) \times C|=|\mathbb{N}|$.
Generally works with finitely many sets.
2. If $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=|\mathbb{N}|$ then $\left|A_{1} \cup A_{2} \cup \ldots\right|=|\mathbb{N}|$

Q: How many finite subsets of \mathbb{N} are there?
A: $|\mathbb{N}|$ many

- Let $S_{i}=\{i$-element subsets of $\mathbb{N}\},\left|S_{i}\right| \geq|\mathbb{N}|$.
- Then $S_{i} \subseteq \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ (\mathbb{N} repeats i times).
- By (1), $|\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}|=|\mathbb{N}|$, so $\left|S_{i}\right| \leq|\mathbb{N}|$, so $\left|S_{i}\right|=|\mathbb{N}|$.
- By (2), $\left|S_{0} \cup S_{1} \cup S_{2} \cup S_{3} \cup \ldots\right|=|\mathbb{N}|$.

The Size of the Real Numbers

The Size of the Real Numbers

Theorem: $|\mathbb{R}|>|\mathbb{N}|$

The Size of the Real Numbers

Theorem: $|\mathbb{R}|>|\mathbb{N}|$
Proof: By contradiction. Assume that we can list the real numbers, say

5.9000000 ...
1.9876543 ...
8.8888888...
$3.1415926 \ldots$
$0.3523034 \ldots$

The Size of the Real Numbers

Theorem: $|\mathbb{R}|>|\mathbb{N}|$
Proof: By contradiction. Assume that we can list the real numbers, say

$$
\begin{aligned}
& 5.9000000 \ldots \\
& 1.9876543 \ldots \\
& 8.8888888 \ldots \\
& 3.1415926 \ldots \\
& 0.3523034 \ldots
\end{aligned}
$$

Now from this list, highlight the first digit (past the decimal) of the first number, the second digit of the second number, and so on.

The Size of the Real Numbers

Theorem: $|\mathbb{R}|>|\mathbb{N}|$
Proof: By contradiction. Assume that we can list the real numbers:

$$
\begin{aligned}
& 5.9000000 \ldots \\
& 1.9876543 \ldots \\
& 8.8888888 \ldots \\
& 3.1415926 \ldots \\
& 0.3523034 \ldots
\end{aligned}
$$

Now from this list, highlight the first digit (past the decimal) of the first number, the second digit of the second number, and so on.

The Size of the Real Numbers

Theorem: $|\mathbb{R}|>|\mathbb{N}|$
Proof: By contradiction. Assume that we can list the real numbers:

$$
\begin{aligned}
& 5.9000000 \ldots \\
& 1.9876543 \ldots \\
& 8.8888888 \ldots \\
& 3.1415926 \ldots \\
& 0.3523034 \ldots
\end{aligned}
$$

Now from this list, highlight the first digit (past the decimal) of the first number, the second digit of the second number, and so on. Take the number on the diagonal 0.98850 and add one to each of its digits (9 becomes 0).

The Size of the Real Numbers

Theorem: $|\mathbb{R}|>|\mathbb{N}|$
Proof: By contradiction. Assume that we can list the real numbers:

$$
\begin{aligned}
& 5.9000000 \ldots \\
& 1.9876543 \ldots \\
& 8.8888888 \ldots \\
& 3.1415926 \ldots \\
& 0.3523034 \ldots
\end{aligned}
$$

Now from this list, highlight the first digit (past the decimal) of the first number, the second digit of the second number, and so on. Take the number on the diagonal 0.98850 and add one to each of its digits (9 becomes 0). Where on the list is $0.09961 \ldots$?

Subsets

Q: How many subsets of \mathbb{N} are there?

Subsets

Q: How many subsets of \mathbb{N} are there?
A: More than $|\mathbb{N}|$ many.

Subsets

Q: How many subsets of \mathbb{N} are there?
A: More than $|\mathbb{N}|$ many.
Proof: By contradiction. Assume that we can list the subsets of \mathbb{N}.

$$
\begin{aligned}
& S_{1}=\{1,2,4,8,16, \ldots\} \\
& S_{2}=\{1,3,7,12,19, \ldots\} \\
& S_{3}=\{1,2,3,8,9,10,15, \ldots\} \\
& S_{4}=\{10,20,500,127646, \ldots\} \\
& S_{5}=\{999\}
\end{aligned}
$$

Subsets

Q: How many subsets of \mathbb{N} are there?
A: More than $|\mathbb{N}|$ many.
Proof: By contradiction. Assume that we can list the subsets of \mathbb{N}.

$$
\begin{aligned}
& S_{1}=\{1,2,4,8,16, \ldots\} \\
& S_{2}=\{1,3,7,12,19, \ldots\} \\
& S_{3}=\{1,2,3,8,9,10,15, \ldots\} \\
& S_{4}=\{10,20,500,127646, \ldots\} \\
& S_{5}=\{999\}
\end{aligned}
$$

Define $T=\left\{k: k \notin S_{k}\right\}$.

Subsets

Q: How many subsets of \mathbb{N} are there?
A: More than $|\mathbb{N}|$ many.
Proof: By contradiction. Assume that we can list the subsets of \mathbb{N}.

$$
\begin{aligned}
& S_{1}=\{1,2,4,8,16, \ldots\} \\
& S_{2}=\{1,3,7,12,19, \ldots\} \\
& S_{3}=\{1,2,3,8,9,10,15, \ldots\} \\
& S_{4}=\{10,20,500,127646, \ldots\} \\
& S_{5}=\{999\}
\end{aligned}
$$

Define $T=\left\{k: k \notin S_{k}\right\}$. Here, $T=\{2,4,5, \ldots\}$.

Subsets

Q: How many subsets of \mathbb{N} are there?
A: More than $|\mathbb{N}|$ many.
Proof: By contradiction. Assume that we can list the subsets of \mathbb{N}.

$$
\begin{aligned}
& S_{1}=\{1,2,4,8,16, \ldots\} \\
& S_{2}=\{1,3,7,12,19, \ldots\} \\
& S_{3}=\{1,2,3,8,9,10,15, \ldots\} \\
& S_{4}=\{10,20,500,127646, \ldots\} \\
& S_{5}=\{999\}
\end{aligned}
$$

Define $T=\left\{k: k \notin S_{k}\right\}$. Here, $T=\{2,4,5, \ldots\}$. $T \subseteq \mathbb{N}$, so for some $k, T=S_{k}$.

Subsets

Q: How many subsets of \mathbb{N} are there?
A: More than $|\mathbb{N}|$ many.
Proof: By contradiction. Assume that we can list the subsets of \mathbb{N}.

$$
\begin{aligned}
& S_{1}=\{1,2,4,8,16, \ldots\} \\
& S_{2}=\{1,3,7,12,19, \ldots\} \\
& S_{3}=\{1,2,3,8,9,10,15, \ldots\} \\
& S_{4}=\{10,20,500,127646, \ldots\} \\
& S_{5}=\{999\}
\end{aligned}
$$

Define $T=\left\{k: k \notin S_{k}\right\}$. Here, $T=\{2,4,5, \ldots\}$.
$T \subseteq \mathbb{N}$, so for some $k, T=S_{k}$. Is $k \in T$?

Power Sets

$\mathcal{P}(\mathbb{N})=\{$ subsets of $\mathbb{N}\}=$ the power set of \mathbb{N}

Power Sets

$\mathcal{P}(\mathbb{N})=\{$ subsets of $\mathbb{N}\}=$ the power set of \mathbb{N}

- We showed that $|\mathcal{P}(\mathbb{N})|>\mathbb{N}$

Power Sets

$\mathcal{P}(\mathbb{N})=\{$ subsets of $\mathbb{N}\}=$ the power set of \mathbb{N}

- We showed that $|\mathcal{P}(\mathbb{N})|>\mathbb{N}$
- In fact, a similar argument shows that for any set S, $|\mathcal{P}(S)|>|S|$

Power Sets

$\mathcal{P}(\mathbb{N})=\{$ subsets of $\mathbb{N}\}=$ the power set of \mathbb{N}

- We showed that $|\mathcal{P}(\mathbb{N})|>\mathbb{N}$
- In fact, a similar argument shows that for any set S, $|\mathcal{P}(S)|>|S|$
- Therefore, $|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<\ldots$

Power Sets

$\mathcal{P}(\mathbb{N})=\{$ subsets of $\mathbb{N}\}=$ the power set of \mathbb{N}

- We showed that $|\mathcal{P}(\mathbb{N})|>\mathbb{N}$
- In fact, a similar argument shows that for any set S, $|\mathcal{P}(S)|>|S|$
- Therefore, $|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<\ldots$

There are infinitely many sizes of infinity! We call the first few $\aleph_{0}, \aleph_{1}, \aleph_{2}, \aleph_{3}, \aleph_{4}, \ldots$

The Continuum Hypothesis (CH)

We know that \mathbb{N} is the smallest infinite set, i.e. $|\mathbb{N}|=\aleph_{0}$, and that $|\mathbb{R}|>|\mathbb{N}|$. But are there any sizes of infinity between the size of \mathbb{N} and the size of \mathbb{R} ? In other words, is $|\mathbb{R}|=\aleph_{1}$

The Continuum Hypothesis (CH)

We know that \mathbb{N} is the smallest infinite set, i.e. $|\mathbb{N}|=\aleph_{0}$, and that $|\mathbb{R}|>|\mathbb{N}|$. But are there any sizes of infinity between the size of \mathbb{N} and the size of \mathbb{R} ? In other words, is $|\mathbb{R}|=\aleph_{1}$
The Continuum Hypothesis: No intermediate sizes, $|\mathbb{R}|=\aleph_{1}$.

The Continuum Hypothesis (CH)

We know that \mathbb{N} is the smallest infinite set, i.e. $|\mathbb{N}|=\aleph_{0}$, and that $|\mathbb{R}|>|\mathbb{N}|$. But are there any sizes of infinity between the size of \mathbb{N} and the size of \mathbb{R} ? In other words, is $|\mathbb{R}|=\aleph_{1}$
The Continuum Hypothesis: No intermediate sizes, $|\mathbb{R}|=\aleph_{1}$.

- Georg Cantor asked whether CH was true in 1878.

The Continuum Hypothesis (CH)

We know that \mathbb{N} is the smallest infinite set, i.e. $|\mathbb{N}|=\aleph_{0}$, and that $|\mathbb{R}|>|\mathbb{N}|$. But are there any sizes of infinity between the size of \mathbb{N} and the size of \mathbb{R} ? In other words, is $|\mathbb{R}|=\aleph_{1}$
The Continuum Hypothesis: No intermediate sizes, $|\mathbb{R}|=\aleph_{1}$.

- Georg Cantor asked whether CH was true in 1878.
- Godel 1940: ZFC cannot disprove CH

The Continuum Hypothesis (CH)

We know that \mathbb{N} is the smallest infinite set, i.e. $|\mathbb{N}|=\aleph_{0}$, and that $|\mathbb{R}|>|\mathbb{N}|$. But are there any sizes of infinity between the size of \mathbb{N} and the size of \mathbb{R} ? In other words, is $|\mathbb{R}|=\aleph_{1}$
The Continuum Hypothesis: No intermediate sizes, $|\mathbb{R}|=\aleph_{1}$.

- Georg Cantor asked whether CH was true in 1878.
- Godel 1940: ZFC cannot disprove CH
- Cohen 1963: ZFC cannot prove CH

The Continuum Hypothesis (CH)

We know that \mathbb{N} is the smallest infinite set, i.e. $|\mathbb{N}|=\aleph_{0}$, and that $|\mathbb{R}|>|\mathbb{N}|$. But are there any sizes of infinity between the size of \mathbb{N} and the size of \mathbb{R} ? In other words, is $|\mathbb{R}|=\aleph_{1}$
The Continuum Hypothesis: No intermediate sizes, $|\mathbb{R}|=\aleph_{1}$.

- Georg Cantor asked whether CH was true in 1878.
- Godel 1940: ZFC cannot disprove CH
- Cohen 1963: ZFC cannot prove CH
- In summary: the answer is whatever you want!

The Continuum Hypothesis (CH)

We know that \mathbb{N} is the smallest infinite set, i.e. $|\mathbb{N}|=\aleph_{0}$, and that $|\mathbb{R}|>|\mathbb{N}|$. But are there any sizes of infinity between the size of \mathbb{N} and the size of \mathbb{R} ? In other words, is $|\mathbb{R}|=\aleph_{1}$
The Continuum Hypothesis: No intermediate sizes, $|\mathbb{R}|=\aleph_{1}$.

- Georg Cantor asked whether CH was true in 1878.
- Godel 1940: ZFC cannot disprove CH
- Cohen 1963: ZFC cannot prove CH
- In summary: the answer is whatever you want!

More specifically, the answer is independent of ZFC, meaning that you can add to ZFC exactly one of the following:

- CH is true
- CH is false

Either one will not lead you to a contradiction*

Proof Sketch

Proof Sketch

Just kidding.

Further Topics of Interest

Further Topics of Interest

- If $|\mathbb{R}| \neq \aleph_{1}$, then what is $|\mathbb{R}|$?
- $|\mathbb{R}|$ could be any of $\aleph_{1}, \aleph_{2}, \aleph_{3}, \ldots$ and more!
- How many infinities are there?
- Defining 'size:' Ordinal and cardinal numbers

Further Topics of Interest

- If $|\mathbb{R}| \neq \aleph_{1}$, then what is $|\mathbb{R}|$?
- $|\mathbb{R}|$ could be any of $\aleph_{1}, \aleph_{2}, \aleph_{3}, \ldots$ and more!
- How many infinities are there?
- Defining 'size:' Ordinal and cardinal numbers

Thanks for listening!

