False Patterns

Misha Lavrov

October 16, 2016

Disk dishonesty

Draw all possible chords between n points in a circle, placed in such a way that no three chords intersect in a single point. How many regions are formed?

Disk dishonesty

Draw all possible chords between n points in a circle, placed in such a way that no three chords intersect in a single point.

How many regions are formed?

The sequence begins $1,2,4,8,16, \ldots$
Does this pattern continue?

Are you sure?

Consider the diagram below:

It has 256 regions. (I counted.)

Prime prevarications

Which of these are true?

- All the numbers in this sequence are prime:

$$
41 \xrightarrow{+2} 43 \xrightarrow{+4} 47 \xrightarrow{+6} 53 \xrightarrow{+8} 61 \xrightarrow{+10} 71 \xrightarrow{+12} \cdots
$$

- If you take a prime number $p \neq 5$, write it in base 5 , and reverse the digits, the resulting number is always prime.

$$
p=269=2034_{5} \Rightarrow 4302_{5}=577 \text { is prime } .
$$

- All of the following numbers are prime:

$$
2^{2}-1,2^{2^{2}-1}-1,2^{2^{2^{2}-1}-1}-1,2^{2^{2^{2^{2}}-1}-1}-1-1, \ldots
$$

Fibonacci falsehoods

All of these sequences begin $1,2,3,5,8,13, \ldots$.
Which ones are the Fibonacci sequence?

- Let x_{n} be the number of ways to write n as an ordered sum of odd integers. The 5 ways to write 5 are $5=1+1+3=1+3+1=3+1+1=1+1+1+1+1$.
- Let $y_{1}=1$ and y_{n} be the least number such that all pairwise sums $y_{i}+y_{j}, i \neq j$, are distinct.
- Let $z_{n}=\left\lceil e^{\frac{n-1}{2}}\right\rceil$.
- Let w_{n} be the number of ways to take a grid of n cells, shade in some of the initial cells, and mark an equal number of the remaining cells.

Digit deception

We have

$$
\sum_{n=0}^{\infty} \frac{\left\lfloor n \cos \left(1+\frac{1}{21}\right)\right\rfloor}{2^{n}}=0.333333333333333333333 \ldots
$$

Is this sum actually $\frac{1}{3}$? If not, for how many digits does the pattern continue?

What about

$$
\sum_{n=1}^{\infty} \frac{\left\lfloor 5^{1 / 4} n\right\rfloor}{3^{n}}=0.812499999 \ldots ?
$$

Big lies

Define $\operatorname{Big}(n)$ to be the number of times the digits $5,6,7,8,9$ occur in the decimal expansion of n.
$($ For example, $\operatorname{Big}(2016)=1$ and $\operatorname{Big}(1048576)=4$.)

Big lies

Define $\operatorname{Big}(n)$ to be the number of times the digits $5,6,7,8,9$ occur in the decimal expansion of n.
$($ For example, $\operatorname{Big}(2016)=1$ and $\operatorname{Big}(1048576)=4$.)

Is it true that:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\operatorname{Big}(n)}{2^{n}} & =\frac{2}{33} ? \\
\sum_{n=0}^{\infty} \frac{\operatorname{Big}(n)}{n(n+1)} & =\frac{2}{9} \log 2 ?
\end{aligned}
$$

(Both are accurate to at least 15 decimal places.)

Reputable references

- Borwein, J. M.; Borwein, P. B. Strange series and high precision fraud. Amer. Math. Monthly 99 (1992), no. 7, 622-640.
- Guy, Richard K. The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- Guy, Richard K. The second strong law of small numbers. Math. Mag. 63 (1990), no. 1, 3-20.
- The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.

