Problems from the 2012 St. Petersburg Math Olympiad

1. Eeyore has 2012 sticks of length 1 cm , which he uses to make a rectangular grid in which each cell is a 1 cm by 1 cm square. If P is the perimeter of the grid and S its area, find $P+4 S$. (Below is an example 2×3 grid made up of 17 sticks.)

2. A sequence of k consecutive integers $a+1, a+2, \ldots, a+k$ is written on a chalkboard. If exactly 52% of the integers are even, find k.
3. The roots of the quadratic equation $a x^{2}+b x+c=0$ are $\sin 42^{\circ}$ and $\sin 48^{\circ}$. Prove that $b^{2}=a^{2}+2 a c$.
4. Is it possible to arrange the integers $1,2, \ldots, 100$ around a circle such that for every pair of adjacent integers x and y, at least one of the quantities $x-y, y-x, \frac{x}{y}, \frac{y}{x}$ is equal to 2 ?
5. In $\triangle A B C, B L$ is an angle bisector and $\angle C=3 \angle A$. Point M on $A B$ and point N on $A C$ are chosen so that $\angle A M L=\angle A N M=90^{\circ}$. Prove that $B M+2 M N>B L+L M$.
6. Prove that for distinct real numbers a, b, c, the system of equations

$$
\left\{\begin{array}{l}
x^{3}-a x^{2}+b^{3}=0 \\
x^{3}-b x^{2}+c^{3}=0 \\
x^{3}-c x^{2}+a^{3}=0
\end{array}\right.
$$

has no real solutions.
7. Circles ω_{1} and ω_{2} are externally tangent at P. Line ℓ_{1} passes through the center of ω_{1} and is tangent to ω_{2}; similarly, line ℓ_{2} passes through the center of ω_{2} and is tangent to ω_{1}. If ℓ_{1} and ℓ_{2} intersect at X, prove that $X P$ bisects one of the angles formed at X between ℓ_{1} and ℓ_{2}.
8. Peter chose a natural number $n>1$ and wrote the numbers

$$
1+n, 1+n^{2}, 1+n^{3}, \ldots, 1+n^{15}
$$

on a chalkboard. Then he erased some of the numbers so that among the remaining numbers, any two are relatively prime. At most how many numbers could Peter have left on the board?
9. Let a and b be two distinct positive integers. The equations $y=\sin a x$ and $y=\sin b x$ are graphed in the same coordinate plane, and all of their intersection points are marked. Prove that there is a third positive integer c, distinct from a and b, such that the graph of $y=\sin c x$ passes through all the marked points.

