Exam Version 2

Problems compiled from Stanford Math Tournament 2014.

1. (AT 5) Compute the number of ways there are to select three distinct lattice points in threedimensional space such that the three points are collinear and no point has a coordinate with absolute value exceeding 1 .
2. (A 6) Find the minimum value of

$$
\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{x-z}
$$

for reals $x>y>z$ given that $(x-y)(y-z)(x-z)=17$.
3. (G 7) Let $A B C$ be a triangle th $A B=13, B C=14$, and $A C=15$. Let D and E be the feet of the altitudes from A and B, respectively. Find the circumference of the circumcircle of $\triangle C D E$.
4. (AT 8) Let a_{0}, a_{1}, \ldots, be a sequence of positive integers where $a_{n}=n$! for $n \leq 3$, and, for $n \geq 4, a_{n}$ is the smallest positive integer such that

$$
\frac{a_{n}}{a_{i} a_{n-i}}
$$

is an integer for all $0 \leq i \leq n$. Find a_{2014}.
5. (A 8) P and Q are polynomials such that

$$
P(P(x))=P(x)^{16}+x^{48}+Q(x)
$$

Compute the smallest possible degree of Q.
6. (G 8) Let O be a circle of radius 1. A and B are fixed points on the circle such that $A B=\sqrt{2}$. Let C be any point on the circle, and let M and N be the midpoints of $A C$ and $B C$, respectively. As C travels around the circle O, find the area of the locus of points on $M N$.
7. (AT 9) Compute the smallest positive integer n such that the leftmost digit of 2^{n} (in base 10) is 9 .
8. (A 9) Let b_{n} be a sequence defined by the formula

$$
b_{n}=\sqrt[3]{-1+a_{1} \sqrt[3]{-1+a_{2} \sqrt[3]{-1+\ldots a_{n-1} \sqrt[3]{-1+a_{n}}}}}
$$

where a_{n} is given by $a_{n}=n^{2}+3 n+3$. Find the smallest real number L such that $b_{n}<L$ for all n.
9. (G 10) Let $A B C$ be a triangle with $A B=12, B C=5, A C=13$. Let D and E be the feet of the internal and external angle bisectors from B, respectively. (The external angle bisector from B bisects the angle between $B C$ and the extension of $A B$.) Let ω be the circumcircle of $\triangle B D E$; extend $A B$ so that it intersects ω again at F. Extend $F C$ to meet ω again at X, and extend $A X$ to meet ω again at G. Find $F G$.

