Practice Math Contest	Misha Lavrov
The Largest Prime Factor Function	
Western PA ARML Practice	January 22, 2017

In the problems ${ }^{1}$ below, let $P(n)$ denote the largest prime factor of n. For example, since $2016=$ $2^{5} \cdot 3^{2} \cdot 7, P(2016)=7$; since 2017 is prime, $P(2017)=2017$.

1. (a) Find $P(100!+101!)$.
(b) Find the largest 2-digit prime factor of $\binom{200}{100}$.
2. Prove that there are infinitely many integers n such that $P(n)<P(n+1)<P(n+2)$.
3. Prove that there are infinitely many triples of distinct positive integers (a, b, c) such that $P\left(a^{2}+1\right)=P\left(b^{2}+1\right)=P\left(c^{2}+1\right)$.
[^0]
[^0]: ${ }^{1}$ Problems 1 (a) and $1(\mathrm{~b})$ are taken from posts on the Art of Problem Solving forum, with slight modification. Problems 2 and 3 are taken from posts on http://www.reddit.com/r/mathriddles/.

