The Largest Prime Factor Function: Solutions
Western PA ARML Practice
January 22, 2017

In the problems ${ }^{1}$ below, let $P(n)$ denote the largest prime factor of n. For example, since $2016=$ $2^{5} \cdot 3^{2} \cdot 7, P(2016)=7$; since 2017 is prime, $P(2017)=2017$.

1. (a) Find $P(100!+101!)$.

Answer: 97. We have $100!+101!=100!\cdot(1+101)=1 \cdot 2 \cdot 3 \cdots 99 \cdot 100 \cdot 102$. Of these factors, 97 is the largest which is prime, and all of the composite factors are less than $97 \cdot 2$, so they can't themselves have a prime factor greater than 97 .
(b) Find the largest 2-digit prime factor of $\binom{200}{100}$.

Answer: 61. We can write $\binom{200}{100}$ as $\frac{200!}{100!^{2}}$. For every prime number p between 67 and 99 , it will divide 200! twice (once for the factor of p and once for the factor of $2 p$), and 100 ! once, so it will not divide $\frac{200!}{100!}$. The largest prime number smaller than 67 is 61 , which divides 200 ! three times (from the factors of 61,122 , and 183) and 100 ! only once, so it divides $\frac{200!}{100!^{2}}$ once.
2. Prove that there are infinitely many integers n such that $P(n)<P(n+1)<P(n+2)$.

Proof: Choose an arbitrary odd prime p. Since $p^{2}-1=2^{2} \cdot \frac{p-1}{2} \cdot \frac{p+1}{2}$, we have $P\left(p^{2}-1\right) \leq$ $\frac{p+1}{2}<p$, so $P\left(p^{2}-1\right)<P\left(p^{2}\right)$.
If $P\left(p^{2}+1\right)>p$, then $P\left(p^{2}-1\right)<P\left(p^{2}\right)<P\left(p^{2}+1\right)$, and we have found one such triple. Otherwise, let $k>0$ be the smallest integer such that $p^{2^{k}}+1$ has a prime factor larger than p. By assumption, $P\left(p^{2^{k}}+1\right)>P\left(p^{2^{k}}\right)$, and we can factor $p^{2^{k}}-1$ as $\left(p^{2}-1\right)\left(p^{2}+1\right)\left(p^{4}+\right.$ 1) $\cdots\left(p^{2^{k-1}}+1\right)$, each of which has no prime factors larger than p, again by assumption. Therefore $P\left(p^{2^{k}}-1\right)<P\left(p^{2^{k}}\right)<P\left(p^{2^{k}}+1\right)$, and we have found one such triple.

We get a different triple for every odd prime p we choose, since the middle number will always be a power of p, so we can find infinitely many such triples.
3. Prove that there are infinitely many triples of distinct positive integers (a, b, c) such that $P\left(a^{2}+1\right)=P\left(b^{2}+1\right)=P\left(c^{2}+1\right)$.

Proof: Let k be an arbitrary positive integer. Define $p=P\left((2 k-1)^{2}+1\right), q=P\left((2 k)^{2}+1\right)$, and $r=P\left((2 k+1)^{2}+1\right)$.
Note that, for any x, since $(x+i)(x+1-i)=x(x+1)+1+i$ and $(x-i)(x+1+i)=x(x+1)+1-i$, we have $\left(x^{2}+1\right)\left((x+1)^{2}+1\right)=(x(x+1)+1)^{2}+1$.

Similarly, since $(x+i)(x+2-i)=x(x+2)+1+2 i$ and $(x-i)(x+2-i)=x(x+2)+1-2 i$, we have $\left(x^{2}+1\right)\left((x+2)^{2}+1\right)=(x(x+2)+1)^{2}+4$. When x is odd, this is equal to $4\left(\left(\frac{x(x+2)+1}{2}\right)^{2}+1\right)$.

[^0]This was all just motivation for the following calculations:

$$
\begin{aligned}
\left((2 k-1)^{2}+1\right)\left((2 k)^{2}+1\right) & =((2 k-1)(2 k)+1)^{2}+1 \\
& =: x^{2}+1 \\
\left((2 k)^{2}+1\right)\left((2 k+1)^{2}+1\right) & =((2 k)(2 k+1)+1)^{2}+1 \\
& =: y^{2}+1 \\
\left((2 k-1)^{2}+1\right)\left((2 k+1)^{2}+1\right) & =4\left(\left(2 k^{2}\right)^{2}+1\right) \\
& =: 4\left(z^{2}+1\right) .
\end{aligned}
$$

Therefore $P\left(x^{2}+1\right)=\max \{p, q\}, P\left(y^{2}+1\right)=\max \{q, r\}$, and $P\left(z^{2}+1\right)=\max \{p, r\}$.
Among $P\left((2 k-1)^{2}+1\right), P\left((2 k)^{2}+1\right), P\left((2 k+1)^{2}+1\right), P\left(x^{2}+1\right), P\left(y^{2}+1\right), P\left(z^{2}+1\right)$, the value $\max \{p, q, r\}$ occurs at least three times. This yields one of the solutions we wanted.

Taking arbitrarily large values of k yields triples (a, b, c) with a, b, c distinct and each at least $2 k-1$ that satisfy $P\left(a^{2}+1\right)=P\left(b^{2}+1\right)=P\left(c^{2}+1\right)$. So arbitrarily large solutions-and therefore infinitely many solutions-exist.

[^0]: ${ }^{1}$ Problems 1(a) and 1(b) are taken from posts on the Art of Problem Solving forum, with slight modification. Problems 2 and 3 are taken from posts on http://www.reddit.com/r/mathriddles/.

