POWER ROUND: MEDITATIONS ON PARTITIONS

ARML 1998

(1) Let positive integers A, B, and C be the angles of a triangle (in degrees) such that $A \leq$ $B \leq C$.
(a) Determine all the values that each of A, B, and C can take on.
(b) Compute the number of ordered triples (A, B, C) in which $B=70^{\circ}$.
(2) In convex pentagon $A B C D E, \mathrm{~m} \angle A<\mathrm{m} \angle B<\mathrm{m} \angle C<\mathrm{m} \angle D<\mathrm{m} \angle E$. Let $T=\mathrm{m} \angle C+$ $\mathrm{m} \angle D$. If $\mathrm{m} \angle A: \mathrm{m} \angle B: \mathrm{m} \angle C: \mathrm{m} \angle D: \mathrm{m} \angle E=1: 2: x: y: 5$, determine the range of values of T.
(3) Let a, b, and c be positive integers such that $a<3 b$ and $b>4 c$ and $a+b+c=200$.
(a) Determine the largest value that c can take on.
(b) Determine the smallest value that b can take on.
(c) Determine the number of ordered triples (a, b, c) in which $c=11$.
(4) Let a, b, and c be positive integers. If $a+b+c=85, c>3 a, 2 b>c$, and $5 a>3 b$, prove algebraically that there is a unique solution (a, b, c) to this system.
(5) A unit square is divided into 4 rectangles of positive area by two cuts parallel to the sides of the square. Let $a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$ be the areas of the four parts in nondecreasing order. For each $i=1, \ldots, 4$, determine with proof the range of values for a_{i}.
(6) A unit cube is divided into 8 parallelepipeds of positive volume by three cuts parallel to the faces of the cube. Let $v_{1} \leq v_{2} \leq \cdots \leq v_{8}$ be the volumes of the eight parts in nondecreasing order. Determine with proof the range of values for v_{4} and v_{5}.
(7) Let n be a positive integer. Allie and Bob play a game constructing a partition $n=$ $a_{1}+a_{2}+\cdots+a_{k}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 1$. Allie wins if there is an odd number of terms in the partition, i.e. if k is odd, and Bob wins otherwise. Allie begins by choosing an a_{1} between 1 and $n-1$ inclusive. Bob then chooses an a_{2} between 1 and a_{1} inclusive such that $a_{1}+a_{2} \leq n$. Allie then chooses an a_{3} between 1 and a_{2} inclusive such that $a_{1}+a_{2}+a_{3} \leq n$, and so on, with the game ending when the partition is complete. Determine with proof all $n>1$ for which Bob has a winning strategy.
(8) Allie and Bob play a game similar to the one in (7) except that the inequality $a_{i} \geq a_{i+1}$ is replaced by $2 a_{i} \geq a_{i+1}$. Prove that Bob has a winning strategy if and only if n is a Fibonacci number. (You may assume the following: each positive integer n can be uniquely represented as a decreasing sum of non-adjacent Fibonacci numbers, e.g., $32=21+8+3$.)

