POWER ROUND: MEDITATIONS ON PARTITIONS

ARML 1998

(1) Let positive integers A, B, and C be the angles of a triangle (in degrees) such that $A \leq B \leq$ C.
(a) Determine all the values that each of A, B, and C can take on.

The first angle, A, can be any integer $1 \leq A \leq 60$. Since $A \leq B \leq C, 180=$ $A+B+C \geq A+A+A$, so $A \leq 60$; we are given the lower bound. We also check that setting $B=A$ and $C=180-2 A$ lets us get any of these values.

The second angle, B, can be any integer $1 \leq B \leq 89$. Since $B \leq C, 180=A+B+C \geq$ $1+B+B$, so $B \leq 89.5$, and since B is an integer, it can be at most 89 ; we are given the lower bound. The examples above give us values of B between 1 and 60 ; for $45 \leq B \leq 89$, take a right triangle with angles $A=90-B$ and $C=90$.

The final angle, C, can be any integer $60 \leq C \leq 178$. For the lower bound: $180=$ $A+B+C \leq C+C+C$, so $C \geq 60$. For the upper bound: $180=A+B+C \geq 1+1+C$, so $C \leq 178$. For any of these, we can set $B=60$ and $A=120-C$ to obtain a valid triangle.
(b) Compute the number of ordered triples (A, B, C) in which $B=70^{\circ}$.

The answer is 40 .
Since $B \leq C$, we have $C \geq 70$, so $A=180-B-C \leq 180-140=40$. We then check that any value of A between 1 and 40 works: the ordered triples

$$
(1,70,109), \quad(2,70,108), \quad \ldots, \quad(40,70,70)
$$

all correspond to valid triangles.
Note: it is not hard to show that any three positive integers that add to 180 can be angles of a triangle. Given such A, B, and C, divide the perimeter of a circle by three points into arcs of measure $2 A, 2 B$, and $2 C$, which are in total 360 . Then take the triangle with those three points as vertices.
(2) In convex pentagon $A B C D E, \mathrm{~m} \angle A<\mathrm{m} \angle B<\mathrm{m} \angle C<\mathrm{m} \angle D<\mathrm{m} \angle E$. Let $T=\mathrm{m} \angle C+$ $\mathrm{m} \angle D$. If $\mathrm{m} \angle A: \mathrm{m} \angle B: \mathrm{m} \angle C: \mathrm{m} \angle D: \mathrm{m} \angle E=1: 2: x: y: 5$, determine the range of values of T.

If we had the non-strict inequality on the angles, we could put them in the ratio $1: 2: 2$: $2: 5$, making the angles $45^{\circ}, 90^{\circ}, 90^{\circ}, 90^{\circ}$, and 225° and $T=180^{\circ}$. We could also put them in the ratio $1: 2: 5: 5: 5$, making the angles $30^{\circ}, 60^{\circ}, 150^{\circ}, 150^{\circ}$, and 150° and $T=300^{\circ}$. Any value between these is achievable.

Since the angles must be strictly increasing, these endpoints are ruled out, but we still can get any $180<T<300$.
(3) Let a, b, and c be positive integers such that $a<3 b$ and $b>4 c$ and $a+b+c=200$.
(a) Determine the largest value that c can take on.

The answer is 39 . We can get this with $a=4, b=157, c=39$, which satisfies all the inequalities.

Since $a>1$ and $b>4 c$, we have $a+b+c>1+4 c+c=5 c+1$, but $a+b+c=200$. So $5 c+1<200$, which means $c<39.8$. Since c is an integer, $c \leq 39$, so no larger value is possible.
(b) Determine the smallest value that b can take on.

The answer is 48 . We can get this with $a=141, b=48$, and $c=11$, which satisfies all the inequalities.

Since $b>4 c$, we have $c<\frac{b}{4}$, and we already knew $a<3 b$, which means $a+b+c<$ $3 b+b+\frac{b}{4}=\frac{17}{4} b$. Since $a+b+c=200$, we have $\frac{17}{4} b>200$, so $b>\frac{800}{17} \approx 47.06$. Since b is an integer, $b \geq 48$, so no smaller value is possible.
(c) Determine the number of ordered triples (a, b, c) in which $c=11$.

There are 141 such triples.
Setting b to any value $48 \leq b \leq 188$ will work. We must then have $a=189-b$, which is always a positive integer less than $3 b$, and b is always at greater than $4 c=44$. But $b \geq 189$ will not work (since a becomes 0 or less) and $b<48$ was shown impossible in part (b).
(4) Let a, b, and c be positive integers. If $a+b+c=85, c>3 a, 2 b>c$, and $5 a>3 b$, prove algebraically that there is a unique solution (a, b, c) to this system.

Solving the equations for a, we get $\frac{3}{2} a<b<\frac{5}{3} a$, and $3 a<c<\frac{10}{3} a$.
If we plug the lower bounds into $a+b+c=85$, we get $\frac{11}{2} a<85$, so $a<\frac{170}{11}$, which means $a \leq 15$. Plugging the upper bounds into the same equation, we get $6 a>85$, so $a \geq 14$.

Now if we try $a=14$, we have $c>42$ (which means $c \geq 43$), $2 b>c$ (which means $b \geq 22$), and $5 a>3 b$ (which means $b \leq 23$).

If we take $a=14$, then $5 a>3 b$ tells us $b \leq 23$, which means $c=85-a-b \geq 48$. However, $c \geq 48$ and $b \leq 23$ violates $2 b>c$, so this is impossible.

If we take $a=15$, then $5 a>3 b$ tells us $b \leq 24$. In fact we must have $b=24$, because $b \leq 23$ would give us $c \geq 47$, with the same problems as before. If $a=15$ and $b=24$, then $c=46$, and we can check that $(15,24,46)$ satisfies all the equations.
(5) A unit square is divided into 4 rectangles of positive area by two cuts parallel to the sides of the square. Let $a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$ be the areas of the four parts in nondecreasing order. For each $i=1, \ldots, 4$, determine with proof the range of values for a_{i}.

The answer is that $0<a_{1} \leq \frac{1}{4}, 0<a_{2} \leq \frac{1}{4}, 0<a_{3}<\frac{1}{2}$, and $\frac{1}{4} \leq a_{4}<1$.
To show the bounds on a_{1} and a_{4}, just note that a_{1} (the smallest area) can't be larger than the average area $\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}=\frac{1}{4}$, while a_{4} (the largest area) can't be less than the average area.

To show the bound on a_{2}, we have to work harder. Suppose one cut is at distance x from one of its parallel sides, and the other cut is at distance y from one of its parallel sides, with
$0<x \leq y<\frac{1}{2}$. Then $a_{1}=x y, a_{2}=x(1-y), a_{3}=(1-x) y$, and $a_{4}=(1-x)(1-y)$. Since $x \leq y$, we have $a_{2}=x(1-y) \leq x(1-x)=\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}$, which can be at most $\frac{1}{4}$.
To show the bound on a_{3}, note that $a_{1} \leq a_{2}$ and $a_{3} \leq a_{4}$, so $a_{1}+a_{3} \leq a_{2}+a_{4}$, which means $a_{1}+a_{3} \leq \frac{1}{2}$. Since $a_{1}>0$, we have $a_{3}<\frac{1}{2}$.
To show that all of these bounds are best possible, consider the following three dissections:

- Both cuts divide the square equally, giving $a_{1}=a_{2}=a_{3}=a_{4}=\frac{1}{4}$.
- Both cuts are within some small distance ϵ of a side, giving $a_{1}=\epsilon^{2}, a_{2}=a_{3}=\epsilon(1-\epsilon)$, and $a_{4}=(1-\epsilon)^{2}$. By taking ϵ arbitrarily small, a_{1}, a_{2}, and a_{3} get arbitrarily close to 0 and a_{4} gets arbitrarily close to 1 .
- One cut divides the square equally while the other is within ϵ of a side, giving $a_{1}=$ $a_{2}=\frac{1}{2} \epsilon$ and $a_{3}=a_{4}=\frac{1}{2}(1-\epsilon)$. By taking ϵ arbitrarily small, a_{3} gets arbitrarily close to $\frac{1}{2}$.
(6) A unit cube is divided into 8 parallelepipeds of positive volume by three cuts parallel to the faces of the cube. Let $v_{1} \leq v_{2} \leq \cdots \leq v_{8}$ be the volumes of the eight parts in nondecreasing order. Determine with proof the range of values for v_{4} and v_{5}.
The ranges are $0<v_{4} \leq \frac{1}{8}$ and $0<v_{5}<\frac{1}{4}$. The lower bounds here are trivial.
To show the upper bound on v_{5}, note that $v_{5}+v_{6}+v_{7}+v_{8}<1$, and v_{5} is the smallest of these, so $v_{5}<\frac{1}{4}$.
To show the upper bound on v_{4}, we have to do some tedious work. Suppose that the cuts are made at distances x, y, and z from a parallel face, with $0<x \leq y \leq z \leq \frac{1}{2}$. Then the eight volumes are products like $x y z$ or $(1-x) y(1-z)$, and we can say the following things about their order:
- $x y z \leq x y(1-z) \leq x(1-y) z \leq(1-x) y z$.
- $x(1-y)(1-z) \leq(1-x) y(1-z) \leq(1-x)(1-y) z \leq(1-x)(1-y)(1-z)$.
- $x(1-y) z \leq x(1-y)(1-z)$.

So v_{4} is the smaller of $(1-x) y z$ and $x(1-y)(1-z)$, and v_{5} is the larger.
We have $v_{4} v_{5}=x(1-x) y(1-y) z(1-z)$; also, $x(1-x) \leq \frac{1}{4}$ (as shown in the previous problem), $y(1-y) \leq \frac{1}{4}$, and $z(1-z) \leq \frac{1}{4}$. Therefore $v_{4} v_{5} \leq \frac{1}{64}$. Since $v_{4} \leq v_{5}$, we must have $v_{4} \leq \frac{1}{8}$.
To show that these bounds are best possible, consider the following examples:

- All three cuts are even, so all eight volumes are $\frac{1}{8}$.
- Two cuts are even, and the third is arbitrarily close to a face. Then v_{1} through v_{4} will be arbitrarily close to 0 , and v_{5} through v_{8} arbitrarily close to $\frac{1}{4}$.
- All three cuts are arbitrarily close to one of the faces they're parallel to. Then v_{1} through v_{7} will be arbitrarily close to 0 , and v_{8} arbitrarily close to 1 .
(7) Let n be a positive integer. Allie and Bob play a game constructing a partition $n=a_{1}+$ $a_{2}+\cdots+a_{k}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 1$. Allie wins if there is an odd number of terms in the partition, i.e. if k is odd, and Bob wins otherwise. Allie begins by choosing an a_{1} between 1 and $n-1$ inclusive. Bob then chooses an a_{2} between 1 and a_{1} inclusive such that
$a_{1}+a_{2} \leq n$. Allie then chooses an a_{3} between 1 and a_{2} inclusive such that $a_{1}+a_{2}+a_{3} \leq n$, and so on, with the game ending when the partition is complete. Determine with proof all $n>1$ for which Bob has a winning strategy.

Bob has a winning strategy for n if and only if n is a power of 2 .
All we need to keep track of over the course of the game is the limit ℓ (initially $\ell=n-1$) that is the largest number you can write down, and the remainder r (initally $r=n$) equal to the difference between n and the sum of all numbers written. Writing down a number a changes the limit ℓ to a and the remainder r to $r-a$. The player who gets r down to 0 wins.

The winning strategy in this game is to try, on your turn, to achieve a position (ℓ, r) such that, for some $i, \ell<2^{i}$ and r is divisible by 2^{i}. We call such a position i-uncomfortable, with the idea that your goal is to place your opponent in an uncomfortable position.

To prove this strategy, we check the following three facts:

- From an i-uncomfortable position, your opponent can't win in one turn. Either $r=0$ (and you've already won), or $r \geq 2^{i}$ (and no number that's at most ℓ can reduce r to $0)$.
- Moreover, from an i-uncomfortable position, your opponent can't produce another uncomfortable position.
- However, from any comfortable position, you can place your component in an i uncomfortable position for some i.

So if the "make your opponent uncomfortable" strategy is executed, your position will never be uncomfortable, and your opponent's position will always be. Eventually r will get down to 0 and someone will win: that will have to be you, because your opponent can't win from an uncomfortable position.

To show the second claim, suppose that position (ℓ, r) is i-uncomfortable, so r is divisible by 2^{i} and $\ell<2^{i}$. No move below the limit can produce another multiple of 2^{i}. To produce a multiple of 2^{i-1}, you need to subtract at least 2^{i-1} from r. To produce a multiple of 2^{i-2}, you need to subtract at least 2^{i-2}, and so on. So the new limit will be at least as big as the largest power of 2 dividing r, and the new position is comfortable.

To show the third claim, let (ℓ, r) be comfortable; let 2^{i} be the largest power of 2 less than ℓ. Since (ℓ, r) is not i-uncomfortable, r is not divisible by 2^{i}. So let $a=r \bmod 2^{i}$ be the next move. Then the new limit, a, is less than 2^{i}, and the new remainder, $r-a$, is divisible by 2^{i}, so we've produced an i-uncomfortable position.

If the starting position $(n-1, n)$ is comfortable, then Allie can execute this strategy and win. This happens most of the time; however, when $n=2^{i}$ for some $i,(n-1, n)$ is i uncomfortable. So after Allie's first move, Bob will be an a comfortable position, and can execute this strategy to win.
(8) Allie and Bob play a game similar to the one in (7) except that the inequality $a_{i} \geq a_{i+1}$ is replaced by $2 a_{i} \geq a_{i+1}$. Prove that Bob has a winning strategy if and only if n is a Fibonacci number. (You may assume the following: each positive integer n can be uniquely represented as a decreasing sum of non-adjacent Fibonacci numbers, e.g., $32=21+8+3$.)

The idea here is similar, but the new constraint changes the possible moves: from a position with limit ℓ and remainder r, one may choose a number a with $1 \leq a \leq \ell$ and pass to the position with limit $2 a$ and remainder $r-a$.

We correspondingly define a new way to tell if a position is comfortable. We say that (ℓ, r) is comfortable if, when r is written as a decreasing sum of non-adjacent Fibonacci numbers, the smallest number is at most ℓ.

To prove that this lets us implement a "make your opponent uncomfortable strategy", we check two things:

- From a comfortable position, an uncomfortable one can always be produced.
- From an uncomfortable position, any move leads to a comfortable one (and no move can win).
We begin with the first claim. In the position (ℓ, r), let r have the non-adjacent Fibonacci representation of $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{j}}$, where $F_{i_{j}}$ is the smallest. If the position is comfortable, $a=F_{i_{j}}$ can be written down. Then the new limit is $2 a=2 F_{i_{j}}$, and the new remainder is $r-a=F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{j-1}}$. But $F_{i_{j-1}} \geq F_{i_{j}+2}=F_{i_{j}}+F_{i_{j}+1}>F_{i_{j}}+F_{i_{j}}$, so it's greater than the new limit. So the new position is uncomfortable.

Next, we show the second claim. Suppose (ℓ, r) is an uncomfortable position, with $r=$ $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{j}}$. The next move is some number less than $F_{i_{j}}$, since $\ell<F_{i_{j}}$. So the Fibonacci representation of the next remainder will have the same initial segment, with merely $F_{i_{j}}$ replaced by some smaller Fibonacci numbers.
Thus, we may ignore this unchanging beginning, and assume that $r=F_{i}$ for some i, and $\ell<F_{i}$. Suppose there existed a move to another uncomfortable position $(2 a, r-a)$. Then the non-adjacent Fibonacci representations for $r-a$ and for $2 a$ could be concatenated, since the last Fibonacci number in the representation of $r-a$ is greater than $2 a$, so it can't be adjacent to the first Fibonacci number in the representation of a. This would give us a second representation for $r=F_{i}$, contradicting the uniqueness the problem lets us assume.

So the "make your opponent uncomfortable" strategy is a viable one, and can be summarized as follows:
(a) Write the current remainder r as a sum of non-adjacent Fibonacci numbers.
(b) If the smallest Fibonacci number is playable, write it down.
(c) If not, you're in a position with no winning strategy: your opponent can win with optimal play.

The starting position in this game has a remainder of n and a limit of $n-1$. The only way this can be uncomfortable is if n is a Fibonacci number; if n is a sum of two or more non-adjacent Fibonacci numbers, the smaller of them will be less than n, so below the limit. Therefore Allie wins games starting from non-Fibonacci numbers, with optimal play, and Bob wins games starting from Fibonacci numbers.

