Mock ARML

Individual Round

ARML Practice 3/27/2016

Warm-up problems

(ARML 1992) For a positive integer n, $n(n+1)(n+2)(n+3)(n+4)$ is divisible by both 13 and 31 . Find the smallest possible value of n.

Find all pairs of real numbers a and b such that $a+b$ is an integer and $a^{2}+b^{2}=2$.

Warm-up problems

(ARML 1992) For a positive integer n, $n(n+1)(n+2)(n+3)(n+4)$ is divisible by both 13 and 31 . Find the smallest possible value of n.

Answer: $\boldsymbol{n}=61$.
Find all pairs of real numbers a and b such that $a+b$ is an integer and $a^{2}+b^{2}=2$.

Answer: $(a, b)=(\pm 1, \pm 1),(a, b)=\left(\frac{1}{2} \pm \frac{\sqrt{3}}{2}, \frac{1}{2} \mp \frac{\sqrt{3}}{2}\right)$, and $(a, b)=\left(-\frac{1}{2} \pm \frac{\sqrt{3}}{2},-\frac{1}{2} \mp \frac{\sqrt{3}}{2}\right)$

Problems 1 and 2

1. Given an integer n, let $S(n)$ denote the sum of the digits of n. Compute the largest 3-digit number N such that $S(N)=2 S(2 N)$.
2. The formula $F=\frac{9}{5} C+32$ converts Celsius (C) temperature into Fahrenheit (F). Find the set of temperatures (in Celsius) for which F is between $\frac{1}{2} C$ and $2 C$.

Problems 1 and 2

1. Given an integer n, let $S(n)$ denote the sum of the digits of n. Compute the largest 3-digit number N such that $S(N)=2 S(2 N)$. Answer: 855
2. The formula $F=\frac{9}{5} C+32$ converts Celsius (C) temperature into Fahrenheit (F). Find the set of temperatures (in Celsius) for which F is between $\frac{1}{2} C$ and $2 C$.
Answer: $C \geq 160$ or $C \leq-\frac{320}{13}$

Problems 3 and 4

3. Compute the integer closest to

$$
\log _{2} \frac{2+2^{2}+2^{2^{2}}+2^{2^{2^{2}}}+2^{2^{2^{2^{2}}}}}{2+2^{2}+2^{2^{2}}+2^{2^{2^{2}}}}
$$

4. Multiplying together the areas of an equilateral triangle with side x, a square with side x, and a regular hexagon with side x yields y. Compute the smallest integer $y>2016$ for which x will also be an integer.

Problems 3 and 4

3. Compute the integer closest to

$$
\log _{2} \frac{2+2^{2}+2^{2^{2}}+2^{2^{2^{2}}}+2^{2^{2^{2^{2}}}}}{2+2^{2}+2^{2^{2}}+2^{2^{2^{2}}}}
$$

Answer: 65520
4. Multiplying together the areas of an equilateral triangle with side x, a square with side x, and a regular hexagon with side x yields y. Compute the smallest integer $y>2016$ for which x will also be an integer.

Answer: 4608

Problems 5 and 6

5. (1993) Two of the diagonals of a convex equilateral pentagon are perpendicular. If one of the interior angles of the pentagon is 100°, compute the measures of the other four interior angles.
6. Liouville's constant

$$
L=0.110001000000000000000000100 \ldots
$$

is defined to have a 1 in the $n^{\text {th }}$ place after the decimal if $n=k$! for some k, and 0 otherwise.

Compute the sum of the first 2016 digits of L^{2} after the decimal.

Problems 5 and 6

5. (1993) Two of the diagonals of a convex equilateral pentagon are perpendicular. If one of the interior angles of the pentagon is 100°, compute the measures of the other four interior angles.

Answer: 60, 80, 140, and 160.
6. Liouville's constant

$$
L=0.110001000000000000000000100 \ldots
$$

is defined to have a 1 in the $n^{\text {th }}$ place after the decimal if $n=k$! for some k, and 0 otherwise.

Compute the sum of the first 2016 digits of L^{2} after the decimal.
Answer: 36

Problems 7 and 8

7. (2000) If the last 7 digits of $n!$ are 8000000 , compute n.
8. A function $f:\{2, \ldots, N\} \rightarrow[0, \infty)$ satisfies the equation $f(x y+1)=f(x)+f(y)+1$ for all integers $x, y \geq 2$. Compute the largest possible value of N.

Problems 7 and 8

7. (2000) If the last 7 digits of $n!$ are 8000000 , compute n.

Answer: 27
8. A function $f:\{2, \ldots, N\} \rightarrow[0, \infty)$ satisfies the equation $f(x y+1)=f(x)+f(y)+1$ for all integers $x, y \geq 2$. Compute the largest possible value of N.

Answer: 32

Problems 9 and 10

9. (1986) Compute

$$
\frac{(1+17)\left(1+\frac{17}{2}\right)\left(1+\frac{17}{3}\right) \cdots\left(1+\frac{17}{19}\right)}{(1+19)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right) \cdots\left(1+\frac{19}{17}\right)} .
$$

10. (2015) In trapezoid $A B C D$ with bases $A B$ and $C D, A B=14$ and $C D=6$. Points E and F lie on $A B$ such that $A D \| C E$ and $B C \| D F$. Segments $D F$ and $C E$ intersect at G, and $A G$ intersects $B C$ at H. Compute $\frac{[C G H]}{[A B C D]}$.

Problems 9 and 10

9. (1986) Compute

$$
\frac{(1+17)\left(1+\frac{17}{2}\right)\left(1+\frac{17}{3}\right) \cdots\left(1+\frac{17}{19}\right)}{(1+19)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right) \cdots\left(1+\frac{19}{17}\right)} .
$$

Answer: 1
10. (2015) In trapezoid $A B C D$ with bases $A B$ and $C D, A B=14$ and $C D=6$. Points E and F lie on $A B$ such that $A D \| C E$ and $B C \| D F$. Segments $D F$ and $C E$ intersect at G, and $A G$ intersects $B C$ at H. Compute $\frac{[C G H]}{[A B C D]}$.

Answer: $\frac{27}{160}$

