Mock ARML

Individual Round

ARML Practice 3/27/2016

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

(ARML 1992) For a positive integer n, n(n+1)(n+2)(n+3)(n+4) is divisible by both 13 and 31. Find the smallest possible value of n.

Find all pairs of real numbers *a* and *b* such that a + b is an integer and $a^2 + b^2 = 2$.

(ARML 1992) For a positive integer n, n(n+1)(n+2)(n+3)(n+4) is divisible by both 13 and 31. Find the smallest possible value of n.

Answer: n = 61.

Find all pairs of real numbers *a* and *b* such that a + b is an integer and $a^2 + b^2 = 2$.

Answer:
$$(a, b) = (\pm 1, \pm 1)$$
, $(a, b) = (\frac{1}{2} \pm \frac{\sqrt{3}}{2}, \frac{1}{2} \mp \frac{\sqrt{3}}{2})$, and
 $(a, b) = (-\frac{1}{2} \pm \frac{\sqrt{3}}{2}, -\frac{1}{2} \mp \frac{\sqrt{3}}{2})$

1. Given an integer *n*, let S(n) denote the sum of the digits of *n*. Compute the largest 3-digit number *N* such that S(N) = 2S(2N).

2. The formula $F = \frac{9}{5}C + 32$ converts Celsius (*C*) temperature into Fahrenheit (*F*). Find the set of temperatures (in Celsius) for which *F* is between $\frac{1}{2}C$ and 2*C*.

1. Given an integer *n*, let S(n) denote the sum of the digits of *n*. Compute the largest 3-digit number *N* such that S(N) = 2S(2N). **Answer: 855**

2. The formula $F = \frac{9}{5}C + 32$ converts Celsius (*C*) temperature into Fahrenheit (*F*). Find the set of temperatures (in Celsius) for which *F* is between $\frac{1}{2}C$ and 2*C*.

Answer: $C \ge 160$ or $C \le -\frac{320}{13}$

3. Compute the integer closest to

$$\log_2 \frac{2+2^2+2^{2^2}+2^{2^{2^2}}+2^{2^{2^2}}}{2+2^2+2^{2^2}+2^{2^2}}.$$

4. Multiplying together the areas of an equilateral triangle with side x, a square with side x, and a regular hexagon with side x yields y. Compute the smallest integer y > 2016 for which x will also be an integer.

3. Compute the integer closest to

$$\log_2 \frac{2+2^2+2^{2^2}+2^{2^{2^2}}+2^{2^{2^2}}}{2+2^2+2^{2^2}+2^{2^2}}.$$

Answer: 65 520

4. Multiplying together the areas of an equilateral triangle with side x, a square with side x, and a regular hexagon with side x yields y. Compute the smallest integer y > 2016 for which x will also be an integer.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Answer: 4608

5. (1993) Two of the diagonals of a convex equilateral pentagon are perpendicular. If one of the interior angles of the pentagon is 100° , compute the measures of the other four interior angles.

6. Liouville's constant

is defined to have a 1 in the n^{th} place after the decimal if n = k! for some k, and 0 otherwise.

Compute the sum of the first 2016 digits of L^2 after the decimal.

5. (1993) Two of the diagonals of a convex equilateral pentagon are perpendicular. If one of the interior angles of the pentagon is 100° , compute the measures of the other four interior angles.

Answer: 60, 80, 140, and 160.

6. Liouville's constant

is defined to have a 1 in the n^{th} place after the decimal if n = k! for some k, and 0 otherwise.

Compute the sum of the first 2016 digits of L^2 after the decimal.

Answer: 36

7. (2000) If the last 7 digits of *n*! are 8 000 000, compute *n*.

8. A function $f : \{2, ..., N\} \rightarrow [0, \infty)$ satisfies the equation f(xy + 1) = f(x) + f(y) + 1 for all integers $x, y \ge 2$. Compute the largest possible value of N.

7. (2000) If the last 7 digits of *n*! are 8 000 000, compute *n*.Answer: 27

8. A function $f : \{2, ..., N\} \rightarrow [0, \infty)$ satisfies the equation f(xy + 1) = f(x) + f(y) + 1 for all integers $x, y \ge 2$. Compute the largest possible value of N.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Answer: 32

Problems 9 and 10

9. (1986) Compute

$$\frac{(1+17)(1+\frac{17}{2})(1+\frac{17}{3})\cdots(1+\frac{17}{19})}{(1+19)(1+\frac{19}{2})(1+\frac{19}{3})\cdots(1+\frac{19}{17})}$$

10. (2015) In trapezoid *ABCD* with bases *AB* and *CD*, *AB* = 14 and *CD* = 6. Points *E* and *F* lie on *AB* such that *AD* \parallel *CE* and *BC* \parallel *DF*. Segments *DF* and *CE* intersect at *G*, and *AG* intersects *BC* at *H*. Compute $\frac{[CGH]}{[ABCD]}$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Problems 9 and 10

9. (1986) Compute

$$\frac{(1+17)(1+\frac{17}{2})(1+\frac{17}{3})\cdots(1+\frac{17}{19})}{(1+19)(1+\frac{19}{2})(1+\frac{19}{3})\cdots(1+\frac{19}{17})}.$$

Answer: 1

10. (2015) In trapezoid *ABCD* with bases *AB* and *CD*, *AB* = 14 and *CD* = 6. Points *E* and *F* lie on *AB* such that *AD* \parallel *CE* and *BC* \parallel *DF*. Segments *DF* and *CE* intersect at *G*, and *AG* intersects *BC* at *H*. Compute $\frac{[CGH]}{[ABCD]}$.

