Mock ARML Individual Round

Misha Lavrov

ARML Practice 10/12/2014

Problems 1 and 2

1. Compute the next year after 2014 which cannot be written as the difference of two squares of integers.
2. Five congruent circles of radius r are drawn in square $A B C D$: one tangent to $A B$ and $B C$, one tangent to $B C$ and $C D$, one tangent to $C D$ and $A D$, one tangent to $A D$ and $A B$, and one tangent to the other four. If $A B=1$, compute r.

Problems 1 and 2

1. Compute the next year after 2014 which cannot be written as the difference of two squares of integers.

Answer: 2018
2. Five congruent circles of radius r are drawn in square $A B C D$: one tangent to $A B$ and $B C$, one tangent to $B C$ and $C D$, one tangent to $C D$ and $A D$, one tangent to $A D$ and $A B$, and one tangent to the other four. If $A B=1$, compute r.

Answer: $\frac{\sqrt{2}-1}{2}$

Problems 3 and 4

3. Let A, B, and C be digits, $A \neq 0$. If $A B \cdot A C=1023$, compute $A B+A C$.
4. $T(x)$ is a degree 3 polynomial with integer coefficients, one of whose roots is $\cos \frac{\pi}{7}$. Compute $\frac{T(1)}{T(-1)}$.

Problems 3 and 4

3. Let A, B, and C be digits, $A \neq 0$. If $A B \cdot A C=1023$, compute $A B+A C$.

Answer: 64
4. $T(x)$ is a degree 3 polynomial with integer coefficients, one of whose roots is $\cos \frac{\pi}{7}$. Compute $\frac{T(1)}{T(-1)}$.

Answer: $-\frac{1}{7}$

Problems 5 and 6

5. A regular 12 -gon has vertices $A_{1}, A_{2}, \ldots, A_{12}$. If A_{3}, A_{6}, A_{9}, and A_{12} are the midpoints of the four sides of a square with area 1, compute the area of the 12 -gon.
6. Compute all integer values of k for which $x=\cos \alpha$ is a solution to $x^{2}+x-k=0$ for some real α.

Problems 5 and 6

5. A regular 12 -gon has vertices $A_{1}, A_{2}, \ldots, A_{12}$. If A_{3}, A_{6}, A_{9}, and A_{12} are the midpoints of the four sides of a square with area 1, compute the area of the 12 -gon.
Answer: $\frac{3}{4}$
6. Compute all integer values of k for which $x=\cos \alpha$ is a solution to $x^{2}+x-k=0$ for some real α.

Answer: $\mathrm{k}=\mathbf{0 , 1 , 2}$

Problems 7 and 8

7. Let $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ be two geometric sequences.

The sequence $c_{1}, c_{2}, c_{3}, \ldots$ has $c_{n}=a_{n}+b_{n}$ for each positive integer n. If $c_{1}=1, c_{2}=4, c_{3}=3$, and $c_{4}=2$, compute c_{5}.
8. In triangle $A B C, A B=3, B C=4$, and $A C=5 . \triangle A B C$ is inscribed in a circle, and D is the point on the circle opposite B.
Compute the distance between the incenters of $\triangle A B C$ and $\triangle A C D$.

Problems 7 and 8

7. Let $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ be two geometric sequences.

The sequence $c_{1}, c_{2}, c_{3}, \ldots$ has $c_{n}=a_{n}+b_{n}$ for each positive integer n. If $c_{1}=1, c_{2}=4, c_{3}=3$, and $c_{4}=2$, compute c_{5}.
Answer: $\frac{17}{13}$
8. In triangle $A B C, A B=3, B C=4$, and $A C=5 . \triangle A B C$ is inscribed in a circle, and D is the point on the circle opposite B.
Compute the distance between the incenters of $\triangle A B C$ and $\triangle A C D$.

Answer: $\sqrt{5}$

Problems 9 and 10

9. Diameters $A B$ and $C D$ of circle S are perpendicular. Chord $A E$ intersects diameter $C D$ at point K and chord $E C$ intersects diameter $A B$ at point L. If $C K: K D=2: 1$, find $A L: L B$.
10. Compute the largest integer between 1 and 1000 whose base 5 representation consists of the last k digits of its base 2 representation, for some k.

Problems 9 and 10

9. Diameters $A B$ and $C D$ of circle S are perpendicular. Chord $A E$ intersects diameter $C D$ at point K and chord $E C$ intersects diameter $A B$ at point L. If $C K: K D=2: 1$, find $A L: L B$.

Answer: 3: 1
10. Compute the largest integer between 1 and 1000 whose base 5 representation consists of the last k digits of its base 2 representation, for some k.

Answer: 31

