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0 Notation

If n and m are integers and m > 0, there is exactly one way to write n = q ·m + r, where q and r
are integers and 0 ≤ r ≤ m− 1. We say that q (which satisfies q =

⌊
n
m

⌋
) is the quotient and r the

remainder when n is divided by m.

We write r = n mod m (pronounced “n modulo m”) for the remainder.

When x mod m = y mod m, we say that x and y are congruent modulo m and write x ≡ y (mod m).

Suppose that F (x) and G(x) are polynomials in x. We write F (x) ≡ G(x) (mod m) to mean that
for all k, the coefficients of xk in F (x) and G(x) are congruent modulo m. For example,

x2 + 2x + 1 ≡ 10x3 + x2 + 22x− 9 (mod 10).

This is, in general, a stronger statement than simply saying F (n) ≡ G(n) (mod m) for all integers
n. For example, n2 + n ≡ 0 (mod 2) for all n; however, x2 + x 6≡ 0 (mod 2) as a polynomial, since
the coefficient of x is odd in x2 + x and even in 0.

1 Lucas’s Theorem

What is the remainder when
(
n
k

)
is divided by a prime p?

Lucas’s theorem gives a surprising formula for the answer. To compute
(
n
k

)
mod p, first write both

n and k in base p. Let the digits of n in base p be ntnt−1nt−2 . . . n1n0; that is, suppose that

n = nt · pt + nt−1 · pt−1 + nt−2 · pt−2 + · · ·+ n1 · p + n0

where ni ∈ {0, 1, 2, . . . , p− 1} for all i.

Let the digits of k in base p be ktkt−1kt−2 . . . k1k0 (if necessary, we pad k with zeroes on the left so
that it has the same number of base-p digits as n).

Then (
n

k

)
≡
(
nt

kt

)
·
(
nt−1
kt−1

)
·
(
nt−2
kt−2

)
· · · · ·

(
n1

k1

)
·
(
n0

k0

)
(mod p).
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2 Practice problems

1. Use Lucas’s theorem to compute
(
100
50

)
mod 5 and

(
75
25

)
mod 3.

2. Compute the last digit of
(
250
125

)
in base 10. (Note that

(
2
1

)(
5
2

)(
0
5

)
will not work.)

3. Give an expression of the form “
(
n
k

)
mod m” which you cannot derive from Lucas’s theorem.

3 Proof

In this section, we will use generating functions to prove Lucas’s theorem. (So don’t use Lucas’s
theorem in this section!)

4. Prove that (1 + x)p ≡ 1 + xp (mod p).

5. For n ≥ p, let q =
⌊
n
p

⌋
and r = n mod p, so that n = qp + r. Prove that

(1 + x)n ≡ (1 + xp)q(1 + x)r (mod p).

6. For 0 ≤ k ≤ n, let q′ =
⌊
k
p

⌋
and r′ = k mod p, so that k = q′p+ r′. Prove that the coefficient

of xk in (1 + xp)q(1 + x)r is (
q

q′

)(
r

r′

)
.

7. It follows from problems 5 and 6 that(
qp + r

q′p + r′

)
≡
(
q

q′

)(
r

r′

)
(mod p).

Use this to prove Lucas’s theorem.

4 The Sierpiński triangle

The binomial coefficients
(
n
k

)
can be arranged in a triangular array called Pascal’s triangle. The

nth row of Pascal’s triangle is the sequence of binomial coefficients
(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n

n−1
)
,
(
n
n

)
.

Starting with the 0th row, which has 1 element, the nth row has n + 1 elements. Writing the rows
one after the other, we get Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
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Pascal’s identity states that
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
. Therefore each entry in Pascal’s triangle is the

sum of the two entries above it.

If you take Pascal’s triangle modulo 2, drawing even entries as white and odd entries as black, a
fractal pattern emerges:

The first 128 rows of Pascal’s triangle, modulo 2

In this section, we will prove that this pattern continues.

8. In words, we can describe the pattern by saying that the first 2t rows of Pascal’s triangle
modulo 2 are made up of 3 congruent sub-triangles and a white inverted triangle in the
middle.

(a) Write down a sequence of equivalences modulo 2 that says that the top triangle is colored
in the same way as the left triangle.

(b) Write down a sequence of equivalences modulo 2 that says that the top triangle is colored
in the same way as the right triangle.

(c) Describe the set S of pairs (n, k) such that 0 ≤ k ≤ n < 2t, and the binomial coefficient(
n
k

)
is contained in the inverted white triangle.

9. (a) Use Lucas’s theorem to prove the equivalences in parts 8(a) and 8(b).

(b) Prove the following lemma: if x < y and x and y are written in base 2, there is at least
one position in which x has a 0 but y has a 1.

(c) Use Lucas’s theorem to show that for all (n, k) ∈ S, where S is the set defined in part
8(c),

(
n
k

)
≡ 0 (mod 2).

10. If you dare, use Pascal’s identity to prove the results in 9(a) and 9(c) without applying Lucas’s
theorem.
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5 Another application

(The following problem is due to Po-Shen Loh.)

Let C(n) be the number of entries in the nth row of Pascal’s triangle which are not divisible by 3.
We say that if C(n) is a prime power (expressible as C(n) = pk for some prime p and some k ≥ 1),
then the nth row is cool.

For example, the 10th row of Pascal’s triangle is

1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1.

All of these entries except for the first two (1 and 10) and the last two (10 and 1) are divisible by
3. Therefore C(10) = 4. Since 4 = 22 is a prime power, the 10th row of Pascal’s triangle is cool.

11. Compute the smallest n > 0 such that the nth row is uncool. (We don’t consider 1 to be a
prime power, and C(0) = 1, so the 0th row is also uncool, but that doesn’t count.)

12. Let the digits of n in base 3 be ntnt−1nt−2 . . . n1n0. Find, with proof, a formula for C(n) in
terms of n0, n1, . . . , nt, and use it to compute C(100).

13. How many of the first 3n rows (rows 0 through 3n − 1) are cool? Find, with proof, a general
formula in terms of n.

6 Meta-power round

This is what power round writers think about when writing the power rounds they write.

14. List all problems in this power round that do not require a proof.

15. We say that a “happy dependency” is a situation in which you can use an earlier problem to
solve a later problem, without having solved the earlier problem. List all happy dependencies
between the problems in this power round. (Don’t bother trying to find dependencies between
problems in different sections.)

16. We say that a “sad dependency” is a situation in which a later problem is impossible to
even begin until an earlier problem has been solved. List all sad dependencies between the
problems in this power round. (Don’t bother trying to find dependencies between problems in
different sections.)

Almost any dependency between problems can be made happy or sad. For example, 12 → 13
is currently a sad dependency, since you don’t know the formula in problem 12 until you solve
problem 12. This could be made into a happy dependency by writing problem 12 as “Prove that
the formula C(n) = holds.” Then problem 13 could be solved simply by using the
formula.

For homework: Download the 2013 ARML contest from http://www.arml.com, and solve prob-
lems 14–16 for that power round. (Not the problems 14–16 in the 2013 power round, which only
goes up to 10; the problems on this page, just applied to. . . you get the idea.)
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