Geometry

Circles

Misha Lavrov

ARML Practice 12/08/2013

Warm-up problems

(1) A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip.

(2) A circle of radius 4 is externally tangent to a circle of radius 9 . A line is tangent to both circles and touches them at points A and B. What is the length of $A B$?

Warm-up solutions

(1) A horizontal line 1 inch above the table.
(2) Let X and Y be the centers of the circle. Lift $A B$ to $X Z$ as in the diagram below.

Then $X Y=4+9=13, Y Z=9-4=5$, and $X Z=A B$. Because $X Z^{2}+Y Z^{2}=X Y^{2}$, we get $X Z=A B=12$.

Many tangent circles

Shown below is the densest possible packing of 13 circles into a square. If the radius of a circle is 1 , find the side length of the square.

Many tangent circles: Solution

$A B C$ is equilateral with side length 2 , so C is $\sqrt{3}$ units above A. $A C D$ is isosceles, so D is $\sqrt{3}$ units above C, and finally E is 2 units above D. So $A E=2+2 \sqrt{3}$, and the square has side $4+2 \sqrt{3}$.

More tangent circles

For a real challenge, try eleven circles. Yes, two of those are loose. The solution is approximately but not quite 7 ; you can use this to check your answer.

Facts about angles

Definition. We say that the measure of an arc of the circle is the measure of the angle formed by the radii to its endpoints.

Theorem 1. If A, B, and C are points on a circle, $\angle A B C=\frac{1}{2} \widehat{A C}$.
Theorem 2. If lines from point B intersect a circle at A_{1}, A_{2} and $C_{1}, C_{2}, \angle A_{1} B C_{1}=\angle A_{2} B C_{2}=\frac{1}{2}\left(\widehat{A_{2} C_{2}}-\widehat{A_{1} C_{1}}\right)$.

Angles inside circles: problems

(1) A hexagon $A B C D E F$ (not necessarily regular) is inscribed in a circle. Prove that $\angle A+\angle C+\angle E=\angle B+\angle D+\angle F$.
(2) In the diagram below, $P A$ and $P B$ are tangent to the circle with center O. A third tangent line is then drawn, interesecting $P A$ and $P B$ at X and Y. Prove that the measure of $\angle X O Y$ does not change if this tangent line is moved.

Solutions

(1) By Theorem 1, $\angle A=\frac{1}{2}(\widehat{B C}+\widehat{C D}+\overparen{D E}+\overparen{E F})$ and similarly for other angles. If we add up such equations for $\angle A+\angle C+\angle E$, we get $\widehat{A B}+\widehat{B C}+\widehat{C D}+\widehat{D E}+\widehat{E F}+\widehat{A F}=360^{\circ}$, and the same for $\angle B+\angle D+\angle F$.
(2) Let Z be the point at which $X Y$ is tangent to the circle. Then $\triangle X A O$ and $\triangle X Z O$ are congruent, because $A O=Z O$, $X O=X O$, and $\angle X A O=\angle X Z O=90^{\circ} . \angle Z O X=\angle X O A$, and both are equal to $\frac{1}{2} \angle Z O A$. Similarly, $\angle Z O Y=\angle Y O B$, and both are equal to $\frac{1}{2} \angle Z O B$. Adding these together, we get $\angle X O Y=\frac{1}{2} \angle A O B$, which does not depend on the position of the tangent line.

Power of a point

Theorem 3. Two lines through a point P intersect a circle at points X_{1}, Y_{1} and X_{2}, Y_{2} respectively. Then $P X_{1} \cdot P Y_{1}=P X_{2} \cdot P Y_{2}$.

One way to think about this is that the value $P X \cdot P Y$ you get by choosing a line through P does not depend on the choice of line, only on P itself. This value is called the "power of P ".

Power of a point: problems

(1) Assume P is inside the circle for concreteness. Prove that $\triangle P X_{1} X_{2}$ and $\triangle P Y_{2} Y_{1}$ are similar. Deduce Theorem 3.
(2) Two circles (not necessarily of the same radius) intersect at points A and B. Prove that P is a point on $A B$ if and only if the power of P is the same with respect to both circles.
(3) Three circles (not necessarily of the same radius) intersect at a total of six points. For each pair of circles, a line is drawn through the two points where they intersect. Prove that the three lines drawn meet at a common point, or are parallel.

Power of a point: solutions

(1) $\angle X_{1} P X_{2}$ and $\angle Y_{1} P Y_{2}$ are vertical, and therefore equal. $\angle P X_{1} X 2$ and $\angle P Y_{2} Y_{1}$ both intercept arc $\overline{X_{2} Y_{1}}$, so they are both equal by Theorem 1. So the triangles are similar.
Therefore $\frac{P X_{1}}{P X_{2}}=\frac{P Y_{2}}{P Y_{1}}$, and we get Theorem 3 by cross-multiplying.
(2) If P is on $A B$, the line $P A$ intersects either circle at A and B, so the power of P is $P A \cdot P B$.

But if P is not on $A B$, the line $P A$ does not pass through B : it intersects one circle at X and another at Y, so the power of P is $P A \cdot P X$ for one circle and $P A \cdot P Y$ for the other.
(3) If any two lines intersect, the point of intersection will have the same power for all three circles, so it lies on all three lines by the previous problem.

