Polynomials

Misha Lavrov

ARML Practice 3/24/2013

My favorite system of equations

Problem (Solve in your head, ideally in under 30 seconds)
The area of a rectangle is 18 and the length of a diagonal is 8 . Find the perimeter.

Problem (AIME I 2003/4.)
Given that $\log _{10} \sin x+\log _{10} \cos x=-1$ and that $\log _{10}(\sin x+\cos x)=\frac{1}{2}\left(\log _{10} n-1\right)$, find n.

My favorite system of equations

Solutions

1. If $a b=18$ and $a^{2}+b^{2}=8^{2}=64$, then

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b=64+2 \cdot 18=100
$$

so $a+b=10$ and the perimeter is 20 .

My favorite system of equations

Solutions

1. If $a b=18$ and $a^{2}+b^{2}=8^{2}=64$, then

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b=64+2 \cdot 18=100
$$

so $a+b=10$ and the perimeter is 20 .
2. This is a similar system of equations if we let $a=\sin x$ and $b=\cos x$. Then

$$
\left\{\begin{array}{l}
a^{2}+b^{2}=1 \\
a b=10^{-1}=0.1
\end{array}\right.
$$

so $a+b=\sqrt{1.2}$ and

$$
\log _{10}(a+b)=\log _{10} \sqrt{1.2}=\frac{1}{2}\left(\log _{10} 12-1\right)
$$

Sum of roots

Problem (ARML 2010/l-4.)

For real numbers α, B, and C, the zeros of $T(x)=x^{3}+x^{2}+B x+C$ are $\sin ^{2} \alpha, \cos ^{2} \alpha$, and $-\csc ^{2} \alpha$. Compute $T(5)$.

Problem (AIME I 2001/3.)
Find the sum of the roots, real and non-real, of the equation

$$
x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0
$$

given that there are no multiple roots.

Sum of roots

Solutions

1. If $T(x)=\left(x-\sin ^{2} \alpha\right)\left(x-\cos ^{2} \alpha\right)\left(x+\csc ^{2} \alpha\right)$, then the coefficient of x^{2} is $-\sin ^{2} \alpha-\cos ^{2} \alpha+\csc ^{2} \alpha=-1+\csc ^{2} \alpha$. But the coefficient of x^{2} is 1 . So $\csc ^{2} \alpha=2$, and $T(x)=\left(x-\frac{1}{2}\right)^{2}(x+2)$ so $T(5)=567 / 4$.

Sum of roots

Solutions

1. If $T(x)=\left(x-\sin ^{2} \alpha\right)\left(x-\cos ^{2} \alpha\right)\left(x+\csc ^{2} \alpha\right)$, then the coefficient of x^{2} is $-\sin ^{2} \alpha-\cos ^{2} \alpha+\csc ^{2} \alpha=-1+\csc ^{2} \alpha$. But the coefficient of x^{2} is 1 . So $\csc ^{2} \alpha=2$, and $T(x)=\left(x-\frac{1}{2}\right)^{2}(x+2)$ so $T(5)=567 / 4$.
2. The equation expands as

$$
\binom{2001}{1} \frac{1}{2} x^{2000}-\binom{2001}{2} \frac{1}{4} x^{1999}+\cdots=0
$$

As we shall see on the next slide, the sum of the roots is the negative ratio of the first two coefficients here, which is 500 .

Vieta's formulae

Let x_{1}, \ldots, x_{n} be the roots, with multiplicity, of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

Then the following holds:

$$
\left\{\begin{array}{l}
\sum_{i} x_{i}=x_{1}+x_{2}+\cdots+x_{n}=-\frac{a_{n-1}}{a_{n}} . \\
\sum_{i<j} x_{i} x_{j}=x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n}=\frac{a_{n-2}}{a_{n}} . \\
\sum_{i<j<k} x_{i} x_{j} x_{k}=-\frac{a_{n-3}}{a_{n}} . \\
\sum_{i<j<k<\ell} x_{i} x_{j} x_{k} x_{\ell}=\frac{a_{n-4}}{a_{n}} . \\
\cdots \\
x_{1} x_{2} \cdots x_{n}=(-1)^{n} \frac{a_{0}}{a_{n}} .
\end{array}\right.
$$

More practice

Problem (AIME 1996/5.)

Suppose that the roots of $x^{3}+3 x^{2}+4 x-11=0$ are a, b, and c, and that the roots of $x^{3}+r x^{2}+s x+t=0$ are $a+b, b+c$, and $c+a$. Find t.

Problem (AIME I 2005/8.)

The equation $2^{333 x-2}+2^{111 x+2}=2^{222 x+1}+1$ has three real roots. Find their sum.
(Plus some nonsense about turning it into an integer 000-999 that you don't have to worry about. Aren't you glad? -Misha)

More practice

Solutions

1. Since $a+b+c=-3$, the roots of $x^{3}+r x^{2}+s x+t=0$ are $-3-a,-3-b$, and $-3-c$. The coefficient t is the negative of the product of these: $-(-3-a)(-3-b)(-3-c)$ which is the negative of $x^{3}+3 x^{2}+4 x-11$ evaluated at -3 .

We can compute this to be $-(-27+27-12-11)=23$.

More practice

Solutions

1. Since $a+b+c=-3$, the roots of $x^{3}+r x^{2}+s x+t=0$ are $-3-a,-3-b$, and $-3-c$. The coefficient t is the negative of the product of these: $-(-3-a)(-3-b)(-3-c)$ which is the negative of $x^{3}+3 x^{2}+4 x-11$ evaluated at -3 .
We can compute this to be $-(-27+27-12-11)=23$.
2. Let $y=2^{111 x}$; then the equation becomes $\frac{1}{4} y^{3}+4 y=2 y^{2}+1$. The product of the roots of y is 4 ; however, this product is also $2^{111 x_{1}} \cdot 2^{111 x_{2}} \cdot 2^{111 x_{3}}=2^{111\left(x_{1}+x_{2}+x_{3}\right)}$. Solving, we see that $x_{1}+x_{2}+x_{3}=\frac{2}{111}$.

Newton-Girard formulae

Problem (Degree 2 Newton-Girard formula)
Let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots of the polynomial

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

Find $s_{2}:=\sum_{i} x_{i}^{2}=x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}$.

Newton-Girard formulae

Problem (Degree 2 Newton-Girard formula)
Let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots of the polynomial

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

Find $s_{2}:=\sum_{i} x_{i}^{2}=x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}$.
Solution
We have $\left(\sum_{i} x_{i}\right)^{2}=\sum_{i} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j}$. Substituting in the things we know, we get

$$
\left(-\frac{a_{n-1}}{a_{n}}\right)^{2}=s_{2}+2 \frac{a_{n-2}}{a_{n}} .
$$

Practice with Newton and Girard

Problem (ARML 2006/l-6.)
Determine the sum of the y-coordinates of the four points of intersection of $y=x^{4}-5 x^{2}-x+4$ and $y=x^{2}-3 x$.

Problem (AIME I 2004/7.)
Let C be the coefficient of x^{2} in the product

$$
(1-x)(1+2 x)(1-3 x)(\cdots)(1+14 x)(1-15 x)
$$

Find $|C|$.
(Note the alternating signs. -Misha)

Practice with Newton and Girard

Solutions

1. Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{4}, y_{4}\right)$ be the four points. Then x_{1}, \ldots, x_{4} are the solutions to $x^{4}-5 x^{2}-x+4=x^{2}-3 x$. So we can compute $\sum_{i} x_{i}=0$ and $\sum_{i<j} x_{i} x_{j}=-6$.
However, we want $\sum_{i} y_{i}=\sum_{i}\left(x_{i}^{2}-3 x_{i}\right)$. The $\sum_{i} x_{i}$ cancels, it's 0 ; from the $\mathrm{N}-\mathrm{G}$ formula, $\sum_{i} x_{i}^{2}=0^{2}-2(-6)=12$.

Practice with Newton and Girard

Solutions

1. Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{4}, y_{4}\right)$ be the four points. Then x_{1}, \ldots, x_{4} are the solutions to $x^{4}-5 x^{2}-x+4=x^{2}-3 x$. So we can compute $\sum_{i} x_{i}=0$ and $\sum_{i<j} x_{i} x_{j}=-6$. However, we want $\sum_{i} y_{i}=\sum_{i}\left(x_{i}^{2}-3 x_{i}\right)$. The $\sum_{i} x_{i}$ cancels, it's 0 ; from the N-G formula, $\sum_{i} x_{i}^{2}=0^{2}-2(-6)=12$.
2. Let $y_{1}, \ldots, y_{15}=-1,2,-3, \ldots,-15$. Then we want to find $\sum_{i<j} y_{i} y_{j}$. We can get this from $\sum_{i} y_{i}=-8$, and $\sum_{i} y_{i}^{2}$ which is $\frac{1}{6}(15)(15+1)(2 \cdot 15+1)=1240$ by the well-known formula. Solving $64=1240-2 S$, we get $S=588$.
