Geometry

Tangent Circles

Misha Lavrov

ARML Practice 4/14/2013

Finding areas

Source: fivetriangles.blogspot.com

Find the area of the shaded region:

Finding areas

Source: fivetriangles.blogspot.com

Find the area of the shaded region:

Solution: The area of each triangle is $\frac{1}{2} b h=5 b$, so the total shaded area is $5 b_{1}+5 b_{2}+5 b_{3}=5\left(b_{1}+b_{2}+b_{3}\right)+5 \cdot 12=60$.

Finding areas

Source: fivetriangles.blogspot.com

Find the area of the shaded region:

Finding areas

Source: fivetriangles.blogspot.com

Find the area of the shaded region:

Solution: Let the base of the large right triangle be x, and the height of the small right triangle be y. By similar triangles, $5: x=y: 2$, so $y=\frac{10}{x}$. The shaded region is a triangle with height y and base x, so its area is $\frac{1}{2} x y=5$.

Finding areas

Source: fivetriangles.blogspot.com

Find the ratio of the area of triangle B to the area of triangle D.

Finding areas

Source: fivetriangles.blogspot.com

Find the ratio of the area of triangle B to the area of triangle D.

Solution: If two triangles have the same height, then their areas are in the same ratio as their bases. Therefore
$[A]:[B]=3: 4 \quad[A]+[B]:[C]=5: 4 \quad[A]+[B]+[C]:[D]=7: 5$.
So $[B]=\frac{4}{3}[A],[C]=\frac{28}{15}[A],[D]=3[A]$, and $[B]:[D]=4: 9$.

Kissing Circles

If the two larger circles have radius 4 and 9 , then what is the radius of the smallest circle?

Kissing Circles

Solution I

Rule of thumb when solving problems about circles: start by drawing all the possible radii to every point of interest.

Kissing Circles

Solution I

Rule of thumb when solving problems about circles: start by drawing all the possible radii to every point of interest.

Let r be the unknown radius, x and y the distances between the tangent points on the line. Then:

$$
\begin{cases}(9+4)^{2}=(9-4)^{2}+(x+y)^{2} & \Leftrightarrow x+y=12 \\ (4+r)^{2}=(4-r)^{2}+x^{2} & \Leftrightarrow x=4 \sqrt{r} \\ (9+r)^{2}=(9-r)^{2}+y^{2} & \Leftrightarrow y=6 \sqrt{r}\end{cases}
$$

Kissing Circles

Solution II

Definition

The curvature of a circle at a point of tangency is $1 / R$ (where R is the radius), negated for internal tangency.

Theorem (The Descartes Circle Theorem)

If 4 circles are pairwise tangent, with curvatures $c_{1}, c_{2}, c_{3}, c_{4}$, then

$$
c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+c_{4}^{2}=\frac{1}{2}\left(c_{1}+c_{2}+c_{3}+c_{4}\right)^{2}
$$

Kissing Circles

Solution II

In our case, the line is a circle with curvature 0 , so we have

$$
c^{2}+\left(\frac{1}{9}\right)^{2}+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}\left(c+\frac{1}{9}+\frac{1}{4}\right)^{2}
$$

where c is the curvature of the circle with unknown radius. This is a quadratic equation with solutions $c=\frac{1}{36}$ and $c=\frac{25}{36}$.

ARML 2010 Power Round

- A king rules over a (small) kingdom shaped like a circle with radius 1 mile.

ARML 2010 Power Round

- A king rules over a (small) kingdom shaped like a circle with radius 1 mile.
- To pay off his debts, he is forced to sell off two smaller circular regions of his kingdom.

ARML 2010 Power Round

- A king rules over a (small) kingdom shaped like a circle with radius 1 mile.
- To pay off his debts, he is forced to sell off two smaller circular regions of his kingdom.
- In future years, he continues this process, always selling off circles tangent to his kingdom's current boundaries.
- How much land does he sell
 each year?

A harder circles problem

Problem (USAMO 2007/2.)

The plane is covered by non-overlapping discs of various sizes, each with radius at least 5 . Prove that at least one point (m, n) where m and n are integers remains uncovered.

A harder circles problem

Problem (USAMO 2007/2.)

The plane is covered by non-overlapping discs of various sizes, each with radius at least 5 . Prove that at least one point (m, n) where m and n are integers remains uncovered.

Hint: Show that between any 3 circles of radius ≥ 5, there is room for a fairly large circle.

