Complex Numbers

Misha Lavrov

ARML Practice 10/7/2012

A short theorem

Theorem (Complex numbers are weird)
$-1=1$.
Proof.
The obvious identity $\sqrt{-1}=\sqrt{-1}$ can be rewritten as

$$
\sqrt{\frac{-1}{1}}=\sqrt{\frac{1}{-1}} .
$$

Distributing the square root, we get

$$
\frac{\sqrt{-1}}{\sqrt{1}}=\frac{\sqrt{1}}{\sqrt{-1}}
$$

Finally, we can cross-multiply to get $\sqrt{-1} \cdot \sqrt{-1}=\sqrt{1} \cdot \sqrt{1}$, or $-1=1$.

Basic complex number facts

- Complex numbers are numbers of the form $a+b i$, where $i^{2}=-1$.

Basic complex number facts

- Complex numbers are numbers of the form $a+b i$, where $i^{2}=-1$.
- We add and multiply complex numbers in the obvious way. Other operations:
- $\overline{a+b i}=a-b i$ (conjugation).

Basic complex number facts

- Complex numbers are numbers of the form $a+b i$, where $i^{2}=-1$.
- We add and multiply complex numbers in the obvious way. Other operations:
- $\overline{a+b i}=a-b i$ (conjugation).
- $|a+b i|=\sqrt{a^{2}+b^{2}}$ (absolute value). Note: $|z|=\sqrt{z \cdot \bar{z}}$.

Basic complex number facts

- Complex numbers are numbers of the form $a+b i$, where $i^{2}=-1$.
- We add and multiply complex numbers in the obvious way. Other operations:
- $\overline{a+b i}=a-b i$ (conjugation).
- $|a+b i|=\sqrt{a^{2}+b^{2}}$ (absolute value). Note: $|z|=\sqrt{z \cdot \bar{z}}$.
- We can identify a complex number $a+b i$ with the point (a, b) in the plane.

Complex number facts, continued

- Corresponding to polar notation for points (r, θ), complex numbers can be expressed as

$$
z=r(\cos \theta+i \sin \theta)=r \exp (i \theta)
$$

Complex number facts, continued

- Corresponding to polar notation for points (r, θ), complex numbers can be expressed as

$$
z=r(\cos \theta+i \sin \theta)=r \exp (i \theta)
$$

- Multiplication is more natural in this form:

$$
r_{1} \exp \left(i \theta_{1}\right) \cdot r_{2} \exp \left(i \theta_{2}\right)=\left(r_{1} r_{2}\right) \exp \left(i\left(\theta_{1}+\theta_{2}\right)\right)
$$

Complex number facts, continued

- Corresponding to polar notation for points (r, θ), complex numbers can be expressed as

$$
z=r(\cos \theta+i \sin \theta)=r \exp (i \theta)
$$

- Multiplication is more natural in this form:

$$
r_{1} \exp \left(i \theta_{1}\right) \cdot r_{2} \exp \left(i \theta_{2}\right)=\left(r_{1} r_{2}\right) \exp \left(i\left(\theta_{1}+\theta_{2}\right)\right) .
$$

- This has a geometric interpretation: rotation by θ, and scaling by $r=|z|$.

Complex number geometry

Problem (AIME 2000/9.)

A function f is defined on the complex numbers by $f(z)=(a+b i) z$, where a and b are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that $|a+b i|=8$ and that $b^{2}=m / n$, where m and n are positive integers, find m / n.

Problem (AIME 1992/10.)

Consider the region A in the complex plane that consists of all points z such that both $z / 40$ and $40 / \bar{z}$ have real and imaginary parts between 0 and 1 , inclusive. What is the integer that is nearest the area of A ?

Solution: AIME 2000/9

If $f(z)$ is equidistant from 0 and z for all z, in particular, $f(1)=a+b i$ is equidistant from 0 and 1.

Solution: AIME 2000/9

If $f(z)$ is equidistant from 0 and z for all z, in particular,
$f(1)=a+b i$ is equidistant from 0 and 1.
This is true if and only if $a=\frac{1}{2}$. We now need to use $|a+b i|=8$:

$$
8=|a+b i|=\sqrt{a^{2}+b^{2}}=\sqrt{b^{2}+\frac{1}{4}}
$$

Solution: AIME 2000/9

If $f(z)$ is equidistant from 0 and z for all z, in particular,
$f(1)=a+b i$ is equidistant from 0 and 1.
This is true if and only if $a=\frac{1}{2}$. We now need to use $|a+b i|=8$:

$$
\begin{gathered}
8=|a+b i|=\sqrt{a^{2}+b^{2}}=\sqrt{b^{2}+\frac{1}{4}} . \\
b^{2}=64-\frac{1}{4}=\frac{255}{4} .
\end{gathered}
$$

Solution: AIME 2000/9

If $f(z)$ is equidistant from 0 and z for all z, in particular,
$f(1)=a+b i$ is equidistant from 0 and 1.
This is true if and only if $a=\frac{1}{2}$. We now need to use $|a+b i|=8$:

$$
\begin{gathered}
8=|a+b i|=\sqrt{a^{2}+b^{2}}=\sqrt{b^{2}+\frac{1}{4}} . \\
b^{2}=64-\frac{1}{4}=\frac{255}{4} .
\end{gathered}
$$

Why is $f(z)$ equidistant from 0 and z for all z, not just $z=1$?

Solution: AIME 1992/10

Write $z=x+y i$. Then $z / 40$ has real part $x / 40$ and imaginary part $y / 40$. If these are between 0 and 1 , then $0 \leq x \leq 40$ and $0 \leq y \leq 40$.

Solution: AIME 1992/10

Write $z=x+y i$. Then $z / 40$ has real part $x / 40$ and imaginary part $y / 40$. If these are between 0 and 1 , then $0 \leq x \leq 40$ and $0 \leq y \leq 40$.

To deal with $40 / \bar{z}$, we write it as $40 z /(z \bar{z})=40 z /|z|^{2}$. So

$$
0 \leq \frac{40 x}{x^{2}+y^{2}} \leq 1 \quad \text { and } \quad 0 \leq \frac{40 y}{x^{2}+y^{2}} \leq 1
$$

Solution: AIME 1992/10

Write $z=x+y i$. Then $z / 40$ has real part $x / 40$ and imaginary part $y / 40$. If these are between 0 and 1 , then $0 \leq x \leq 40$ and $0 \leq y \leq 40$.

To deal with $40 / \bar{z}$, we write it as $40 z /(z \bar{z})=40 z /|z|^{2}$. So

$$
0 \leq \frac{40 x}{x^{2}+y^{2}} \leq 1 \quad \text { and } \quad 0 \leq \frac{40 y}{x^{2}+y^{2}} \leq 1
$$

We can rewrite the first as $x^{2}+y^{2} \geq 40 x$, or $(x-20)^{2}+y^{2} \geq 20^{2}$, or $|z-20| \geq 20$. Similarly, the second becomes $|z-20 i| \geq 20$. The rest is algebra.

Applications

Problem (Basic fact)

Show that given any quadrilateral, the midpoints of its sides form a parallelogram.

Problem (Law of cosines)

Let a, b, and c be the sides of $\triangle A B C$ opposite the vertices A, B, and C respectively. Prove that

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \angle C
$$

Basic fact: solution

Let a, b, c, and d be the complex numbers corresponding to four vertices of a quadrilateral.

Basic fact: solution

Let a, b, c, and d be the complex numbers corresponding to four vertices of a quadrilateral.

Then the midpoints of the sides are given by $\frac{a+b}{2}, \frac{b+c}{2}, \frac{c+d}{2}$, and $\frac{a+d}{2}$.

Basic fact: solution

Let a, b, c, and d be the complex numbers corresponding to four vertices of a quadrilateral.
Then the midpoints of the sides are given by $\frac{a+b}{2}, \frac{b+c}{2}, \frac{c+d}{2}$, and $\frac{a+d}{2}$.

It's easiest to show that both pairs of opposite sides are congruent.
We have:

$$
\begin{aligned}
& \left|\frac{a+b}{2}-\frac{b+c}{2}\right|=\frac{|a-c|}{2}=\left|\frac{c+d}{2}-\frac{a+d}{2}\right| . \\
& \left|\frac{b+c}{2}-\frac{c+d}{2}\right|=\frac{|b-d|}{2}=\left|\frac{a+b}{2}-\frac{a+d}{2}\right| .
\end{aligned}
$$

Law of cosines: solution

We can assume that the three vertices of $\triangle A B C$ correspond to complex numbers 0,1 , and z, with the vertex C at 0 .

Law of cosines: solution

We can assume that the three vertices of $\triangle A B C$ correspond to complex numbers 0,1 , and z, with the vertex C at 0 .

Then $a=1, b=|z|$, and $c=|z-1|$.

Law of cosines: solution

We can assume that the three vertices of $\triangle A B C$ correspond to complex numbers 0,1 , and z, with the vertex C at 0 .

Then $a=1, b=|z|$, and $c=|z-1|$.
Write $z=x+y i=r(\cos \theta+i \sin \theta)$. Then $\theta=\angle C$, and $\cos \theta=x /|z|$. Then we have

$$
a^{2}+b^{2}-2 a b \cos \theta=1+|z|^{2}-2|z| \cdot \frac{x}{|z|}=1+|z|^{2}-2 x
$$

Law of cosines: solution

We can assume that the three vertices of $\triangle A B C$ correspond to complex numbers 0,1 , and z, with the vertex C at 0 .

Then $a=1, b=|z|$, and $c=|z-1|$.
Write $z=x+y i=r(\cos \theta+i \sin \theta)$. Then $\theta=\angle C$, and $\cos \theta=x /|z|$. Then we have

$$
a^{2}+b^{2}-2 a b \cos \theta=1+|z|^{2}-2|z| \cdot \frac{x}{|z|}=1+|z|^{2}-2 x .
$$

On the other hand,

$$
|z-1|^{2}=(x-1)^{2}+y^{2}=x^{2}-2 x+1+y^{2}=|z|^{2}-2 x+1
$$

Roots of unity and polynomials

Fact: the equation $z^{n}=1$ has n complex roots, which are evenly spaced around the circle $|z|=1$ and start from $z=1$. They can be written, for some angle $\theta=\frac{2 \pi k}{n}, k$ an integer $0 \leq k<n$, as

$$
z=\cos \theta+i \sin \theta=\exp (i \theta)
$$

We can also think of these as follows. Let $\omega=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$. Then the roots of $z^{n}=1$ are $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$.

Problem (AMC 12A 2002/24.)

Find the number of ordered pairs of real numbers (a, b) such that $(a+b i)^{2002}=a-b i$.

Solution: AMC 12A 2002/24

Multiplying by $a+b i$ again, we get $(a+b i)^{2003}=a^{2}+b^{2}$, or $z^{2003}=|z|^{2}$.

Solution: AMC 12A 2002/24

Multiplying by $a+b i$ again, we get $(a+b i)^{2003}=a^{2}+b^{2}$, or $z^{2003}=|z|^{2}$.

In particular, $|z|^{2003}=|z|^{2}$, so $|z|$ can be 0 or 1 .

Solution: AMC 12A 2002/24

Multiplying by $a+b i$ again, we get $(a+b i)^{2003}=a^{2}+b^{2}$, or $z^{2003}=|z|^{2}$.

In particular, $|z|^{2003}=|z|^{2}$, so $|z|$ can be 0 or 1 .
If $|z|=0$, then $z=0$ is one solution. If $|z|=1$, then $z^{2003}=1$, which has 2003 solutions.

Roots of unity, continued

Problem (HMMT 2010 Algebra/4.)

Suppose that there exist nonzero complex numbers a, b, c, d such that z satisfies $a z^{3}+b z^{2}+c z+d=0$ and $b z^{3}+c z^{2}+d z+a=0$. Find all possible (complex) values of z.

Problem (ARML 1995/T5.)
Determine all integer values of θ with $0 \leq \theta \leq 90$ for which $\left(\cos \theta^{\circ}+i \sin \theta^{\circ}\right)^{75}$ is a real number.

Solution: HMMT 2010 Algebra/4

Multiplying the first equation by z gives us
$a z^{4}+b z^{3}+c z^{2}+d z=0$. Now we subtract the second equation to get $a z^{4}-a=0$. Since $a \neq 0$, we must have $z^{4}=1$.

Solution: HMMT 2010 Algebra/4

Multiplying the first equation by z gives us
$a z^{4}+b z^{3}+c z^{2}+d z=0$. Now we subtract the second equation to get $a z^{4}-a=0$. Since $a \neq 0$, we must have $z^{4}=1$.

The fourth roots of unity are $1, i,-1$, and $-i$. We can get all of these except 1 by setting $a=b=c=d=1$, so that both equations become $z^{3}+z^{2}+z+1=0$.

Solution: HMMT 2010 Algebra/4

Multiplying the first equation by z gives us
$a z^{4}+b z^{3}+c z^{2}+d z=0$. Now we subtract the second equation to get $a z^{4}-a=0$. Since $a \neq 0$, we must have $z^{4}=1$.

The fourth roots of unity are $1, i,-1$, and $-i$. We can get all of these except 1 by setting $a=b=c=d=1$, so that both equations become $z^{3}+z^{2}+z+1=0$.

If $z=1$, then we must have $a+b+c+d=1=0$, but fortunately it's not too hard to find examples of such a, b, c, and d. So all four of the values we found are possible values of z.

Solution: ARML 1995/T5

We know that $\cos \theta+i \sin \theta$ is on the circle $|z|=1$, and taking powers of it just rotates it around. The only real numbers it could possibly hit are -1 and 1 .

Solution: ARML 1995/T5

We know that $\cos \theta+i \sin \theta$ is on the circle $|z|=1$, and taking powers of it just rotates it around. The only real numbers it could possibly hit are -1 and 1 .

So we could try to solve $(\cos \theta+i \sin \theta)^{75}=1$ and $(\cos \theta+i \sin \theta)^{75}=-1$ separately. But we can also combine these two into $(\cos \theta+i \sin \theta)^{150}=1$.

Solution: ARML 1995/T5

We know that $\cos \theta+i \sin \theta$ is on the circle $|z|=1$, and taking powers of it just rotates it around. The only real numbers it could possibly hit are -1 and 1 .

So we could try to solve $(\cos \theta+i \sin \theta)^{75}=1$ and $(\cos \theta+i \sin \theta)^{75}=-1$ separately. But we can also combine these two into $(\cos \theta+i \sin \theta)^{150}=1$.

There are 150 roots, but we want ones for which $0 \leq \theta \leq 90^{\circ}$. There are $150 / 4=38$ of these. We could write down what they are, but that's boring.

Even more roots of unity

Problem (AIME 1997/14, modified.)
Let v and w be distinct, randomly chosen roots of the equation $z^{1997}-1=0$. Find the probability that $|v+w| \geq 1$.

Problem (AIME 1996/11, modified.)
Let P be the product of the roots of $z^{4}+z^{3}+z^{2}+z+1=0$ that have a positive imaginary part, and suppose that $P=r\left(\cos \theta^{\circ}+i \sin \theta^{\circ}\right)$, where $r>0$ and $0 \leq \theta<360$. Find θ.

Solution: AIME 1997/14

We know v and w are points on the circle of radius 1 around 0 . The closer together v and w are to each other, the bigger $|v+w|$ is.

Solution: AIME 1997/14

We know v and w are points on the circle of radius 1 around 0 . The closer together v and w are to each other, the bigger $|v+w|$ is.

By drawing some triangles, we see that if v and w are 120° or $\frac{2}{3} \pi$ radians apart, then $|v+w|$ is exactly 1 .

Solution: AIME 1997/14

We know v and w are points on the circle of radius 1 around 0 . The closer together v and w are to each other, the bigger $|v+w|$ is.

By drawing some triangles, we see that if v and w are 120° or $\frac{2}{3} \pi$ radians apart, then $|v+w|$ is exactly 1 .
After some counting, we conclude that the probability is $\frac{1331}{1997}$.

Solution: AIME 1997/14

We know v and w are points on the circle of radius 1 around 0 . The closer together v and w are to each other, the bigger $|v+w|$ is.

By drawing some triangles, we see that if v and w are 120° or $\frac{2}{3} \pi$ radians apart, then $|v+w|$ is exactly 1 .

After some counting, we conclude that the probability is $\frac{1331}{1997}$.
Exercise: in the original AIME problem, you were asked to find the probability that $|v+w| \geq \sqrt{2+\sqrt{3}}$. What is the answer then?

Solution: AIME 1996/11

We recognize $z^{4}+z^{3}+z^{2}+z+1$ as $\frac{z^{5}-1}{z-1}$. So
$z^{4}+z^{3}+z^{2}+z+1=0$ if $z^{5}=1$ and yet $z \neq 1$.

Solution: AIME 1996/11

We recognize $z^{4}+z^{3}+z^{2}+z+1$ as $\frac{z^{5}-1}{z-1}$. So
$z^{4}+z^{3}+z^{2}+z+1=0$ if $z^{5}=1$ and yet $z \neq 1$.
There are four roots: $\omega=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}, \omega^{2}, \omega^{3}$, and ω^{4}.

Solution: AIME 1996/11

We recognize $z^{4}+z^{3}+z^{2}+z+1$ as $\frac{z^{5}-1}{z-1}$. So
$z^{4}+z^{3}+z^{2}+z+1=0$ if $z^{5}=1$ and yet $z \neq 1$.
There are four roots: $\omega=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}, \omega^{2}, \omega^{3}$, and ω^{4}.
The first two have positive imaginary part, and their product is ω^{3}, which is $\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5}$. So $\theta=\frac{6 \pi}{5}=216^{\circ}$.

Solution: AIME 1996/11

We recognize $z^{4}+z^{3}+z^{2}+z+1$ as $\frac{z^{5}-1}{z-1}$. So
$z^{4}+z^{3}+z^{2}+z+1=0$ if $z^{5}=1$ and yet $z \neq 1$.
There are four roots: $\omega=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}, \omega^{2}, \omega^{3}$, and ω^{4}.
The first two have positive imaginary part, and their product is ω^{3}, which is $\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5}$. So $\theta=\frac{6 \pi}{5}=216^{\circ}$.

Exercise: in the original problem, we instead had $z^{6}+z^{4}+z^{3}+z^{2}+1=0$. How does this change the answer?

Hard problems

Problem (AIME 1994/13.)

The equation

$$
z^{10}+(13 z-1)^{10}=0
$$

has ten complex real roots $r_{1}, \overline{r_{1}}, \ldots, r_{5}, \overline{r_{5}}$. Find the value of

$$
\frac{1}{r_{1} \overline{r_{1}}}+\frac{1}{r_{2} \overline{r_{2}}}+\frac{1}{r_{3} \overline{r_{3}}}+\frac{1}{r_{4} \overline{r_{4}}}+\frac{1}{r_{5} \overline{r_{5}}}
$$

Problem (AIME 1998/13.)

If $a_{1}<a_{2}<\cdots<a_{n}$ is a sequence of real numbers, we define its complex power sum to be $a_{1} i+a_{2} i^{2}+\cdots+a_{n} i^{n}$. Let S_{n} be the sum of all complex power sums of all nonempty subsequences of $1,2, \ldots, n$. Given that $S_{8}=-176-64 i$, find S_{9}.

