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Unrelated Review Problem

Problem (AMC 200 12B/16.)

A function f is defined by f (z) = ı̇ · z, where ı̇ =
√
−1 and z is the

complex conjugate of z. How many values of z satisfy both |z | = 5
and f (z) = z?

Also, what are all these values?



Fibonacci Numbers

I How many ways are there to tile a 1× 10 rectangle with 1× 1
and 1× 2 tiles?

I How many 10-letter strings can be made using the letters M
and O without having two M’s in a row?

I (Hard) How many of these have an even number of M’s?
(Hint: find En + On and En − On; then solve for En.)

I A fair coin is flipped 10 times. What is the probability that no
outcome (heads or tails) ever comes up 3 times in a row?

I Say the first and second Fibonacci numbers are both 1. What
is the next year N after 2012 such that the Nth Fibonacci
number is divisible by 3?



Stars and Bars

Theorem (Stars and Bars)

The number of ways to write n as an (ordered) sum of k positive
integers is (

n − 1

k − 1

)
.

Proof.

A partition of 7 into a sum of 3 positive integers (7 = 3 + 1 + 3):

? ? ? | ? | ? ? ?

There are 7− 1 places to insert 3− 1 separators:

? ... ?
... ?

... ?
... ?

... ?
... ?
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Stars and Bars – Exercises

Problem (Easy corollary)

What is the number of ways to write n as a sum of k
non-negative integers?

Problem (Application)

How many ways are there to choose 7 letters from the alphabet,
with repetition? (a.k.a. 7-letter words distinct up to anagrams).

Problem (From my research)

What is the number of different ways to write n as a sum of k
positive integers, if each integer q can be colored one of q different
colors?



Stars and Bars – Solutions

I If n is written as a sum of k non-negative integers, just add 1
to each integer in the sum. We get n + k written as a sum of
k positive integers, so there are

(n+k−1
k−1

)
=

(n+k−1
n

)
such

sums.

I We can think of this as writing 7 as a sum of 26 nonnegative
integers, counting the number of times each letter is used (e.g.
7 = 2 + 3 + 0 + 2 + 0 + · · ·+ 0 corresponds to AABBBDD).

There are
(7+26−1

7

)
=

(32
7

)
ways to do this.
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Stars and Bars – Solutions

I Suppose we have an expression for n as a sum of k positive
integers of various colors:

12 = 31 + 44 + 21 + 32.

I First add 1 to everything, so that we have a partition of n + k ,
and q types of each integer q + 1:

16 = 41 + 54 + 31 + 42.

I There are also q ways to partition q + 1 into a sum of two
positive integers:

16 = (1 + 3) + (4 + 1) + (1 + 2) + (2 + 2).

I This is a partition of n + k into a sum of 2k positive integers,
so there are

(n+k−1
2k−1

)
ways to do so.
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Solving Linear Recurrences

Theorem

To solve the recurrence f (n) = af (n − 1) + bf (n − 2), solve the
quadratic equation x2 = ax + b. If there are two roots r1 and r2,
then f (n) = C1rn1 + C2rn2 , for some C1,C2. If there is one root r ,
then f (n) = (C1 + C2n)rn.

Example: suppose f (1) = 1, f (2) = 2, and

f (n) = 4f (n − 1)− 4f (n − 2).

Then x2 = 4x − 4 has the double solution x = 2, so
f (n) = (C1 + C2n)2n.

Since f (1) = 2(C1 + C2) = 1 and f (2) = 4(C1 + 2C2) = 2, we get
C1 = 1

2 and C2 = 0, so f (n) = 2n−1.
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Linear Recurrences – Exercises

Problem (Classic result)

Find a formula for the nth Fibonacci number Fn, if F1 = F2 = 1.

Problem (Corollary – Nonhomogeneous linear recurrences)

How can we solve a recurrence such as

f (n) = af (n − 1) + bf (n − 2) + c?

Example: f (n) = f (n − 1) + f (n − 2) + 1.



Linear Recurrences – Solutions

I The quadratic equation is x2 − x − 1 = 0, which has roots

φ1, φ2 = 1±
√
5

2 . Solving for the constants, we get

Fn =
φn1 − φn2√

5
.

I We can eliminate the constant by adding or subtracting the
right thing from both sides. For example:

f (n) = f (n − 1) + f (n − 2) + 1

f (n) + 1 = (f (n − 1) + 1) + (f (n + 2) + 1)

f (n) + 1 = Fn.
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