How fast travelling waves can attract small initial data

Laurent Dietrich

Institut de Mathématiques de Toulouse

ANR NONLOCAL - Institut des systèmes complexes, Paris - 16 avril 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

$$\frac{\partial_t u - D\partial_{xx}^2 u = v - \mu u}{d\partial_y v = \mu u - v}$$
$$\frac{\partial_t v - d\Delta v = f(v)}{-\partial_y v = 0}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where f(v) is of the ignition type.

$$\frac{\partial_t u - D\partial_{xx}^2 u = v - \mu u}{d\partial_y v = \mu u - v}$$
$$\frac{\partial_t v - d\Delta v = f(v)}{-\partial_y v = 0}$$
(1)

where f(v) is of the ignition type.

 Initially (with f KPP) proposed by Berestycki, Roquejoffre, Rossi to model the influence of transportation networks on biological invasions.

(日) (日) (日) (日) (日) (日) (日) (日)

$$\frac{\partial_t u - D\partial_{xx}^2 u = v - \mu u}{d\partial_y v = \mu u - v}$$
$$\frac{\partial_t v - d\Delta v = f(v)}{-\partial_y v = 0}$$
(1)

where f(v) is of the ignition type.

- Initially (with f KPP) proposed by Berestycki, Roquejoffre, Rossi to model the influence of transportation networks on biological invasions.
- Enjoys a comparison principle.

$$\frac{\partial_t u - D\partial_{xx}^2 u = v - \mu u}{d\partial_y v = \mu u - v}$$
$$\frac{\partial_t v - d\Delta v = f(v)}{-\partial_y v = 0}$$
(1)

where f(v) is of the ignition type.

- Initially (with f KPP) proposed by Berestycki, Roquejoffre, Rossi to model the influence of transportation networks on biological invasions.
- Enjoys a comparison principle.
- Motivation : robustness of the propagation enhancement discovered by BRR.

■ There exists a T.W. : (c, φ, ψ) with c > 0 unique and φ, ψ smooth connecting (0,0) and (1/μ, 1)

$$u(t,x) = \phi(x+ct), v(t,x,y) = \psi(x+ct,y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There exists a T.W. : (c, ϕ, ψ) with c > 0 unique and ϕ, ψ smooth connecting (0, 0) and $(1/\mu, 1)$

$$u(t,x) = \phi(x+ct), v(t,x,y) = \psi(x+ct,y)$$

• Moreover $c(D) \underset{D o +\infty}{\sim} c_{\infty} \sqrt{D}$ where c_{∞} is the unique T.W. speed for :

There exists a T.W. : (c, ϕ, ψ) with c > 0 unique and ϕ, ψ smooth connecting (0, 0) and $(1/\mu, 1)$

$$u(t,x) = \phi(x+ct), v(t,x,y) = \psi(x+ct,y)$$

• Moreover $c(D) \underset{D o +\infty}{\sim} c_{\infty} \sqrt{D}$ where c_{∞} is the unique T.W. speed for :

$$0 \leftarrow u \qquad -u'' + c_{\infty}u' = v - \mu u \qquad u \to 1/\mu$$
$$d\partial_{y}v = \mu u - v$$
$$0 \leftarrow v \qquad c_{\infty}\partial_{x}v - d\partial_{yy}^{2}v = f(v) \qquad v \to 1$$
$$\partial_{y}v = 0$$

which is well posed.

(2)

What kind of initial data are attracted by these travelling waves ?

What kind of initial data are attracted by these travelling waves ?

(ロ)、(型)、(E)、(E)、 E) の(の)

Front-like initial data

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data
- c.c. initial data with a large enough support w.r.t D (expected, see below)

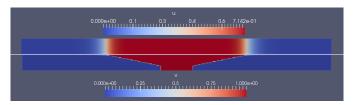
What kind of initial data are attracted by these travelling waves ?

- Front-like initial data
- c.c. initial data with a large enough support w.r.t D (expected, see below)

... but that is not everything !

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data
- c.c. initial data with a large enough support w.r.t D (expected, see below)
- ... but that is not everything !



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

How fast travelling waves can attract small initial data

Context : propagation enhancement

Enhancement by diffusion : the homogeneous case

$$\begin{cases} \partial_t v - \partial_{xx}^2 v = f(v) & t > 0, x \in \mathbb{R} \\ v_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(3)

Enhancement by diffusion : the homogeneous case

$$\begin{cases} \partial_t v - \partial_{xx}^2 v = f(v) \quad t > 0, x \in \mathbb{R} \\ v_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(3)

Kanel '64 + Zlatoš '06 (+ FML '77) : $\exists L_0 > 0$ s.t.

If $L < L_0$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .

Enhancement by diffusion : the homogeneous case

$$\begin{cases} \partial_t \mathbf{v} - \partial_{xx}^2 \mathbf{v} = f(\mathbf{v}) & t > 0, x \in \mathbb{R} \\ \mathbf{v}_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(3)

Kanel '64 + Zlatoš '06 (+ FML '77) : $\exists L_0 > 0$ s.t.

- If $L < L_0$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .
- If $L > L_0$, v converges to a pair of T.W. in both directions with speed c.

Enhancement by diffusion : the homogeneous case

$$\begin{cases} \partial_t \mathbf{v} - \partial_{xx}^2 \mathbf{v} = f(\mathbf{v}) & t > 0, x \in \mathbb{R} \\ \mathbf{v}_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(3)

Kanel '64 + Zlatoš '06 (+ FML '77) : $\exists L_0 > 0$ s.t.

- If $L < L_0$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .
- If $L > L_0$, v converges to a pair of T.W. in both directions with speed c.

Enhancement by diffusion : the homogeneous case

$$\begin{cases} \partial_t v - d\partial_{xx}^2 v = f(v) \quad t > 0, x \in \mathbb{R} \\ v_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(3)

Kanel '64 + Zlatoš '06 (+ FML '77) : $\exists L_0 > 0$ s.t.

- If $L < L_0$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .
- If $L > L_0$, v converges to a pair of T.W. in both directions with speed c.

Rescaling $x \leftarrow x\sqrt{d}, c \leftarrow c/\sqrt{d}$ gives : $L_0(d) = \sqrt{d}L_0(1)$ $c(d) = \sqrt{d}c(1)$

Enhancement is paid in size of the initial data that lead to extinction.

Enhancement by diffusion : the homogeneous case

$$\begin{cases} \partial_t v - d\partial_{xx}^2 v = f(v) \quad t > 0, x \in \mathbb{R} \\ v_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(3)

Kanel '64 + Zlatoš '06 (+ FML '77) : $\exists L_0 > 0$ s.t.

- If $L < L_0$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .
- If $L > L_0$, v converges to a pair of T.W. in both directions with speed c.

Rescaling $x \leftarrow x\sqrt{d}, c \leftarrow c/\sqrt{d}$ gives : $L_0(d) = \sqrt{d}L_0(1)$ $c(d) = \sqrt{d}c(1)$

Enhancement is paid in size of the initial data that lead to extinction.

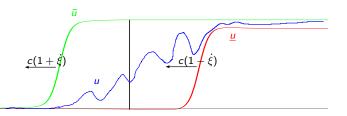
Back to our system : what happens ?

Theorem 1

Let (u_0, v_0) be front-like. There exists $\omega > 0$ indep. of D s.t. for $\varepsilon > 0$ small there exists two shifts ξ_1^{\pm} s.t.

$$\begin{split} \phi(x+c\xi_1^-+ct) - C\varepsilon e^{-\omega t} &\leq \mu u(t,x) \leq \mu \phi(x+c\xi_1^++ct) + C\varepsilon e^{-\omega t} \\ \psi(x+c\xi_1^-+ct) - C\varepsilon e^{-\omega t} \leq v(t,x,y) \leq \psi(x+c\xi_1^++ct) + C\varepsilon e^{-\omega t} \end{split}$$

where C = C(d).



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Consequence

Theorem 2

Let (u_0, v_0) be ≥ 0 smooth and compactly supported. There exists $\delta > 0$ and M > 0 indep. of D such that if

$$\mu u_0, v_0 > 1 - \delta$$
 for $x \in (-M\sqrt{D}, M\sqrt{D})$

then μu , v stays trapped (up to an exponentially decaying error) between two shifts of a pair of travelling waves evolving in both directions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consequence

Theorem 2

Let (u_0, v_0) be ≥ 0 smooth and compactly supported. There exists $\delta > 0$ and M > 0 indep. of D such that if

$$\mu u_0, v_0 > 1 - \delta$$
 for $x \in (-M\sqrt{D}, M\sqrt{D})$

then μu , v stays trapped (up to an exponentially decaying error) between two shifts of a pair of travelling waves evolving in both directions.

Idea of proof.

Upper bound : (min(ū, ũ), min(v, v)) is a supersolution (ũ is like ū with reversed x). Can be put above (u₀, v₀) at inital time.

Consequence

Theorem 2

Let (u_0, v_0) be ≥ 0 smooth and compactly supported. There exists $\delta > 0$ and M > 0 indep. of D such that if

$$\mu u_0, v_0 > 1 - \delta$$
 for $x \in (-M\sqrt{D}, M\sqrt{D})$

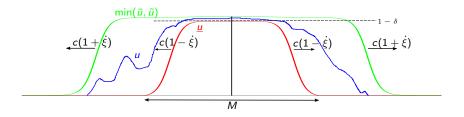
then μu , v stays trapped (up to an exponentially decaying error) between two shifts of a pair of travelling waves evolving in both directions.

Idea of proof.

- Upper bound : (min(ū, ũ), min(v, v)) is a supersolution (ũ is like ū with reversed x). Can be put above (u₀, v₀) at inital time.
- Lower bound (idea of FML) :

$$\begin{cases} \underline{u} = \max\left(0, \phi + \tilde{\phi} - 1/\mu - q_u(t)/\mu\min(\Gamma, \tilde{\Gamma})\right) \\ \underline{v} = \max\left(0, \psi + \tilde{\psi} - 1 - q_v(t, y)\min(\Gamma, \tilde{\Gamma})\right) \end{cases}$$

Subsolution provided initial shifts are large enough.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

M and δ arise when one wants to put $(\underline{u}, \underline{v})(0)$ below (u_0, v_0) .

What about small initial data when D is large ?

Theorem 3

There exists $M', \delta' > 0$ independent of D > d such that if

$$v_0 > 1 - \delta'$$
 for $x \in (-M', M')$

then after a time $t_D = D^{1/2} \ln D + O(1)$ one has μu and v satisfying the assumptions of Theorem 2.

Idea of proof.

• $D \gg d$ so expect $u \simeq 0$ for small times. Subsolution $(0, \underline{v})$ (close to the solution) where :

Idea of proof.

D ≫ d so expect u ≃ 0 for small times. Subsolution (0, v) (close to the solution) where :

 $d\partial_{y}\underline{v} + \underline{v} = 0$ $\partial_{t}\underline{v} - d\Delta\underline{v} = f(\underline{v})$ $\partial_{y}\underline{v} = 0$

(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea of proof.

■ $D \gg d$ so expect $u \simeq 0$ for small times. Subsolution $(0, \underline{v})$ (close to the solution) where :

 $d\partial_{y}\underline{v} + \underline{v} = 0$ $\partial_{t}\underline{v} - d\Delta\underline{v} = f(\underline{v})$ $\partial_{y}\underline{v} = 0$

(4)

• (4) has a steady state $p(y) > 1 - \delta$ (provided *L* is not too small). Berestycki–Nirenberg '92 : \exists T.W. connecting 0 and p(y) with speed c_p indep. of *D*. This gives :

Under the assumptions of Theorem 3, there holds

$$v(t,x,-L) \geq (1-\delta'')\varphi_t(x) - Ce^{-bt}$$

where C, b > 0 do not depend on D and φ_t is a regularisation of $\mathbf{1}_{\left(-\frac{c_p}{2}t, \frac{c_p}{2}t\right)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Under the assumptions of Theorem 3, there holds

$$v(t,x,-L) \ge (1-\delta'')\varphi_t(x) - Ce^{-bt}$$

where C, b > 0 do not depend on D and φ_t is a regularisation of $\mathbf{1}_{\left(-\frac{c_p}{2}t, \frac{c_p}{2}t\right)}$.

End of the proof of Theorem 3.

Under the assumptions of Theorem 3, there holds

$$v(t,x,-L) \geq (1-\delta'')\varphi_t(x) - Ce^{-bt}$$

where C, b > 0 do not depend on D and φ_t is a regularisation of $\mathbf{1}_{\left(-\frac{c_p}{2}t, \frac{c_p}{2}t\right)}$.

End of the proof of Theorem 3. Rescale by $x \leftarrow x/\sqrt{D}$. Goal :

 $\liminf_{t \to +\infty} \inf_{D>d} \min_{(x,y) \in \overline{\Omega_{L,M}}} \{ \mu u^D(T_D + t, x), v^D(T_D + t, x, y) \} \ge p(-L) > 1 - \delta$ (5)

where $T_D = \sqrt{D} \ln D$ and $\Omega_{L,M} = (-M, M) \times (-L, 0)$, i.e. we want to connect with Theorem 2.

Under the assumptions of Theorem 3, there holds

$$v(t,x,-L) \geq (1-\delta'')\varphi_t(x) - Ce^{-bt}$$

where C, b > 0 do not depend on D and φ_t is a regularisation of $\mathbf{1}_{\left(-\frac{c_p}{2}t, \frac{c_p}{2}t\right)}$.

End of the proof of Theorem 3. Rescale by $x \leftarrow x/\sqrt{D}$. Goal :

 $\liminf_{t \to +\infty} \inf_{D > d} \min_{(x,y) \in \overline{\Omega_{L,M}}} \{ \mu u^D(T_D + t, x), v^D(T_D + t, x, y) \} \ge p(-L) > 1 - \delta$ (5)

where $T_D = \sqrt{D} \ln D$ and $\Omega_{L,M} = (-M, M) \times (-L, 0)$, i.e. we want to connect with Theorem 2.

• Easy but tedious : LHS of (5) can be characterised as lim of $\mu u^{D_n}(T_{D_n} + t_n, x_n)$ or $v^{D_n}(T_{D_n} + t_n, x_n, y_n)$ where $t_n \to +\infty$, $D_n > d$, $(x_n, y_n) \in \overline{\Omega_{L,M}}$. Extract so that (D_n) has a limit in $[d, +\infty]$.

Since $f \ge 0$ and by the Key lemma, $(u_n, v_n) \ge (\underline{u}_n, \underline{v}_n)$ solution of

Since $f \ge 0$ and by the Key lemma, $(u_n, v_n) \ge (\underline{u}_n, \underline{v}_n)$ solution of

$$\frac{\partial_t \underline{u}_n - \partial_{xx}^2 \underline{u}_n = \underline{v}_n - \mu \underline{u}_n}{d\partial_y \underline{v}_n = \mu \underline{u}_n - \underline{v}_n}$$

$$\underline{v}_n = p(-L)\varphi_{T_{D_n}+t_n}((x_\infty + x)\sqrt{D}_n) - Ce^{-b(t_n+t)}$$

(6)

_

Since $f \ge 0$ and by the Key lemma, $(u_n, v_n) \ge (\underline{u}_n, \underline{v}_n)$ solution of

$$\frac{\partial_t \underline{u}_n - \partial_{xx}^2 \underline{u}_n = \underline{v}_n - \mu \underline{u}_n}{d\partial_y \underline{v}_n = \mu \underline{u}_n - \underline{v}_n}$$
$$\frac{\partial_t \underline{v}_n - \frac{d}{D_n} \partial_{xx}^2 \underline{v}_n - d\partial_{yy}^2 v_n = 0}{\underline{v}_n = p(-L)\varphi_{T_{D_n} + t_n}((x_\infty + x)\sqrt{D_n}) - Ce^{-b(t_n + t)}}$$
(6)

Idea : $\underline{v}_n(t, x, -L) \xrightarrow[n \to +\infty]{} p(-L) > 1 - \delta$ loc. unif. in $\mathbb{R} \times \mathbb{R}$ (either (D_n)) bounded and it is immediate, or since $\ln(D_n) \to +\infty$)

(日) (日) (日) (日) (日) (日) (日) (日)

_

Since $f \ge 0$ and by the Key lemma, $(u_n, v_n) \ge (\underline{u}_n, \underline{v}_n)$ solution of

$$\frac{\partial_t \underline{u}_n - \partial_{xx}^2 \underline{u}_n = \underline{v}_n - \mu \underline{u}_n}{d\partial_y \underline{v}_n = \mu \underline{u}_n - \underline{v}_n}$$
$$\frac{\partial_t \underline{v}_n - \frac{d}{D_n} \partial_{xx}^2 \underline{v}_n - d\partial_{yy}^2 v_n = 0}{\underline{v}_n = \rho(-L)\varphi_{T_{D_n} + t_n}((x_\infty + x)\sqrt{D_n}) - Ce^{-b(t_n + t)}}$$
(6)

Idea : $\underline{v}_n(t, x, -L) \xrightarrow[n \to +\infty]{} p(-L) > 1 - \delta$ loc. unif. in $\mathbb{R} \times \mathbb{R}$ (either (D_n)) bounded and it is immediate, or since $\ln(D_n) \to +\infty$)

(日) (日) (日) (日) (日) (日) (日) (日)

Issue if D_n unbounded : uniform in time regularity ?

_

Since $f \ge 0$ and by the Key lemma, $(u_n, v_n) \ge (\underline{u}_n, \underline{v}_n)$ solution of

$$\frac{\partial_t \underline{u}_n - \partial_{xx}^2 \underline{u}_n = \underline{v}_n - \mu \underline{u}_n}{d\partial_y \underline{v}_n = \mu \underline{u}_n - \underline{v}_n}$$
$$\frac{\partial_t \underline{v}_n - \frac{d}{D_n} \partial_{xx}^2 \underline{v}_n - d\partial_{yy}^2 v_n = 0}{\underline{v}_n = \rho(-L)\varphi_{\mathcal{T}_{D_n} + t_n}((x_\infty + x)\sqrt{D_n}) - Ce^{-b(t_n + t)}}$$
(6)

Idea : $\underline{v}_n(t, x, -L) \xrightarrow[n \to +\infty]{} p(-L) > 1 - \delta$ loc. unif. in $\mathbb{R} \times \mathbb{R}$ (either (D_n)) bounded and it is immediate, or since $\ln(D_n) \to +\infty$)

Issue if D_n unbounded : uniform in time regularity ?
Regularity in y is OK by rescaling.

Since $f \ge 0$ and by the Key lemma, $(u_n, v_n) \ge (\underline{u}_n, \underline{v}_n)$ solution of

$$\frac{\partial_t \underline{u}_n - \partial_{xx}^2 \underline{u}_n = \underline{v}_n - \mu \underline{u}_n}{d\partial_y \underline{v}_n = \mu \underline{u}_n - \underline{v}_n}$$

$$\underline{v}_n = p(-L)\varphi_{T_{D_n}+t_n}((x_\infty + x)\sqrt{D}_n) - Ce^{-b(t_n+t)}$$

(6) Idea : $\underline{v}_n(t, x, -L) \xrightarrow[n \to +\infty]{} p(-L) > 1 - \delta$ loc. unif. in $\mathbb{R} \times \mathbb{R}$ (either (D_n) bounded and it is immediate, or since $\ln(D_n) \to +\infty$)

Issue if D_n unbounded : uniform in time regularity ?

- Regularity in y is OK by rescaling.
- Regularity in x falls but : (6) is linear and (φ_t) bounded in C³, so use the maximum principle.

Now extract : (u_{∞}, v_{∞}) global in time (since $t_n \to +\infty$) :

$$\frac{\partial_t u_{\infty} - \partial_{xx}^2 u_{\infty} = v_{\infty} - \mu u_{\infty}}{d\partial_y v_{\infty} = \mu u_{\infty} - v_{\infty}}$$
$$\frac{\partial_t v_{\infty} - d\partial_{yy}^2 v_{\infty} = 0}{v_{\infty} = p(-L)}$$
(7)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Now extract : (u_{∞}, v_{∞}) global in time (since $t_n \to +\infty$) :

$$\frac{\partial_t u_{\infty} - \partial_{\infty}^2 u_{\infty} = v_{\infty} - \mu u_{\infty}}{d\partial_y v_{\infty} = \mu u_{\infty} - v_{\infty}}$$

$$\frac{\partial_t v_{\infty} - d\partial_{yy}^2 v_{\infty} = 0}{v_{\infty} = p(-L)}$$
(7)

The maximum principle applies in the standard way for u and on every y-slice for $v : \mu u_{\infty}, v_{\infty} \equiv p(-L)$ and this proves (5) and thus Theorem 3.

(日) (日) (日) (日) (日) (日) (日) (日)

Additional information

Initial datum supported on the road : $v_0 \equiv 0, \mu u_0 = \mathbf{1}_{(-L,L)}(x)$

Theorem 5

There exists a_0, a_1 and μ^{\pm} indep. of D such that

- If $L < a_0 \sqrt{D}$, extinction occurs.
- If $L > a_1 \sqrt{D}$, invasion occurs if $\mu < \mu and$ extinction if $\mu > \mu^+$.

Results

Merci pour votre attention !

