Laurent Dietrich Advisors : H. Berestycki and J.-M. Roquejoffre

Institut de mathématiques de Toulouse

June, 29th 2015

Introduction

└─ The model and questions

Model and general questions

$$\frac{\partial_t u - D\partial_{xx}^2 u = v(t, x, 0) - \mu u}{d\partial_y v = \mu u - v}$$
 \checkmark the road

$$\partial_t v - d\Delta v = f(v)$$
 \uparrow the field

• u(t, x), v(t, x, y) : population densities.

(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

L The model and questions

Model and general questions

$$\frac{\partial_t u - D\partial_{xx}^2 u = v(t, x, 0) - \mu u}{d\partial_y v = \mu u - v}$$

$$\partial_t v - d\Delta v = f(v)$$
 \checkmark the field

u(t,x), v(t,x,y) : population densities.
Convention : {y = 0} is "the road", {y < 0} is "the field".

(1)

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction

- The model and questions

Model and general questions

$$\frac{\partial_t u - D\partial_{xx}^2 u = v(t, x, 0) - \mu u}{d\partial_v v = \mu u - v}$$
 the road

$$\partial_t v - d\Delta v = f(v)$$
 ⁷ the field

(1)

• u(t,x), v(t,x,y) : population densities.

• Convention : $\{y = 0\}$ is "the road", $\{y < 0\}$ is "the field".

- d, D > 0 : diffusion coefficients.
- *f* : reproduction term.
- $\mu > 0$: models exchanges between road and field.
- Model proposed by Berestycki, Roquejoffre, Rossi (2012).

L The model and questions

General questions :

- How does an initial localized distribution of population (u_0, v_0) evolve ?
- Location of the level sets ?
- Influence of large D ?

Introduction

└─ The model and questions

Ecological motivation

Transportation networks increase the speed of biological invasions.

The model and questions

Ecological motivation

- Transportation networks increase the speed of biological invasions.
- Ex. 1 : Yellow-legged hornet. Seems to use valleys and watercourses to expand (requires a lot of water to build nests).

Figure: Vespa velutina (Wikipédia, licence CC BY-SA 3.0)

- Introduction
 - The model and questions

- http://inpn.mnhn.fr/espece/cd_nom/433589/tab/rep/METROP. Green squares indicate observed presence (with dates online).
- Speed of front is 100 km/year.
- Seems to spread along Garonne and then inland.

- Introduction
 - The model and questions

• Ex. 2 : the pine processionary caterpillar. Thought to move northwards because of climate change, but roads also thought to play a role

Figure: Pine processionary (Wikipédia, licence CC BY-SA 3.0)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Introduction
 - L The model and questions

1 Introduction

The model and questions

Comparison : the homogeneous case

KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.
- Dynamics : transition from low speed to T.W. speed

3 Perspectives

Introduction

Comparison : the homogeneous case

Comparison : the homogeneous KPP case

 $\partial_t u - \mathbf{d} \Delta u = f(u)$

- KPP assumption : f(0) = f(1) = 0, f concave.
- Define $c_{KPP} := 2\sqrt{df'(0)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Comparison : the homogeneous case

Comparison : the homogeneous KPP case

 $\partial_t u - \mathbf{d} \Delta u = f(u)$

- KPP assumption : f(0) = f(1) = 0, f concave.
- Define $c_{KPP} := 2\sqrt{df'(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_0 \in \mathcal{C}^\infty_c$, $0 \le u_0 \le 1$, $u_0 \not\equiv 0$. Then

• For all $c > c_{KPP}$, $\lim_{t \to +\infty} \sup_{|x| \ge ct} u(t, x) = 0$.

Introduction

Comparison : the homogeneous case

Comparison : the homogeneous KPP case

 $\partial_t u - \mathbf{d} \Delta u = f(u)$

- KPP assumption : f(0) = f(1) = 0, f concave.
- Define $c_{KPP} := 2\sqrt{df'(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_0 \in \mathcal{C}^\infty_c$, $0 \le u_0 \le 1$, $u_0 \not\equiv 0$. Then

- For all $c > c_{KPP}$, $\lim_{t \to +\infty} \sup_{|x| \ge ct} u(t, x) = 0$.
- For all $c < c_{KPP}$, $\lim_{t \to +\infty} \inf_{|x| \le ct} u(t, x) = 1$.

Introduction

Comparison : the homogeneous case

Comparison : the homogeneous KPP case

 $\partial_t u - \mathbf{d} \Delta u = f(u)$

- KPP assumption : f(0) = f(1) = 0, f concave.
- Define $c_{KPP} := 2\sqrt{df'(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_0 \in \mathcal{C}^\infty_c$, $0 \le u_0 \le 1$, $u_0 \not\equiv 0$. Then

- For all $c > c_{KPP}$, $\lim_{t \to +\infty} \sup_{|x| \ge ct} u(t, x) = 0$.
- For all $c < c_{KPP}$, $\lim_{t \to +\infty} \inf_{|x| \le ct} u(t, x) = 1$.

Here c_{KPP} is called the **propagation speed**.

Introduction

Comparison : the homogeneous case

Comparison : the homogeneous KPP case

 $\partial_t u - \mathbf{d} \Delta u = f(u)$

- KPP assumption : f(0) = f(1) = 0, f concave.
- Define $c_{KPP} := 2\sqrt{df'(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_0 \in \mathcal{C}^\infty_c$, $0 \le u_0 \le 1$, $u_0 \not\equiv 0$. Then

- For all $c > c_{KPP}$, $\lim_{t \to +\infty} \sup_{|x| \ge ct} u(t, x) = 0$.
- For all $c < c_{KPP}$, $\lim_{t \to +\infty} \inf_{|x| \le ct} u(t, x) = 1$.

Here c_{KPP} is called the **propagation speed**. Observe : c_{KPP} proportional to \sqrt{d} .

Introduction

Comparison : the homogeneous case

Comparison : the homogeneous KPP case

 $\partial_t u - \mathbf{d} \Delta u = f(u)$

- KPP assumption : f(0) = f(1) = 0, f concave.
- Define $c_{KPP} := 2\sqrt{df'(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_0 \in \mathcal{C}^\infty_c$, $0 \le u_0 \le 1$, $u_0 \not\equiv 0$. Then

- For all $c > c_{KPP}$, $\lim_{t \to +\infty} \sup_{|x| \ge ct} u(t, x) = 0$.
- For all $c < c_{KPP}$, $\lim_{t \to +\infty} \inf_{|x| \le ct} u(t, x) = 1$.

Here c_{KPP} is called the **propagation speed**. Observe : c_{KPP} proportional to \sqrt{d} .

Question : what is the influence of D on the **propagation speed** in the direction e_1 in (1) ?

KPP propagation with a line of fast diffusion

1 Introduction

- The model and questions
- Comparison : the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.
- Dynamics : transition from low speed to T.W. speed

3 Perspectives

Introduction

KPP propagation with a line of fast diffusion

With a line of fast diffusion

Theorem (Berestycki, Roquejoffre, Rossi '12)

Under KPP assumption, propagation speed $c^*(D) > 0$ in the direction e_1 :

• If $D \le 2d$, $c^* = c_{KPP}$.

Introduction

KPP propagation with a line of fast diffusion

With a line of fast diffusion

Theorem (Berestycki, Roquejoffre, Rossi '12)

Under KPP assumption, propagation speed $c^*(D) > 0$ in the direction e_1 :

• If
$$D \le 2d$$
, $c^* = c_{KPP}$.

If
$$D > 2d$$
, $c^* > c_{KPP}$ and $\frac{c^*(D)}{\sqrt{D}}$ has a positive limit as $D \to +\infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

KPP propagation with a line of fast diffusion

With a line of fast diffusion

Theorem (Berestycki, Roquejoffre, Rossi '12)

Under KPP assumption, propagation speed $c^*(D) > 0$ in the direction e_1 :

• If
$$D \le 2d$$
, $c^* = c_{KPP}$.

If
$$D>2d$$
, $c^*>c_{{\cal KPP}}$ and $\frac{c^*(D)}{\sqrt{D}}$ has a positive limit as $D\to+\infty$.

Remark

Thus : propagation enhancement in the direction of the road.

Question : does this phenomenon persist in more general situations ?

KPP propagation with a line of fast diffusion

Non trivial question since :

• KPP assumption reduces the question to algebraic computations : prop. speed is given by linearizing (1) near 0.

- KPP assumption reduces the question to algebraic computations : prop. speed is given by linearizing (1) near 0.
- KPP assumption could be necessary for the enhancement to happen : e.g.

$$\partial_t u + (-\Delta)^\alpha u = f(u)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- KPP assumption reduces the question to algebraic computations : prop. speed is given by linearizing (1) near 0.
- KPP assumption could be necessary for the enhancement to happen : e.g.

$$\partial_t u + (-\Delta)^\alpha u = f(u)$$

with $1/2 < \alpha < 1$.

- KPP assumption reduces the question to algebraic computations : prop. speed is given by linearizing (1) near 0.
- KPP assumption could be necessary for the enhancement to happen : e.g.

$$\partial_t u + (-\Delta)^{\alpha} u = f(u)$$

with $1/2 < \alpha < 1$.

 KPP assumption : propagates comp. supp. data at exponential speed (Cabré, Roquejoffre '09)

- KPP assumption reduces the question to algebraic computations : prop. speed is given by linearizing (1) near 0.
- KPP assumption could be necessary for the enhancement to happen : e.g.

$$\partial_t u + (-\Delta)^{\alpha} u = f(u)$$

with $1/2 < \alpha < 1$.

- KPP assumption : propagates comp. supp. data at exponential speed (Cabré, Roquejoffre '09)
- f(u) with threshold : propagation linear in time (Mellet, Roquejoffre, Sire).

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction

KPP propagation with a line of fast diffusion

Back to the homogeneous case, with a threshold

$$\partial_t v - d\Delta v = f(v)$$
 $t > 0, x \in \mathbb{R}^N$

Theorem (Kanel '61)

There exists a unique T.W. profile $\phi \uparrow_0^1$ and a unique speed c such that $u(t,x) = \phi(x \cdot e + ct)$ is a solution.

Introduction

KPP propagation with a line of fast diffusion

Back to the homogeneous case, with a threshold

$$\partial_t v - d\Delta v = f(v)$$
 $t > 0, x \in \mathbb{R}^N$

Theorem (Kanel '61)

There exists a unique T.W. profile $\phi \uparrow_0^1$ and a unique speed c such that $u(t,x) = \phi(x \cdot e + ct)$ is a solution.

Theorem (Aronson-Weinberger '78)

- If $|\{v_0 > \delta > \theta\}|$ large enough : propagation at speed *c* in each direction *e*.
- Otherwise, uniform convergence towards 0.

- Introduction

KPP propagation with a line of fast diffusion

Back to the homogeneous case, with a threshold

$$\partial_t v - d\Delta v = f(v)$$
 $t > 0, x \in \mathbb{R}^N$

Theorem (Kanel '61)

There exists a unique T.W. profile $\phi \uparrow_0^1$ and a unique speed c such that $u(t, x) = \phi(x \cdot e + ct)$ is a solution.

Theorem (Aronson-Weinberger '78)

- If $|\{v_0 > \delta > \theta\}|$ large enough : propagation at speed *c* in each direction *e*.
- Otherwise, uniform convergence towards 0.

Remarks

• To get the prop. speed, one really needs to study the travelling waves.

(日)

Introduction

KPP propagation with a line of fast diffusion

Back to the homogeneous case, with a threshold

$$\partial_t v - d\Delta v = f(v)$$
 $t > 0, x \in \mathbb{R}^N$

Theorem (Kanel '61)

There exists a unique T.W. profile $\phi \uparrow_0^1$ and a unique speed c such that $u(t,x) = \phi(x \cdot e + ct)$ is a solution.

Theorem (Aronson-Weinberger '78)

- If $|\{v_0 > \delta > \theta\}|$ large enough : propagation at speed *c* in each direction *e*.
- Otherwise, uniform convergence towards 0.

Remarks

- To get the prop. speed, one really needs to study the travelling waves.
- Rescaling and uniqueness gives $c(d) = \sqrt{d}c(1)$.

Results

Existence of T.W.

1 Introduction

- The model and questions
- Comparison : the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

Existence of T.W.

- Velocity of T.W.
- Dynamics : transition from low speed to T.W. speed

3 Perspectives

Results

- Existence of T.W.

The travelling waves

Simplification : problem in a strip with Neumann cond. (barrier).

(ロ)、(型)、(E)、(E)、 E) の(の)

Results

Existence of T.W.

The travelling waves

Simplification : problem in a strip with Neumann cond. (barrier).

$$\frac{\partial_t u - D\partial_{xx}^2 u = v - \mu u}{d\partial_y v = \mu u - v}$$
$$\frac{\partial_t v - d\Delta v = f(v)}{-\partial_y v = 0}$$

Previous result motivates investigation of the travelling waves :

12 / 23

(2)

Results

Existence of T.W.

The travelling waves

Simplification : problem in a strip with Neumann cond. (barrier).

$$\frac{\partial_t u - D\partial_{xx}^2 u = v - \mu u}{d\partial_y v = \mu u - v}$$
$$\frac{\partial_t v - d\Delta v = f(v)}{-\partial_y v = 0}$$

Previous result motivates investigation of the travelling waves : $c > 0, u(t, x) = \phi(x + ct), v(t, x, y) = \psi(x + ct, y)$ (2)

Results

Existence of T.W.

The travelling waves

Simplification : problem in a strip with Neumann cond. (barrier).

$$\frac{\partial_t u - D\partial_{xx}^2 u = v - \mu u}{d\partial_y v = \mu u - v}$$
$$\frac{\partial_t v - d\Delta v = f(v)}{-\partial_y v = 0}$$

Previous result motivates investigation of the travelling waves :

$$c > 0, u(t, x) = \phi(x + ct), v(t, x, y) = \psi(x + ct, y)$$

$$0 \leftarrow \phi \qquad -D\phi'' + c\phi' = \psi(x, 0) - \mu\phi \qquad \phi \rightarrow 1/\mu$$

$$d\partial_y \psi = \mu\phi - \psi(x, 0)$$

$$0 \leftarrow \psi \qquad -d\Delta\psi + c\partial_x \psi = f(\psi) \qquad \psi \rightarrow 1$$

$$-\partial_y \psi = 0$$

12 / 23

(2)

 $(\Box) (\Box$

Results

Existence of T.W.

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)

• There exists (c, ϕ, ψ) a solution of (3).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results

Existence of T.W.

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)

• There exists
$$(c, \phi, \psi)$$
 a solution of (3).

•
$$0 < \phi < \frac{1}{\mu}$$
, $0 < \psi < 1$, and $\partial_x \phi, \partial_x \psi > 0$.

Results

Existence of T.W.

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)

- There exists (c, ϕ, ψ) a solution of (3).
- $0 < \phi < \frac{1}{\mu}$, $0 < \psi < 1$, and $\partial_x \phi, \partial_x \psi > 0$.
- Uniqueness of c and the profiles up to translations in x.

Results

Existence of T.W.

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)

- There exists (c, ϕ, ψ) a solution of (3).
- $0 < \phi < \frac{1}{\mu}$, $0 < \psi < 1$, and $\partial_x \phi, \partial_x \psi > 0$.
- Uniqueness of c and the profiles up to translations in x.

Remarks

- (2) enjoys a comparison principle so existence of T.W. is not so surprising.
- Result similar in spirit and related to Berestycki-Larrouturou-Lions '90 :

$$\partial_{\nu}\psi = 0$$

$$\psi_{-} \leftarrow \psi \qquad -d\Delta \psi + (\mathbf{c} + \alpha(\mathbf{y}))\partial_{\mathbf{x}}\psi = f(\psi) \qquad \psi \rightarrow \psi_{+}$$

$$\partial_{\nu}\psi = 0$$

13 / 23

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Results

- Existence of T.W.

Idea of proof

Continuation to

$$-d\psi^{\prime\prime}+c\psi^{\prime}=f(\psi),\ \psi(-\infty)=0,\psi(+\infty)=1$$

$$0 \leftarrow \psi \qquad -d\Delta \psi + c\partial_x \psi = f(\psi) \qquad \psi
ightarrow 1$$

 $\partial_{\mathbf{y}}\psi = \mathbf{0}$

14 / 23

Results

Existence of T.W.

Idea of proof

Continuation to

$$-d\psi^{\prime\prime}+c\psi^{\prime}=f(\psi),\ \psi(-\infty)=0,\psi(+\infty)=1$$

$$egin{aligned} 0 \leftarrow \phi & -D\phi'' + c\phi' = (\psi(x,0) - \mu\phi)/arepsilon & \phi
ightarrow 1/\mu \ & d\partial_y \psi = (\mu\phi - \psi(x,0))/arepsilon & \end{aligned}$$

$$0 \leftarrow \psi \qquad -d\Delta \psi + c\partial_x \psi = f(\psi) \qquad \psi
ightarrow 1$$

 $\partial_{\mathbf{v}}\psi = \mathbf{0}$

Step 1 : impose $\mu\phi = \psi$ on the road via $\varepsilon \in (0, 1)$.

Results

- Existence of T.W.

Idea of proof

$$egin{aligned} d\partial_y\psi&=rac{D}{\mu}\partial_{xx}\psi-rac{c}{\mu}\partial_x\psi\ 0\leftarrow\psi&-d\Delta\psi+c\partial_x\psi=f(\psi)&\psi
ightarrow 1\ \partial_y\psi&=0 \end{aligned}$$

Results

- Existence of T.W.

Idea of proof

$$d\partial_{y}\psi = s\left(\frac{D}{\mu}\partial_{xx}\psi - \frac{c}{\mu}\partial_{x}\psi\right)$$

$$0 \leftarrow \psi \qquad -d\Delta \psi + c\partial_x \psi = f(\psi) \qquad \psi
ightarrow 1$$

$$\partial_y \psi = 0$$

Step 2 : vary $s \in (0, 1)$.

Results

- Existence of T.W.

Idea of proof

 $d\partial_y \psi = 0$

$$0 \leftarrow \psi \qquad -d\Delta \psi + c\partial_x \psi = f(\psi) \qquad \psi
ightarrow 1$$

 $\partial_y \psi = 0$

Results

Existence of T.W.

Idea of proof

 $d\partial_y \psi = 0$

$$0 \leftarrow \psi \qquad -d\Delta \psi + c\partial_x \psi = f(\psi) \qquad \psi
ightarrow 1$$

 $\partial_y \psi = 0$

One solution : the planar wave (Kanel' 61).

Results

Existence of T.W.

Idea of proof

 $d\partial_y \psi = 0$

$$0 \leftarrow \psi \qquad -d\Delta \psi + c\partial_x \psi = f(\psi) \qquad \psi
ightarrow 1$$

 $\partial_y \psi = 0$

One solution : the planar wave (Kanel' 61).

Theorem (Berestycki-Nirenberg '90)

This problem has at most one solution.

Results

Existence of T.W.

Idea of proof

 $d\partial_y \psi = 0$

$$0 \leftarrow \psi \qquad -d\Delta \psi + c\partial_x \psi = f(\psi) \qquad \psi
ightarrow 1$$

 $\partial_y \psi = 0$

One solution : the planar wave (Kanel' 61).

Theorem (Berestycki-Nirenberg '90)

This problem has at most one solution.

Remark

More than existence : homotopy between sol. and the planar wave through a singular perturb. and a Wentzell BVP.

Results

└─ Velocity of T.W.

1 Introduction

- The model and questions
- Comparison : the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.
- Dynamics : transition from low speed to T.W. speed

3 Perspectives

Results

- Velocity of T.W.

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$c(D) \mathop{\sim}\limits_{D o +\infty} {m c_\infty} \sqrt{D}$$

(ロ)、

Results

- Velocity of T.W.

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$c(D) \mathop{\sim}\limits_{D
ightarrow + \infty} {m c}_{\infty} \sqrt{D}$$

Theorem 3 (D., Trans. Amer. Math Soc. 2015)

 c_{∞} is the unique admissible velocity for $(x \leftarrow x\sqrt{D}, c \leftarrow \frac{c}{\sqrt{D}} \text{ as } D \rightarrow +\infty)$:

Results

Velocity of T.W.

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$c(D) \mathop{\sim}\limits_{D o +\infty} {m c_\infty} \sqrt{D}$$

Theorem 3 (D., Trans. Amer. Math Soc. 2015)

 c_∞ is the unique admissible velocity for $(x \leftarrow x\sqrt{D}, \ c \leftarrow rac{c}{\sqrt{D}}$ as $D \to +\infty$) :

$$egin{aligned} 0 \leftarrow \phi & -\phi'' + \mathbf{c} \phi' = \psi(x,0) - \mu \phi & \phi
ightarrow 1/\mu \ & d\partial_y \psi = \mu \phi - \psi(x,0) \end{aligned}$$

$$0 \leftarrow \psi \qquad \qquad \mathbf{c} \partial_x \psi - \frac{d}{\mathbf{D}} \partial_{xx} \psi - d \partial_{yy} \psi = f(\psi) \qquad \qquad \psi \to 1$$

$$\partial_y \psi = 0$$

◆□> ◆□> ◆三> ◆三> ・三 のへの

(4)

Results

Velocity of T.W.

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$c(D) \mathop{\sim}\limits_{D o +\infty} c_{\infty} \sqrt{D}$$

Theorem 3 (D., Trans. Amer. Math Soc. 2015)

 c_∞ is the unique admissible velocity for $(x \leftarrow x\sqrt{D}, \ c \leftarrow rac{c}{\sqrt{D}}$ as $D \to +\infty$) :

$$\begin{array}{ccc} \mathbf{0} \leftarrow \phi & -\phi'' + \mathbf{c}_{\infty} \phi' = \psi(x, \mathbf{0}) - \mu \phi & \phi \rightarrow 1/\mu \\ \\ \\ d\partial_y \psi = \mu \phi - \psi(x, \mathbf{0}) \end{array}$$

$$\mathsf{0} \leftarrow \psi$$
 $\mathsf{c}_{\infty} \partial_x \psi - \mathsf{d} \partial_{yy} \psi = f(\psi)$ $\psi
ightarrow \mathsf{I}$

$$\partial_y \psi = 0$$

(4)

Despite non-standard diffusion, (4) is well-posed : solution can be obtained by a direct method without the $-d/D \partial_{xx}$ regularizing term.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Despite non-standard diffusion, (4) is well-posed : solution can be obtained by a direct method without the $-d/D \partial_{xx}$ regularizing term.
- Thus : regularisation effect in x due to the road and the term $c\partial_x v$: (4) is hypoelliptic.

- Despite non-standard diffusion, (4) is well-posed : solution can be obtained by a direct method without the $-d/D \partial_{xx}$ regularizing term.
- Thus : regularisation effect in x due to the road and the term $c\partial_x v$: (4) is hypoelliptic.
- c = 0 : only discontinuous solutions.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Results

- Velocity of T.W.

Idea of proof

Main idea : lower bound (integral identities) on

$$M > rac{c(D)}{\sqrt{D}} > m > 0$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Velocity of T.W.

Idea of proof

Main idea : lower bound (integral identities) on

$$M > rac{c(D)}{\sqrt{D}} > m > 0$$

Extraction $c_n \rightarrow c_{\infty}$ and iteration of regularity : extraction from ϕ_n, ψ_n .

Results

Velocity of T.W.

Idea of proof

Main idea : lower bound (integral identities) on

$$M > rac{c(D)}{\sqrt{D}} > m > 0$$

- Extraction $c_n \rightarrow c_{\infty}$ and iteration of regularity : extraction from ϕ_n, ψ_n .
- Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Idea of proof

Main idea : lower bound (integral identities) on

$$M > \frac{c(D)}{\sqrt{D}} > m > 0$$

- Extraction $c_n \rightarrow c_\infty$ and iteration of regularity : extraction from ϕ_n, ψ_n .
- Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Remarks

Lower bound has to be obtained from scratch : without it (4) loses all hypoellipticity.

(日) (日) (日) (日) (日) (日) (日) (日)

Idea of proof

Main idea : lower bound (integral identities) on

$$M > \frac{c(D)}{\sqrt{D}} > m > 0$$

- Extraction $c_n \rightarrow c_\infty$ and iteration of regularity : extraction from ϕ_n, ψ_n .
- Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Remarks

- Lower bound has to be obtained from scratch : without it (4) loses all hypoellipticity.
- Uses $f \ge 0$: only point where bistable f is not ok. Not trivial if necessary.

Velocity of T.W.

Idea of proof

Main idea : lower bound (integral identities) on

$$M > rac{c(D)}{\sqrt{D}} > m > 0$$

- Extraction $c_n \rightarrow c_\infty$ and iteration of regularity : extraction from ϕ_n, ψ_n .
- Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Remarks

- Lower bound has to be obtained from scratch : without it (4) loses all hypoellipticity.
- Uses $f \ge 0$: only point where bistable f is not ok. Not trivial if necessary.
- Parallel with Hamel-Zlatoš '10 : reaction-diffusion with large shear flow.

17 / 23

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Results

Dynamics : transition from low speed to T.W. speed

1 Introduction

- The model and questions
- Comparison : the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.
- Dynamics : transition from low speed to T.W. speed

3 Perspectives

Results

Dynamics : transition from low speed to T.W. speed

On the dynamics

What kind of initial data are attracted by these travelling waves ?

(ロ)、(型)、(E)、(E)、 E) の(の)

18 / 23

(ロ)、(型)、(E)、(E)、 E) の(の)

On the dynamics

What kind of initial data are attracted by these travelling waves ?

Front-like initial data

Dynamics : transition from low speed to T.W. speed

Dynamics : transition from low speed to T.W. speed

On the dynamics

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data
- Compactly supported initial data with a large enough support w.r.t D (expected, see below)

Dynamics : transition from low speed to T.W. speed

On the dynamics

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data
- Compactly supported initial data with a large enough support w.r.t D (expected, see below)
- ... but that is not everything !

Dynamics : transition from low speed to T.W. speed

On the dynamics

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data
- Compactly supported initial data with a large enough support w.r.t D (expected, see below)
- ... but that is not everything !

Results

Dynamics : transition from low speed to T.W. speed

Context : propagation enhancement, the homogeneous case

$$\begin{cases} \partial_t v - \partial_{xx}^2 v = f(v) \quad t > 0, x \in \mathbb{R} \\ v_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(5)

Results

Dynamics : transition from low speed to T.W. speed

Context : propagation enhancement, the homogeneous case

$$\begin{cases} \partial_t \mathbf{v} - \partial_{xx}^2 \mathbf{v} = f(\mathbf{v}) & t > 0, x \in \mathbb{R} \\ \mathbf{v}_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(5)

Kanel '64 :

• If $L < L_-$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Results

Dynamics : transition from low speed to T.W. speed

Context : propagation enhancement, the homogeneous case

$$\begin{cases} \partial_t v - \partial_{xx}^2 v = f(v) \quad t > 0, x \in \mathbb{R} \\ v_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(5)

Kanel '64 :

- If $L < L_-$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .
- If $L > L_+$, v converges to a pair of T.W. in both directions with speed c.

- Results

Dynamics : transition from low speed to T.W. speed

Context : propagation enhancement, the homogeneous case

$$\begin{cases} \partial_t v - d\partial_{xx}^2 v = f(v) \quad t > 0, x \in \mathbb{R} \\ v_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(5)

Kanel '64 :

- If $L < L_-$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .
- If $L > L_+$, v converges to a pair of T.W. in both directions with speed c.

- Results

Dynamics : transition from low speed to T.W. speed

Context : propagation enhancement, the homogeneous case

$$\begin{cases} \partial_t \mathbf{v} - \mathbf{d} \partial_{xx}^2 \mathbf{v} = f(\mathbf{v}) & t > 0, x \in \mathbb{R} \\ \mathbf{v}_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(5)

Kanel '64 :

If $L < L_-$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .

If $L > L_+$, v converges to a pair of T.W. in both directions with speed c. Rescaling $x \leftarrow x\sqrt{d}, c \leftarrow c/\sqrt{d}$ gives : $L_{\pm}(d) = \sqrt{d}L_{\pm}(1)$ $c(d) = \sqrt{d}c(1)$ Enhancement price : critical size of the initial data that lead to *extinction*.

Results

Dynamics : transition from low speed to T.W. speed

Context : propagation enhancement, the homogeneous case

$$\begin{cases} \partial_t \mathbf{v} - \mathbf{d} \partial_{xx}^2 \mathbf{v} = f(\mathbf{v}) & t > 0, x \in \mathbb{R} \\ \mathbf{v}_0(x) = \mathbf{1}_{(-L,L)}(x) \end{cases}$$
(5)

Kanel '64 :

• If $L < L_-$, $v \to 0$ as $t \to +\infty$ unif. on \mathbb{R} .

If $L > L_+$, v converges to a pair of T.W. in both directions with speed c. Rescaling $x \leftarrow x\sqrt{d}, c \leftarrow c/\sqrt{d}$ gives : $L_{\pm}(d) = \sqrt{d}L_{\pm}(1)$ $c(d) = \sqrt{d}c(1)$ Enhancement price : critical size of the initial data that lead to *extinction*.

Remarks

- Zlatoš '06 : *L*_− = *L*₊.
- Du-Matano '10 : generalisation to continuous monotone 1-parameter families of comp. supp. initial data.

- Results

Dynamics : transition from low speed to T.W. speed

Large support w.r.t. \sqrt{D}

Theorem 4 (D., Roquejoffre, 2015)

Let (u_0, v_0) be ≥ 0 and compactly supported. There exists $\delta > 0$ and M > 0 indep. of D such that if

$$\mu u_0, v_0 > 1 - \delta$$
 for $x \in (-M\sqrt{D}, M\sqrt{D})$

then μu , v stays trapped (up to exponential error) between two shifts of a pair of travelling waves evolving in both directions.

Results

Dynamics : transition from low speed to T.W. speed

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)

There exists $M', \delta' > 0$ independent of D > d such that if

 $v_0 > 1 - \delta'$ for $x \in (-M', M')$

then after $t_D \leq D^{1/2} \ln D + O(1)$, μu and v satisfy the assumptions of Theorem 4.

Results

Dynamics : transition from low speed to T.W. speed

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)

There exists $M', \delta' > 0$ independent of D > d such that if

$$v_0 > 1 - \delta'$$
 for $x \in (-M', M')$

then after $t_D \leq D^{1/2} \ln D + O(1)$, μu and v satisfy the assumptions of Theorem 4.

Unusual : enhancement of propagation speed $c(D) \sim c_{\infty} D^{1/2}$ without any price to pay in the initial datum size (only in waiting time).

Results

Dynamics : transition from low speed to T.W. speed

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)

There exists $M', \delta' > 0$ independent of D > d such that if

$$v_0 > 1 - \delta'$$
 for $x \in (-M', M')$

then after $t_D \leq D^{1/2} \ln D + O(1)$, μu and v satisfy the assumptions of Theorem 4.

Unusual : enhancement of propagation speed $c(D) \sim c_{\infty} D^{1/2}$ without any price to pay in the initial datum size (only in waiting time).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Results

Dynamics : transition from low speed to T.W. speed

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)

There exists $M', \delta' > 0$ independent of D > d such that if

$$v_0 > 1 - \delta'$$
 for $x \in (-M', M')$

then after $t_D \leq D^{1/2} \ln D + O(1)$, μu and v satisfy the assumptions of Theorem 4.

Unusual : enhancement of propagation speed $c(D) \sim c_{\infty} D^{1/2}$ without any price to pay in the initial datum size (only in waiting time).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Results

Dynamics : transition from low speed to T.W. speed

Additional information

Ongoing work : asymptotic lower bound

For all $\nu > 0$,

$$\liminf_{D\to+\infty}\frac{t_D}{D^{1/7-\nu}}=+\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Results

Dynamics : transition from low speed to T.W. speed

Additional information

Ongoing work : asymptotic lower bound

For all $\nu > 0$,

$$\liminf_{D\to+\infty}\frac{t_D}{D^{1/7-\nu}}=+\infty.$$

22 / 23

Theorem 6 (D., Roquejoffre, 2015)

Initial datum on the road only : $v_0 \equiv 0, \mu u_0 = \mathbf{1}_{(-L,L)}(x)$.

Results

Dynamics : transition from low speed to T.W. speed

Additional information

Ongoing work : asymptotic lower bound

For all $\nu > 0$,

$$\liminf_{D\to+\infty}\frac{t_D}{D^{1/7-\nu}}=+\infty.$$

Theorem 6 (D., Roquejoffre, 2015)

Initial datum on the road only : $v_0 \equiv 0, \mu u_0 = \mathbf{1}_{(-L,L)}(x)$. There exists a_0, a_1 and μ^{\pm} indep. of D such that

• If $L < a_0 \sqrt{D}$, extinction occurs.

Results

Dynamics : transition from low speed to T.W. speed

Additional information

Ongoing work : asymptotic lower bound

For all $\nu > 0$,

$$\liminf_{D\to+\infty}\frac{t_D}{D^{1/7-\nu}}=+\infty.$$

Theorem 6 (D., Roquejoffre, 2015)

Initial datum on the road only : $v_0 \equiv 0, \mu u_0 = \mathbf{1}_{(-L,L)}(x)$. There exists a_0, a_1 and μ^{\pm} indep. of D such that

- If $L < a_0 \sqrt{D}$, extinction occurs.
- If $L > a_1 \sqrt{D}$, invasion occurs if $\mu < \mu^-$ and extinction if $\mu > \mu^+$.

• Comparison between $c_{\infty}(d)$ and c(d).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- Comparison between $c_{\infty}(d)$ and c(d).
- Including transport and reaction on the road.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Comparison between $c_{\infty}(d)$ and c(d).
- Including transport and reaction on the road.
- Transition fronts with spatial-dependant parameters ?

- Comparison between $c_{\infty}(d)$ and c(d).
- Including transport and reaction on the road.
- Transition fronts with spatial-dependant parameters ?
- Integral dispersion on the road ($\alpha < 1/2$) ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

23 / 23

Merci pour votre attention !

 $D \gg d$ so expect $u \simeq 0$ for small times and v close to subsol. $(0, \underline{v})$:

 $D \gg d$ so expect $u \simeq 0$ for small times and v close to subsol. $(0, \underline{v})$:

$$d\partial_y \underline{v} + \underline{v} = 0$$

$$\partial_t \underline{v} - d\Delta \underline{v} = f(\underline{v})$$

$$\frac{\partial_y \underline{v} = 0}{\tag{6}}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 $D \gg d$ so expect $u \simeq 0$ for small times and v close to subsol. $(0, \underline{v})$:

$$d\partial_y \underline{v} + \underline{v} = 0$$

$$\partial_t \underline{v} - d\Delta \underline{v} = f(\underline{v})$$

$$\partial_y \underline{v} = 0$$

Theorem ? (D., Roquejoffre, 2015)

Define $\varepsilon := (1/D)^{1/2}$ and

$$\mathcal{T}_{lpha,arepsilon} := \sup \{ \, \mathcal{T} > \mathsf{0} \; \mid \; | v - \underline{v} | < arepsilon^lpha \; ext{for all } \mathsf{0} < t < \mathcal{T} \}.$$

Let $\alpha \in (0,1)$, then for all $\delta < \min \left(\alpha, 2/7, \frac{5}{2}(1-\alpha) \right)$ one has

$$\left(rac{1}{arepsilon}
ight)^{\delta} = \mathop{o}\limits_{arepsilon
ightarrow 0}(T_{lpha,arepsilon})$$

Limiting case is $\delta = \alpha = 2/7$.

(6)

A parallel : speed-up of combustion front by a shear flow

Model :

$$\partial_t v + A\alpha(y)\partial_x v = \Delta v + f(v), \qquad t \in \mathbb{R}, (x, y) \in \mathbb{R} \times \mathbb{R}^{N-1}$$
 (7)

 $\alpha(y)$ smooth $(1, \dots, 1)$ -periodic and satisfy a Hörmander condition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A parallel : speed-up of combustion front by a shear flow

Model :

$$\partial_t v + A \alpha(y) \partial_x v = \Delta v + f(v), \qquad t \in \mathbb{R}, (x, y) \in \mathbb{R} \times \mathbb{R}^{N-1}$$
 (7)

 $\alpha(y)$ smooth $(1, \dots, 1)$ -periodic and satisfy a Hörmander condition.

Theorem (Hamel-Zlatoš 2013)

There exists $\gamma^* \ge \int_{\mathbb{T}^{N-1}} \alpha(y) dy$ s.t. the speed *c* of travelling fronts of (7) satisfies

$$\lim_{A\to+\infty}\frac{c}{A}=\gamma^*$$

A parallel : speed-up of combustion front by a shear flow

Model :

$$\partial_t v + A\alpha(y)\partial_x v = \Delta v + f(v), \qquad t \in \mathbb{R}, (x, y) \in \mathbb{R} \times \mathbb{R}^{N-1}$$
 (7)

 $\alpha(y)$ smooth $(1, \dots, 1)$ -periodic and satisfy a Hörmander condition.

Theorem (Hamel-Zlatoš 2013)

There exists $\gamma^* \ge \int_{\mathbb{T}^{N-1}} \alpha(y) dy$ s.t. the speed *c* of travelling fronts of (7) satisfies

$$\lim_{A \to +\infty} \frac{c}{A} = \gamma$$

 γ^{\ast} is the unique admissible velocity for :

$$\begin{cases} \Delta_y U + (\gamma - \alpha(y))\partial_x U + f(U) = 0 \text{ in } D'(\mathbb{R} \times \mathbb{T}^{N-1}) \\ 0 \le U \le 1 \text{ a.e. in } \mathbb{R} \times \mathbb{T}^{N-1} \\ \lim_{x \to +\infty} U(x, y) \equiv 0 \text{ uniformly in } \mathbb{T}^{N-1} \\ \lim_{x \to -\infty} U(x, y) \equiv 1 \text{ uniformly in } \mathbb{T}^{N-1} \end{cases}$$