Propagation enhancement in reaction-diffusion equations by a line of fast diffusion

Laurent Dietrich
Advisors: H. Berestycki and J.-M. Roquejoffre
Institut de mathématiques de Toulouse

June, 29th 2015

Model and general questions

$\partial_{t} u-D \partial_{x x}^{2} u=v(t, x, 0)-\mu u$
$d \partial_{y} v=\mu u-v$
$\partial_{t} v-d \Delta v=f(v) \quad \downarrow$ the road
the field

- $u(t, x), v(t, x, y)$: population densities.

Model and general questions

$\partial_{t} u-D \partial_{x x}^{2} u=v(t, x, 0)-\mu u$
$d \partial_{y} v=\mu u-v$
$\partial_{t} v-d \Delta v=f(v)$ the road

- $u(t, x), v(t, x, y)$: population densities.

■ Convention : $\{y=0\}$ is "the road", $\{y<0\}$ is "the field".

Model and general questions

$$
\begin{aligned}
\partial_{t} u-D \partial_{x x}^{2} u & =v(t, x, 0)-\mu u \\
d \partial_{y} v & =\mu u-v
\end{aligned}
$$

$$
\partial_{t} v-d \Delta v=f(v)
$$

- $u(t, x), v(t, x, y)$: population densities.

■ Convention : $\{y=0\}$ is "the road", $\{y<0\}$ is "the field".

- $d, D>0$: diffusion coefficients.
- f : reproduction term.
- $\mu>0$: models exchanges between road and field.

■ Model proposed by Berestycki, Roquejoffre, Rossi (2012).

The reproduction term f :

General questions :
■ How does an initial localized distribution of population (u_{0}, v_{0}) evolve?
■ Location of the level sets ?
■ Influence of large D ?

Ecological motivation

- Transportation networks increase the speed of biological invasions.
- Transportation networks increase the speed of biological invasions.

■ Ex. 1: Yellow-legged hornet. Seems to use valleys and watercourses to expand (requires a lot of water to build nests).

Figure: Vespa velutina (Wikipédia, licence CC BY-SA 3.0)

■ http://inpn.mnhn.fr/espece/cd_nom/433589/tab/rep/METROP. Green squares indicate observed presence (with dates online).

- Speed of front is $100 \mathrm{~km} /$ year.

■ Seems to spread along Garonne and then inland.

■ Ex. 2 : the pine processionary caterpillar. Thought to move northwards because of climate change, but roads also thought to play a role

Figure: Pine processionary (Wikipédia, licence CC BY-SA 3.0)

$\left\llcorner_{\text {The model and questions }}\right.$

Source: ANR Urticlim.

1 Introduction

- The model and questions

■ Comparison : the homogeneous case

- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.

■ Dynamics : transition from low speed to T.W. speed

3 Perspectives

Comparison : the homogeneous KPP case

$$
\partial_{t} u-d \Delta u=f(u)
$$

- KPP assumption : $f(0)=f(1)=0, f$ concave.
- Define $c_{K P P}:=2 \sqrt{d f^{\prime}(0)}$.

Comparison : the homogeneous KPP case

$$
\partial_{t} u-d \Delta u=f(u)
$$

- KPP assumption : $f(0)=f(1)=0, f$ concave.
- Define $c_{K P P}:=2 \sqrt{d f^{\prime}(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_{0} \in \mathcal{C}_{c}^{\infty}, 0 \leq u_{0} \leq 1, u_{0} \not \equiv 0$. Then
\square For all $c>c_{K P P}, \lim _{t \rightarrow+\infty} \sup _{|x| \geq c t} u(t, x)=0$.

Comparison : the homogeneous KPP case

$$
\partial_{t} u-d \Delta u=f(u)
$$

■ KPP assumption : $f(0)=f(1)=0, f$ concave.

- Define $c_{K P P}:=2 \sqrt{d f^{\prime}(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_{0} \in \mathcal{C}_{c}^{\infty}, 0 \leq u_{0} \leq 1, u_{0} \not \equiv 0$. Then

- For all $c>c_{K P P}, \lim _{t \rightarrow+\infty} \sup _{|x| \geq c t} u(t, x)=0$.
- For all $c<c_{K P P}, \lim _{t \rightarrow+\infty} \inf _{|x| \leq c t} u(t, x)=1$.

Comparison : the homogeneous KPP case

$$
\partial_{t} u-d \Delta u=f(u)
$$

■ KPP assumption : $f(0)=f(1)=0, f$ concave.

- Define $c_{K P P}:=2 \sqrt{d f^{\prime}(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_{0} \in \mathcal{C}_{c}^{\infty}, 0 \leq u_{0} \leq 1, u_{0} \not \equiv 0$. Then
■ For all $c>c_{K P P}, \lim _{t \rightarrow+\infty} \sup _{|x| \geq c t} u(t, x)=0$.

- For all $c<c_{K P P}, \lim _{t \rightarrow+\infty} \inf _{|x| \leq c t} u(t, x)=1$.

Here $c_{K P P}$ is called the propagation speed.

Comparison : the homogeneous KPP case

$$
\partial_{t} u-d \Delta u=f(u)
$$

■ KPP assumption : $f(0)=f(1)=0, f$ concave.

- Define $c_{K P P}:=2 \sqrt{d f^{\prime}(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_{0} \in \mathcal{C}_{c}^{\infty}, 0 \leq u_{0} \leq 1, u_{0} \not \equiv 0$. Then

- For all $c>c_{K P P}, \lim _{t \rightarrow+\infty} \sup _{|x| \geq c t} u(t, x)=0$.
- For all $c<c_{K P P}, \lim _{t \rightarrow+\infty} \inf _{|x| \leq c t} u(t, x)=1$.

Here $c_{K P P}$ is called the propagation speed.
Observe : $C_{K P P}$ proportional to \sqrt{d}.

Comparison : the homogeneous KPP case

$$
\partial_{t} u-d \Delta u=f(u)
$$

■ KPP assumption : $f(0)=f(1)=0, f$ concave.

- Define $c_{K P P}:=2 \sqrt{d f^{\prime}(0)}$.

Theorem-definition (Aronson-Weinberger '75)

If $u_{0} \in \mathcal{C}_{c}^{\infty}, 0 \leq u_{0} \leq 1, u_{0} \not \equiv 0$. Then

- For all $c>c_{K P P}, \lim _{t \rightarrow+\infty} \sup _{|x| \geq c t} u(t, x)=0$.

■ For all $c<c_{K P P}, \lim _{t \rightarrow+\infty} \inf _{|x| \leq c t} u(t, x)=1$.
Here $c_{K P P}$ is called the propagation speed.
Observe : $c_{K P P}$ proportional to \sqrt{d}.

Question: what is the influence of D on the propagation speed in the direction e_{1} in (1) ?

1 Introduction

- The model and questions
- Comparison: the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.
- Dynamics : transition from low speed to T.W. speed

3 Perspectives

With a line of fast diffusion

Theorem (Berestycki, Roquejoffre, Rossi '12)
Under KPP assumption, propagation speed $c^{*}(D)>0$ in the direction e_{1} :

- If $D \leq 2 d, c^{*}=c_{K P P}$.

With a line of fast diffusion

Theorem (Berestycki, Roquejoffre, Rossi '12)

Under KPP assumption, propagation speed $c^{*}(D)>0$ in the direction e_{1} :

- If $D \leq 2 d, c^{*}=c_{K P P}$.
- If $D>2 d, c^{*}>c_{K P P}$ and $\frac{c^{*}(D)}{\sqrt{D}}$ has a positive limit as $D \rightarrow+\infty$.

With a line of fast diffusion

Theorem (Berestycki, Roquejoffre, Rossi '12)

Under KPP assumption, propagation speed $c^{*}(D)>0$ in the direction e_{1} :

- If $D \leq 2 d, c^{*}=c_{K P P}$.
- If $D>2 d, c^{*}>c_{K P P}$ and $\frac{c^{*}(D)}{\sqrt{D}}$ has a positive limit as $D \rightarrow+\infty$.

Remark

Thus : propagation enhancement in the direction of the road.

Question : does this phenomenon persist in more general situations ?

Non trivial question since :
■ KPP assumption reduces the question to algebraic computations: prop. speed is given by linearizing (1) near 0 .

Non trivial question since :
■ KPP assumption reduces the question to algebraic computations: prop. speed is given by linearizing (1) near 0 .

- KPP assumption could be necessary for the enhancement to happen : e.g.

$$
\partial_{t} u+(-\Delta)^{\alpha} u=f(u)
$$

Non trivial question since :
■ KPP assumption reduces the question to algebraic computations: prop. speed is given by linearizing (1) near 0 .

- KPP assumption could be necessary for the enhancement to happen : e.g.

$$
\partial_{t} u+(-\Delta)^{\alpha} u=f(u)
$$

with $1 / 2<\alpha<1$.

Non trivial question since :
■ KPP assumption reduces the question to algebraic computations: prop. speed is given by linearizing (1) near 0 .
■ KPP assumption could be necessary for the enhancement to happen : e.g.

$$
\partial_{t} u+(-\Delta)^{\alpha} u=f(u)
$$

with $1 / 2<\alpha<1$.

- KPP assumption : propagates comp. supp. data at exponential speed (Cabré, Roquejoffre '09)

Non trivial question since :
■ KPP assumption reduces the question to algebraic computations: prop. speed is given by linearizing (1) near 0 .
■ KPP assumption could be necessary for the enhancement to happen : e.g.

$$
\partial_{t} u+(-\Delta)^{\alpha} u=f(u)
$$

with $1 / 2<\alpha<1$.

- KPP assumption : propagates comp. supp. data at exponential speed (Cabré, Roquejoffre '09)
- $f(u)$ with threshold : propagation linear in time (Mellet, Roquejoffre, Sire).

Back to the homogeneous case, with a threshold

$$
\partial_{t} v-d \Delta v=f(v) \quad t>0, x \in \mathbb{R}^{N}
$$

Theorem (Kanel '61)

- There exists a unique T.W. profile $\phi \uparrow_{0}^{1}$ and a unique speed c such that $u(t, x)=\phi(x \cdot e+c t)$ is a solution.

Back to the homogeneous case, with a threshold

$$
\partial_{t} v-d \Delta v=f(v) \quad t>0, x \in \mathbb{R}^{N}
$$

Theorem (Kanel '61)

- There exists a unique T.W. profile $\phi \uparrow_{0}^{1}$ and a unique speed c such that $u(t, x)=\phi(x \cdot e+c t)$ is a solution.

Theorem (Aronson-Weinberger '78)

■ If $\left|\left\{v_{0}>\delta>\theta\right\}\right|$ large enough : propagation at speed c in each direction e.
■ Otherwise, uniform convergence towards 0 .

Back to the homogeneous case, with a threshold

$$
\partial_{t} v-d \Delta v=f(v) \quad t>0, x \in \mathbb{R}^{N}
$$

Theorem (Kanel '61)

- There exists a unique T.W. profile $\phi \uparrow_{0}^{1}$ and a unique speed c such that $u(t, x)=\phi(x \cdot e+c t)$ is a solution.

Theorem (Aronson-Weinberger '78)

■ If $\left|\left\{v_{0}>\delta>\theta\right\}\right|$ large enough : propagation at speed c in each direction e.
■ Otherwise, uniform convergence towards 0 .

Remarks

- To get the prop. speed, one really needs to study the travelling waves.

Back to the homogeneous case, with a threshold

$$
\partial_{t} v-d \Delta v=f(v) \quad t>0, x \in \mathbb{R}^{N}
$$

Theorem (Kanel '61)

- There exists a unique T.W. profile $\phi \uparrow_{0}^{1}$ and a unique speed c such that $u(t, x)=\phi(x \cdot e+c t)$ is a solution.

Theorem (Aronson-Weinberger '78)
■ If $\left|\left\{v_{0}>\delta>\theta\right\}\right|$ large enough : propagation at speed c in each direction e.
■ Otherwise, uniform convergence towards 0 .

Remarks

- To get the prop. speed, one really needs to study the travelling waves.
- Rescaling and uniqueness gives $c(d)=\sqrt{d} c(1)$.

1 Introduction

- The model and questions
- Comparison : the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.

■ Dynamics : transition from low speed to T.W. speed

3 Perspectives

The travelling waves

- Simplification : problem in a strip with Neumann cond. (barrier).

The travelling waves

- Simplification : problem in a strip with Neumann cond. (barrier).
$\partial_{t} u-D \partial_{x x}^{2} u=v-\mu u$
$d \partial_{y} v=\mu u-v$
$\partial_{t} v-d \Delta v=f(v)$
$-\partial_{y} v=0$
- Previous result motivates investigation of the travelling waves:

L Existence of T.W.

The travelling waves

- Simplification : problem in a strip with Neumann cond. (barrier).
$\partial_{t} u-D \partial_{x x}^{2} u=v-\mu u$
$d \partial_{y} v=\mu u-v$
$\partial_{t} v-d \Delta v=f(v)$
$-\partial_{y} v=0$
- Previous result motivates investigation of the travelling waves:

$$
c>0, u(t, x)=\phi(x+c t), v(t, x, y)=\psi(x+c t, y)
$$

The travelling waves

- Simplification : problem in a strip with Neumann cond. (barrier).
$\partial_{t} u-D \partial_{x x}^{2} u=v-\mu u$
$d \partial_{y} v=\mu u-v$
$\partial_{t} v-d \Delta v=f(v)$
$-\partial_{y} v=0$

■ Previous result motivates investigation of the travelling waves:

$c>0, u(t, x)=\phi(x+c t), v(t, x, y)=\psi(x+c t, y)$		
$0 \leftarrow \phi$	$-D \phi^{\prime \prime}+c \phi^{\prime}=\psi(x, 0)-\mu \phi$	$\phi \rightarrow 1 / \mu$
$d \partial_{y} \psi=\mu \phi-\psi(x, 0)$		
$0 \leftarrow \psi$	$-d \Delta \psi+c \partial_{x} \psi=f(\psi)$	
$-\partial_{y} \psi=0$		

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)
■ There exists (c, ϕ, ψ) a solution of (3).

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)

- There exists (c, ϕ, ψ) a solution of (3).
- $0<\phi<\frac{1}{\mu}, 0<\psi<1$, and $\partial_{x} \phi, \partial_{x} \psi>0$.

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)

- There exists (c, ϕ, ψ) a solution of (3).
- $0<\phi<\frac{1}{\mu}, 0<\psi<1$, and $\partial_{x} \phi, \partial_{x} \psi>0$.
- Uniqueness of c and the profiles up to translations in x.

Results

Theorem 1 (D., Appl. Math. Res. Express 2015)

- There exists (c, ϕ, ψ) a solution of (3).
- $0<\phi<\frac{1}{\mu}, 0<\psi<1$, and $\partial_{x} \phi, \partial_{x} \psi>0$.
- Uniqueness of c and the profiles up to translations in x.

Remarks

- (2) enjoys a comparison principle so existence of T.W. is not so surprising.
- Result similar in spirit and related to Berestycki-Larrouturou-Lions '90 :

$\partial_{\nu} \psi=0$
$\psi_{-} \leftarrow \psi \quad-d \Delta \psi+(c+\alpha(y)) \partial_{\star} \psi=f(\psi) \quad \psi \rightarrow \psi_{+}$
$\partial_{\nu} \psi=0$

Idea of proof

Continuation to

$$
-d \psi^{\prime \prime}+c \psi^{\prime}=f(\psi), \psi(-\infty)=0, \psi(+\infty)=1
$$

$0 \leftarrow \phi$	$-D \phi^{\prime \prime}+c \phi^{\prime}=\psi(x, 0)-\mu \phi$	$\phi \rightarrow 1 / \mu$
$d \partial_{y} \psi=\mu \phi-\psi(x, 0)$		
$0 \leftarrow \psi$	$-d \Delta \psi+c \partial_{x} \psi=f(\psi)$	
$\partial_{y} \psi=0$		

Idea of proof

Continuation to

$$
-d \psi^{\prime \prime}+c \psi^{\prime}=f(\psi), \psi(-\infty)=0, \psi(+\infty)=1
$$

$0 \leftarrow \phi$	$-D \phi^{\prime \prime}+c \phi^{\prime}=(\psi(x, 0)-\mu \phi) / \varepsilon$	$\phi \rightarrow 1 / \mu$
$d \partial_{y} \psi=(\mu \phi-\psi(x, 0)) / \varepsilon$		
$0 \leftarrow \psi$	$-d \Delta \psi+c \partial_{x} \psi=f(\psi)$	
$\partial_{y} \psi=0$		

Step 1: impose $\mu \phi=\psi$ on the road via $\varepsilon \in(0,1)$.

Idea of proof

$d \partial_{y} \psi=\frac{D}{\mu} \partial_{x x} \psi-\frac{c}{\mu} \partial_{x} \psi$
$0 \leftarrow \psi \quad-d \Delta \psi+c \partial_{x} \psi=f(\psi) \quad \psi \rightarrow 1$
$\partial_{y} \psi=0$

Idea of proof

$$
\begin{gathered}
d \partial_{y} \psi=s\left(\frac{D}{\mu} \partial_{x x} \psi-\frac{c}{\mu} \partial_{x} \psi\right) \\
0 \leftarrow \psi \quad-d \Delta \psi+c \partial_{x} \psi=f(\psi) \quad \psi \rightarrow 1 \\
\partial_{y} \psi=0
\end{gathered}
$$

Step 2 : vary $s \in(0,1)$.

L Existence of T.W.
Idea of proof

$$
\begin{gathered}
d \partial_{y} \psi=0 \\
0 \leftarrow \psi \quad \psi \rightarrow 1 \\
-d \Delta \psi+c \partial_{x} \psi=f(\psi) \\
\partial_{y} \psi=0
\end{gathered}
$$

L Existence of T.W.

Idea of proof

$$
\begin{gathered}
d \partial_{y} \psi=0 \\
0 \leftarrow \psi \quad \psi \rightarrow 1 \\
-d \Delta \psi+c \partial_{x} \psi=f(\psi) \\
\partial_{y} \psi=0
\end{gathered}
$$

One solution: the planar wave (Kanel' 61).

Idea of proof

$$
\begin{gathered}
d \partial_{y} \psi=0 \\
0 \leftarrow \psi \quad \psi \rightarrow 1 \\
-d \Delta \psi+c \partial_{x} \psi=f(\psi) \\
\partial_{y} \psi=0
\end{gathered}
$$

One solution : the planar wave (Kanel' 61).
Theorem (Berestycki-Nirenberg '90)
This problem has at most one solution.

- Existence of T.W.

Idea of proof

$$
\begin{gathered}
d \partial_{y} \psi=0 \\
0 \leftarrow \psi \quad \psi \rightarrow 1 \\
-d \Delta \psi+c \partial_{x} \psi=f(\psi) \\
\partial_{y} \psi=0
\end{gathered}
$$

One solution : the planar wave (Kanel' 61).
Theorem (Berestycki-Nirenberg '90)
This problem has at most one solution.

Remark

More than existence : homotopy between sol. and the planar wave through a singular perturb. and a Wentzell BVP.

1 Introduction

- The model and questions
- Comparison : the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.
- Dynamics: transition from low speed to T.W. speed

3 Perspectives

L Velocity of T.W.

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$
c(D) \underset{D \rightarrow+\infty}{\sim} c_{\infty} \sqrt{D}
$$

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$
c(D) \underset{D \rightarrow+\infty}{\sim} c_{\infty} \sqrt{D}
$$

Theorem 3 (D., Trans. Amer. Math Soc. 2015)
c_{∞} is the unique admissible velocity for $\left(x \leftarrow x \sqrt{D}, c \leftarrow \frac{c}{\sqrt{D}}\right.$ as $\left.D \rightarrow+\infty\right)$:

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$
c(D) \underset{D \rightarrow+\infty}{\sim} c_{\infty} \sqrt{D}
$$

Theorem 3 (D., Trans. Amer. Math Soc. 2015)
c_{∞} is the unique admissible velocity for $\left(x \leftarrow x \sqrt{D}, c \leftarrow \frac{c}{\sqrt{D}}\right.$ as $\left.D \rightarrow+\infty\right)$:

$$
\begin{array}{cc}
0 \leftarrow \phi \quad-\phi^{\prime \prime}+\mathbf{c} \phi^{\prime}=\psi(x, 0)-\mu \phi & \phi \rightarrow 1 / \mu \\
d \partial_{y} \psi=\mu \phi-\psi(x, 0) & \\
0 \leftarrow \psi \quad \mathbf{c} \partial_{x} \psi-\frac{d}{\mathbf{D}} \partial_{x x} \psi-d \partial_{y y} \psi=f(\psi) \\
\partial_{y} \psi=0 \\
\hline
\end{array}
$$

Theorem 2 (D., Trans. Amer. Math Soc. 2015)

$$
c(D) \underset{D \rightarrow+\infty}{\sim} c_{\infty} \sqrt{D}
$$

Theorem 3 (D., Trans. Amer. Math Soc. 2015)
c_{∞} is the unique admissible velocity for $\left(x \leftarrow x \sqrt{D}, c \leftarrow \frac{c}{\sqrt{D}}\right.$ as $\left.D \rightarrow+\infty\right)$:

$$
\begin{array}{ccc}
0 \leftarrow \phi & -\phi^{\prime \prime}+\mathbf{c}_{\infty} \phi^{\prime}=\psi(x, 0)-\mu \phi & \phi \rightarrow 1 / \mu \\
d \partial_{y} \psi=\mu \phi-\psi(x, 0) & \\
0 \leftarrow \psi \rightarrow 1 \\
\partial_{y} \psi=0 & \\
\mathbf{c}_{\infty} \partial_{x} \psi-d \partial_{y y} \psi=f(\psi) & \\
\hline
\end{array}
$$

Remarks

- Despite non-standard diffusion, (4) is well-posed : solution can be obtained by a direct method without the $-d / D \partial_{x x}$ regularizing term.

Remarks

- Despite non-standard diffusion, (4) is well-posed : solution can be obtained by a direct method without the $-d / D \partial_{x x}$ regularizing term.
- Thus : regularisation effect in x due to the road and the term $c \partial_{x} v$: (4) is hypoelliptic.

Remarks

- Despite non-standard diffusion, (4) is well-posed : solution can be obtained by a direct method without the $-d / D \partial_{x x}$ regularizing term.
- Thus : regularisation effect in x due to the road and the term $c \partial_{x} v$: (4) is hypoelliptic.
■ $c=0$: only discontinuous solutions.
- Main idea : lower bound (integral identities) on

$$
M>\frac{c(D)}{\sqrt{D}}>m>0
$$

Idea of proof

■ Main idea : lower bound (integral identities) on

$$
M>\frac{c(D)}{\sqrt{D}}>m>0
$$

- Extraction $c_{n} \rightarrow c_{\infty}$ and iteration of regularity : extraction from ϕ_{n}, ψ_{n}.

Idea of proof

■ Main idea : lower bound (integral identities) on

$$
M>\frac{c(D)}{\sqrt{D}}>m>0
$$

- Extraction $c_{n} \rightarrow c_{\infty}$ and iteration of regularity : extraction from ϕ_{n}, ψ_{n}.

■ Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Idea of proof

■ Main idea : lower bound (integral identities) on

$$
M>\frac{c(D)}{\sqrt{D}}>m>0
$$

■ Extraction $c_{n} \rightarrow c_{\infty}$ and iteration of regularity: extraction from ϕ_{n}, ψ_{n}.
■ Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Remarks

- Lower bound has to be obtained from scratch : without it (4) loses all hypoellipticity.

Idea of proof

■ Main idea : lower bound (integral identities) on

$$
M>\frac{c(D)}{\sqrt{D}}>m>0
$$

■ Extraction $c_{n} \rightarrow c_{\infty}$ and iteration of regularity: extraction from ϕ_{n}, ψ_{n}.
■ Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Remarks

- Lower bound has to be obtained from scratch : without it (4) loses all hypoellipticity.

■ Uses $f \geq 0$: only point where bistable f is not ok. Not trivial if necessary.

Idea of proof

■ Main idea : lower bound (integral identities) on

$$
M>\frac{c(D)}{\sqrt{D}}>m>0
$$

■ Extraction $c_{n} \rightarrow c_{\infty}$ and iteration of regularity: extraction from ϕ_{n}, ψ_{n}.
■ Uniqueness of limit : parabolic-elliptic adaptation of sliding arguments.

Remarks

- Lower bound has to be obtained from scratch : without it (4) loses all hypoellipticity.
■ Uses $f \geq 0$: only point where bistable f is not ok. Not trivial if necessary.
- Parallel with Hamel-Zlatoš '10 : reaction-diffusion with large shear flow.

1 Introduction

- The model and questions
- Comparison : the homogeneous case
- KPP propagation with a line of fast diffusion

2 Results

- Existence of T.W.
- Velocity of T.W.

■ Dynamics : transition from low speed to T.W. speed

3 Perspectives

On the dynamics

What kind of initial data are attracted by these travelling waves ?

On the dynamics

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data

On the dynamics

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data
- Compactly supported initial data with a large enough support w.r.t D (expected, see below)

On the dynamics

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data

■ Compactly supported initial data with a large enough support w.r.t D (expected, see below)

- ... but that is not everything !
- Dynamics : transition from low speed to T.W. speed

On the dynamics

What kind of initial data are attracted by these travelling waves ?

- Front-like initial data

■ Compactly supported initial data with a large enough support w.r.t D (expected, see below)

- ... but that is not everything !

Context : propagation enhancement, the homogeneous case

$$
\left\{\begin{array}{l}
\partial_{t} v-\partial_{x x}^{2} v=f(v) \quad t>0, x \in \mathbb{R} \tag{5}\\
v_{0}(x)=\mathbf{1}_{(-L, L)}(x)
\end{array}\right.
$$

Context : propagation enhancement, the homogeneous case

$$
\left\{\begin{array}{l}
\partial_{t} v-\partial_{x x}^{2} v=f(v) \quad t>0, x \in \mathbb{R} \tag{5}\\
v_{0}(x)=\mathbf{1}_{(-L, L)}(x)
\end{array}\right.
$$

Kanel '64:

- If $L<L_{-}, v \rightarrow 0$ as $t \rightarrow+\infty$ unif. on \mathbb{R}.

Context : propagation enhancement, the homogeneous case

$$
\left\{\begin{array}{l}
\partial_{t} v-\partial_{x x}^{2} v=f(v) \quad t>0, x \in \mathbb{R} \tag{5}\\
v_{0}(x)=\mathbf{1}_{(-L, L)}(x)
\end{array}\right.
$$

Kanel '64:
■ If $L<L_{-}, v \rightarrow 0$ as $t \rightarrow+\infty$ unif. on \mathbb{R}.

- If $L>L_{+}, v$ converges to a pair of T.W. in both directions with speed c.

Context : propagation enhancement, the homogeneous case

$$
\left\{\begin{array}{l}
\partial_{t} v-d \partial_{x x}^{2} v=f(v) \quad t>0, x \in \mathbb{R} \tag{5}\\
v_{0}(x)=\mathbf{1}_{(-L, L)}(x)
\end{array}\right.
$$

Kanel '64:
■ If $L<L_{-}, v \rightarrow 0$ as $t \rightarrow+\infty$ unif. on \mathbb{R}.

- If $L>L_{+}, v$ converges to a pair of T.W. in both directions with speed c.

Context : propagation enhancement, the homogeneous case

$$
\left\{\begin{array}{l}
\partial_{t} v-d \partial_{x x}^{2} v=f(v) \quad t>0, x \in \mathbb{R} \tag{5}\\
v_{0}(x)=\mathbf{1}_{(-L, L)}(x)
\end{array}\right.
$$

Kanel '64:
■ If $L<L_{-}, v \rightarrow 0$ as $t \rightarrow+\infty$ unif. on \mathbb{R}.
■ If $L>L_{+}, v$ converges to a pair of T.W. in both directions with speed c.
Rescaling $x \leftarrow x \sqrt{d}, c \leftarrow c / \sqrt{d}$ gives : $L_{ \pm}(d)=\sqrt{d} L_{ \pm}(1) \quad c(d)=\sqrt{d} c(1)$ Enhancement price : critical size of the initial data that lead to extinction.

Context : propagation enhancement, the homogeneous case

$$
\left\{\begin{array}{l}
\partial_{t} v-d \partial_{x x}^{2} v=f(v) \quad t>0, x \in \mathbb{R} \tag{5}\\
v_{0}(x)=\mathbf{1}_{(-L, L)}(x)
\end{array}\right.
$$

Kanel '64:
■ If $L<L_{-}, v \rightarrow 0$ as $t \rightarrow+\infty$ unif. on \mathbb{R}.
■ If $L>L_{+}, v$ converges to a pair of T.W. in both directions with speed c.
Rescaling $x \leftarrow x \sqrt{d}, c \leftarrow c / \sqrt{d}$ gives : $L_{ \pm}(d)=\sqrt{d} L_{ \pm}(1) \quad c(d)=\sqrt{d} c(1)$ Enhancement price : critical size of the initial data that lead to extinction.

Remarks

- Zlatoš '06: $L_{-}=L_{+}$.
- Du-Matano '10 : generalisation to continuous monotone 1-parameter families of comp. supp. initial data.

Large support w.r.t. \sqrt{D}

Theorem 4 (D., Roquejoffre, 2015)

Let (u_{0}, v_{0}) be ≥ 0 and compactly supported. There exists $\delta>0$ and $M>0$ indep. of D such that if

$$
\mu u_{0}, v_{0}>1-\delta \text { for } x \in(-M \sqrt{D}, M \sqrt{D})
$$

then $\mu u, v$ stays trapped (up to exponential error) between two shifts of a pair of travelling waves evolving in both directions.

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)
There exists $M^{\prime}, \delta^{\prime}>0$ independent of $D>d$ such that if

$$
v_{0}>1-\delta^{\prime} \text { for } x \in\left(-M^{\prime}, M^{\prime}\right)
$$

then after $t_{D} \leq D^{1 / 2} \ln D+O(1), \mu u$ and v satisfy the assumptions of Theorem 4.

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)
There exists $M^{\prime}, \delta^{\prime}>0$ independent of $D>d$ such that if

$$
v_{0}>1-\delta^{\prime} \text { for } x \in\left(-M^{\prime}, M^{\prime}\right)
$$

then after $t_{D} \leq D^{1 / 2} \ln D+O(1), \mu u$ and v satisfy the assumptions of Theorem 4.

Unusual : enhancement of propagation speed $c(D) \sim c_{\infty} D^{1 / 2}$ without any price to pay in the initial datum size (only in waiting time).

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)
There exists $M^{\prime}, \delta^{\prime}>0$ independent of $D>d$ such that if

$$
v_{0}>1-\delta^{\prime} \text { for } x \in\left(-M^{\prime}, M^{\prime}\right)
$$

then after $t_{D} \leq D^{1 / 2} \ln D+O(1), \mu u$ and v satisfy the assumptions of Theorem 4.

Unusual : enhancement of propagation speed $c(D) \sim c_{\infty} D^{1 / 2}$ without any price to pay in the initial datum size (only in waiting time).

What about small initial data when D is large ?

Theorem 5 (D., Roquejoffre, 2015)
There exists $M^{\prime}, \delta^{\prime}>0$ independent of $D>d$ such that if

$$
v_{0}>1-\delta^{\prime} \text { for } x \in\left(-M^{\prime}, M^{\prime}\right)
$$

then after $t_{D} \leq D^{1 / 2} \ln D+O(1), \mu u$ and v satisfy the assumptions of Theorem 4.

Unusual : enhancement of propagation speed $c(D) \sim c_{\infty} D^{1 / 2}$ without any price to pay in the initial datum size (only in waiting time).

L Dynamics : transition from low speed to T.W. speed

Additional information

Ongoing work: asymptotic lower bound

For all $\nu>0$,

$$
\liminf _{D \rightarrow+\infty} \frac{t_{D}}{D^{1 / 7-\nu}}=+\infty
$$

Additional information

Ongoing work : asymptotic lower bound
For all $\nu>0$,

$$
\liminf _{D \rightarrow+\infty} \frac{t_{D}}{D^{1 / 7-\nu}}=+\infty
$$

Theorem 6 (D., Roquejoffre, 2015)
Initial datum on the road only : $v_{0} \equiv 0, \mu u_{0}=\mathbf{1}_{(-L, L)}(x)$.

Additional information

Ongoing work : asymptotic lower bound
For all $\nu>0$,

$$
\liminf _{D \rightarrow+\infty} \frac{t_{D}}{D^{1 / 7-\nu}}=+\infty
$$

Theorem 6 (D., Roquejoffre, 2015)

Initial datum on the road only : $v_{0} \equiv 0, \mu u_{0}=\mathbf{1}_{(-L, L)}(x)$.
There exists a_{0}, a_{1} and $\mu^{ \pm}$indep. of D such that

- If $L<a_{0} \sqrt{D}$, extinction occurs.

Additional information

Ongoing work : asymptotic lower bound

For all $\nu>0$,

$$
\liminf _{D \rightarrow+\infty} \frac{t_{D}}{D^{1 / 7-\nu}}=+\infty
$$

Theorem 6 (D., Roquejoffre, 2015)

Initial datum on the road only : $v_{0} \equiv 0, \mu u_{0}=\mathbf{1}_{(-L, L)}(x)$.
There exists a_{0}, a_{1} and $\mu^{ \pm}$indep. of D such that

- If $L<a_{0} \sqrt{D}$, extinction occurs.
- If $L>a_{1} \sqrt{D}$, invasion occurs if $\mu<\mu^{-}$and extinction if $\mu>\mu^{+}$.

Some perspectives

- Comparison between $c_{\infty}(d)$ and $c(d)$.

Some perspectives

■ Comparison between $c_{\infty}(d)$ and $c(d)$.

- Including transport and reaction on the road.

Some perspectives

- Comparison between $c_{\infty}(d)$ and $c(d)$.
- Including transport and reaction on the road.
- Transition fronts with spatial-dependant parameters ?

Some perspectives

- Comparison between $c_{\infty}(d)$ and $c(d)$.
- Including transport and reaction on the road.
- Transition fronts with spatial-dependant parameters ?

■ Integral dispersion on the road $(\alpha<1 / 2)$?

Merci pour votre attention!

$D \gg d$ so expect $u \simeq 0$ for small times and v close to subsol. $(0, \underline{v})$:
$D \gg d$ so expect $u \simeq 0$ for small times and v close to subsol. $(0, \underline{v})$:

$$
\begin{gather*}
d \partial_{y} \underline{v}+\underline{v}=0 \\
\partial_{t \underline{v}-d \Delta \underline{v}=f(\underline{v})}^{\partial_{y} \underline{v}=0}
\end{gather*}
$$

$D \gg d$ so expect $u \simeq 0$ for small times and v close to subsol. $(0, \underline{v})$:

$$
\begin{gather*}
d \partial_{y} \underline{v}+\underline{v}=0 \\
\partial_{t} \underline{v}-d \Delta \underline{v}=f(\underline{v}) \\
\partial_{y} \underline{v}=0 \tag{6}
\end{gather*}
$$

Theorem ? (D., Roquejoffre, 2015)

Define $\varepsilon:=(1 / D)^{1 / 2}$ and

$$
T_{\alpha, \varepsilon}:=\sup \left\{T>0| | v-\underline{v} \mid<\varepsilon^{\alpha} \text { for all } 0<t<T\right\} .
$$

Let $\alpha \in(0,1)$, then for all $\delta<\min \left(\alpha, 2 / 7, \frac{5}{2}(1-\alpha)\right)$ one has

$$
\left(\frac{1}{\varepsilon}\right)^{\delta}=\underset{\varepsilon \rightarrow 0}{o}\left(T_{\alpha, \varepsilon}\right)
$$

Limiting case is $\delta=\alpha=2 / 7$.

A parallel : speed-up of combustion front by a shear flow

Model :

$$
\begin{equation*}
\partial_{t} v+A \alpha(y) \partial_{x} v=\Delta v+f(v), \quad t \in \mathbb{R},(x, y) \in \mathbb{R} \times \mathbb{R}^{N-1} \tag{7}
\end{equation*}
$$

$\alpha(y)$ smooth ($1, \cdots, 1$)-periodic and satisfy a Hörmander condition.

A parallel: speed-up of combustion front by a shear flow

Model :

$$
\begin{equation*}
\partial_{t} v+A \alpha(y) \partial_{x} v=\Delta v+f(v), \quad t \in \mathbb{R},(x, y) \in \mathbb{R} \times \mathbb{R}^{N-1} \tag{7}
\end{equation*}
$$

$\alpha(y)$ smooth $(1, \cdots, 1)$-periodic and satisfy a Hörmander condition.
Theorem (Hamel-Zlatoš 2013)
There exists $\gamma^{*} \geq \int_{\mathbb{T}^{N-1}} \alpha(y) d y$ s.t. the speed c of travelling fronts of (7) satisfies

$$
\lim _{A \rightarrow+\infty} \frac{c}{A}=\gamma^{*}
$$

A parallel : speed-up of combustion front by a shear flow

Model :

$$
\begin{equation*}
\partial_{t} v+A \alpha(y) \partial_{x} v=\Delta v+f(v), \quad t \in \mathbb{R},(x, y) \in \mathbb{R} \times \mathbb{R}^{N-1} \tag{7}
\end{equation*}
$$

$\alpha(y)$ smooth $(1, \cdots, 1)$-periodic and satisfy a Hörmander condition.

Theorem (Hamel-Zlatoš 2013)

There exists $\gamma^{*} \geq \int_{\mathbb{T}^{N-1}} \alpha(y) d y$ s.t. the speed c of travelling fronts of (7) satisfies

$$
\lim _{A \rightarrow+\infty} \frac{c}{A}=\gamma^{*}
$$

γ^{*} is the unique admissible velocity for :

$$
\left\{\begin{array}{l}
\Delta_{y} U+(\gamma-\alpha(y)) \partial_{x} U+f(U)=0 \text { in } D^{\prime}\left(\mathbb{R} \times \mathbb{T}^{N-1}\right) \\
0 \leq U \leq 1 \text { a.e. in } \mathbb{R} \times \mathbb{T}^{N-1} \\
\lim _{x \rightarrow+\infty} U(x, y) \equiv 0 \text { uniformly in } \mathbb{T}^{N-1} \\
\lim _{x \rightarrow-\infty} U(x, y) \equiv 1 \text { uniformly in } \mathbb{T}^{N-1}
\end{array}\right.
$$

