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Front propagation directed by a line of fast diffusion : existence of travelling waves.

Introduction

Model under study :

d∂yv = µu − v

∂tu − D∂2
xxu = v(t, x , 0)− µu

∂tv − d∆v = f (v)

Model proposed by Berestycki, Roquejoffre, Rossi to describe the effect of
a line of fast diffusion.
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Introduction

Ecological motivation : transportation networks increase the speed of biological
invasions (Siegfried).

Ex. 1 : pandemics. The 1347 black plague spread from major roads to
inland areas.
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Introduction

Ex. 2 : the pine processionary moth. Thought to move northwards
because of climate change, but roads also thought to play a role.

Figure: Pine processionary from Auray (Britain). Source : Wikipédia
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Introduction

Fisher-KPP propagation

Theorem (Berestycki, Roquejoffre, Rossi 2012)

There is an asymptotic speed of spreading c∗(D) > 0 s.t. :

If D ≤ 2d , c∗ = cKPP = 2
√

df ′(0).

If D > 2d , c∗ > cKPP and c∗(D)√
D

has a finite limit as D → +∞.

Remark : 2
√

df ′(0) is the classical spreading speed in ut − duxx = f (u),
x ∈ RN .
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Issues

Does acceleration still occure in presence of a treshold phenomenon ?

θ0 1
u

f (u)

f ′(1) < 0

Figure: Example f = 1u>θ(u − θ)2(1 − u)



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Introduction

Issues

Does acceleration still occure in presence of a treshold phenomenon ?

θ0 1
u

f (u)

f ′(1) < 0

Figure: Example f = 1u>θ(u − θ)2(1 − u)



Front propagation directed by a line of fast diffusion : existence of travelling waves.
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Travelling waves to the full model in a strip
c > 0, u(t, x) = φ(x + ct), v(t, x , y) = ψ(x + ct, y)

d∂yψ = µφ− ψ(x , 0)

−Dφ′′ + cφ′ = ψ(x , 0)− µφ φ→ 1/µ0← φ

−d∆ψ + c∂xψ = f (ψ)

∂yψ = 0

ψ → 10← ψ

(1)

with uniform limits.
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Results

Assumption A

f ∈ C1,α([0, 1]) is a non-negative function, f = 0 on [0, θ] ∪ {1} for some
θ > 0, f (0) = f (1) = 0, and f ′(1) < 0.

Main result

There exists (c, φ, ψ) ∈ R∗+ × C2,α(R)× C2,α(ΩL) a solution of (1)
obtained by continuation from the classical 1D problem
−dψ′′0 + c0ψ

′
0 = f (ψ0).

0 < φ < 1
µ

, 0 < ψ < 1, and ∂xφ, ∂xψ > 0.

If (c, φ, ψ) is a classical solution of (1), c = c and there exists r ∈ R such
that φ(·+ r) = φ(·) and ψ(·+ r) = ψ(·).

Ongoing work : D → +∞
Probable outcome : m

√
D ≤ c(D) ≤ M

√
D



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Introduction

Results

Assumption A

f ∈ C1,α([0, 1]) is a non-negative function, f = 0 on [0, θ] ∪ {1} for some
θ > 0, f (0) = f (1) = 0, and f ′(1) < 0.

Main result

There exists (c, φ, ψ) ∈ R∗+ × C2,α(R)× C2,α(ΩL) a solution of (1)
obtained by continuation from the classical 1D problem
−dψ′′0 + c0ψ

′
0 = f (ψ0).

0 < φ < 1
µ

, 0 < ψ < 1, and ∂xφ, ∂xψ > 0.

If (c, φ, ψ) is a classical solution of (1), c = c and there exists r ∈ R such
that φ(·+ r) = φ(·) and ψ(·+ r) = ψ(·).

Ongoing work : D → +∞
Probable outcome : m

√
D ≤ c(D) ≤ M

√
D



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Introduction

Results

Assumption A

f ∈ C1,α([0, 1]) is a non-negative function, f = 0 on [0, θ] ∪ {1} for some
θ > 0, f (0) = f (1) = 0, and f ′(1) < 0.

Main result

There exists (c, φ, ψ) ∈ R∗+ × C2,α(R)× C2,α(ΩL) a solution of (1)
obtained by continuation from the classical 1D problem
−dψ′′0 + c0ψ

′
0 = f (ψ0).

0 < φ < 1
µ

, 0 < ψ < 1, and ∂xφ, ∂xψ > 0.

If (c, φ, ψ) is a classical solution of (1), c = c and there exists r ∈ R such
that φ(·+ r) = φ(·) and ψ(·+ r) = ψ(·).

Ongoing work : D → +∞
Probable outcome : m

√
D ≤ c(D) ≤ M

√
D



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Introduction

Results

Assumption A

f ∈ C1,α([0, 1]) is a non-negative function, f = 0 on [0, θ] ∪ {1} for some
θ > 0, f (0) = f (1) = 0, and f ′(1) < 0.

Main result

There exists (c, φ, ψ) ∈ R∗+ × C2,α(R)× C2,α(ΩL) a solution of (1)
obtained by continuation from the classical 1D problem
−dψ′′0 + c0ψ

′
0 = f (ψ0).

0 < φ < 1
µ

, 0 < ψ < 1, and ∂xφ, ∂xψ > 0.

If (c, φ, ψ) is a classical solution of (1), c = c and there exists r ∈ R such
that φ(·+ r) = φ(·) and ψ(·+ r) = ψ(·).

Ongoing work : D → +∞
Probable outcome : m

√
D ≤ c(D) ≤ M

√
D



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Introduction

Results

Assumption A

f ∈ C1,α([0, 1]) is a non-negative function, f = 0 on [0, θ] ∪ {1} for some
θ > 0, f (0) = f (1) = 0, and f ′(1) < 0.

Main result

There exists (c, φ, ψ) ∈ R∗+ × C2,α(R)× C2,α(ΩL) a solution of (1)
obtained by continuation from the classical 1D problem
−dψ′′0 + c0ψ

′
0 = f (ψ0).

0 < φ < 1
µ

, 0 < ψ < 1, and ∂xφ, ∂xψ > 0.

If (c, φ, ψ) is a classical solution of (1), c = c and there exists r ∈ R such
that φ(·+ r) = φ(·) and ψ(·+ r) = ψ(·).

Ongoing work : D → +∞
Probable outcome : m

√
D ≤ c(D) ≤ M

√
D



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Strategy of proof

1 Introduction

2 Existence of travelling waves
Strategy of proof
Outline of the main steps

3 The limit D → +∞



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Strategy of proof

Idea

Continuation from the full model to

−dψ′′ + cψ′ = f (ψ), ψ(−∞) = 0, ψ(+∞) = 1

d∂yψ =

(

µφ− ψ(x , 0)

)/ε

−Dφ′′ + cφ′ =

(

ψ(x , 0)− µφ

)/ε

φ→ 1/µ0← φ

−d∆ψ + c∂xψ = f (ψ)

∂yψ = 0

ψ → 10← ψ

Step 1 : force φ = ψ on the road with ε, parameter in (0, 1).
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d∂yψ = D
µ
∂xxψ − c

µ
∂xψ

−d∆ψ + c∂xψ = f (ψ)
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Existence of travelling waves

Strategy of proof

Idea

d∂yψ = sD
µ
∂xxψ − c

µ
∂xψ

−d∆ψ + c∂xψ = f (ψ)

∂yψ = 0

ψ → 10← ψ

Step 2 : vary D with s, parameter in (0, 1).
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Existence of travelling waves

Strategy of proof

Idea

d∂yψ + c
µ
∂xψ = 0

−d∆ψ + c∂xψ = f (ψ)

∂yψ = 0

ψ → 10← ψ

Interpretation : ψ on the road adjusts to ψ in the field with some delay.
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Existence of travelling waves

Strategy of proof

Idea

d∂yψ + ct
µ
∂xψ = 0

−d∆ψ + c∂xψ = f (ψ)

∂yψ = 0

ψ → 10← ψ

Interpretation : ψ on the road adjusts to ψ in the field with some delay.

Step 3 : vary 1
µ

with t, parameter in (0, 1).
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Existence of travelling waves

Strategy of proof

Idea

d∂yψ = 0

−d∆ψ + c∂xψ = f (ψ)

∂yψ = 0

ψ → 10← ψ

Biological interpretation : the road becomes a fence.

Theorem : Kanel ’69, Berestycki-Nirenberg ’90

This problem has a unique solution up to translations, the planar wave.
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Existence of travelling waves

Strategy of proof

Strategy

Go from step 3 to step 1.

For each step, prove that the set of parameters for which the problem has
a solution is open and closed in [0, 1].

Closedness : a priori estimates, upper and lower bounds on c, exponential
estimates.
Openness : relies on a more or less sophisticated application of the implicit
function theorem.

The case ε ' 0 is non trivial and is treated separately.



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Strategy of proof

Strategy

Go from step 3 to step 1.

For each step, prove that the set of parameters for which the problem has
a solution is open and closed in [0, 1].

Closedness : a priori estimates, upper and lower bounds on c, exponential
estimates.
Openness : relies on a more or less sophisticated application of the implicit
function theorem.

The case ε ' 0 is non trivial and is treated separately.



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Strategy of proof

Strategy

Go from step 3 to step 1.

For each step, prove that the set of parameters for which the problem has
a solution is open and closed in [0, 1].

Closedness : a priori estimates, upper and lower bounds on c, exponential
estimates.

Openness : relies on a more or less sophisticated application of the implicit
function theorem.

The case ε ' 0 is non trivial and is treated separately.



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Strategy of proof

Strategy

Go from step 3 to step 1.

For each step, prove that the set of parameters for which the problem has
a solution is open and closed in [0, 1].

Closedness : a priori estimates, upper and lower bounds on c, exponential
estimates.
Openness : relies on a more or less sophisticated application of the implicit
function theorem.

The case ε ' 0 is non trivial and is treated separately.



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Strategy of proof

Strategy

Go from step 3 to step 1.

For each step, prove that the set of parameters for which the problem has
a solution is open and closed in [0, 1].

Closedness : a priori estimates, upper and lower bounds on c, exponential
estimates.
Openness : relies on a more or less sophisticated application of the implicit
function theorem.

The case ε ' 0 is non trivial and is treated separately.



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Outline of the main steps

1 Introduction

2 Existence of travelling waves
Strategy of proof
Outline of the main steps

3 The limit D → +∞



Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Outline of the main steps

Exp. sols. for the full model with parameter ε

We search for φ(x) = eλx , ψ(x , y) = eλxh(y) and we get, depending on the
comparison between d and D :

D < d : 
ψ(x , y) =

µeλx cos

(√
λ(λ− c

d )(y+L)

)
cos

(√
λ(λ− c

d )L
)
−εd

√
λ(λ− c

d ) sin

(√
λ(λ− c

d )L
)

φ(x) = eλx

D > d :
ψ(x , y) =

µeλx cosh

(√
λ( c

d
−λ)(y+L)

)
cosh

(√
λ( c

d
−λ)L

)
+εd

√
λ( c

d
−λ) sinh

(√
λ( c

d
−λ)L

)
φ(x) = eλx
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Outline of the main steps

λc
d λε∗ < λ∗

µdβ(λ) tan(β(λ)L)
1−εdβ(λ) tan(β(λ)L)

−Dλ2 + cλ

Figure: Equation on λ, D < d .

λ = c
d0 c

D

−Dλ2 + cλ

− µdβ(λ) tanh(β(λ)L)
1+εdβ(λ) tanh(β(λ)L)

Figure: Equation on λ, D > d .
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Outline of the main steps

Figure: Level lines for ψ with D < d Figure: Level lines for ψ with D > d

Interpretation :

D < d : the field drives the road.

D > d : the road drives the field.

In BRR : comparison between 2d and D but here f ′(0) = 0.
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Existence of travelling waves

Outline of the main steps

Remark

In a similar fashion, the reduced models have exp. sols. p(x , y) = eλxφ(y),
and in the Wentzell case there is a comparison between d and sD.

As ε→ 0, everything goes smoothly to the Wentzell case.

Provided uniform (on t, s or ε) bounds on c, we have a uniform positive
lower bound for λ and uniform bounds on φ (or h). This will be necessary
for comparison purposes.
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Existence of travelling waves

Outline of the main steps

Closedness : some hints

These properties are valid for the three models.

Lemma : a priori bounds

0 ≤ inf ψ ≤ µφ ≤ supψ ≤ 1

Prop. : uniqueness and monotonicity

(c, φ, ψ) is unique up to translations.

∂xφ, ∂xψ > 0

Prop. : cmin provided cmax

IBP : c = 1
L+t/µ

∫
ΩL

f (ψ). This gives that if there exists cmax > 0 s.t. any sol.

satisfies c < cmax , then there exists cmin = M0
L+1/µ

f ( 1+θ
2

).
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Existence of travelling waves

Outline of the main steps

Prop. : existence of cmax

There exists cmax > 0 s.t. any solution satisfies c < cmax .

Figure: Graph of ψ for some arbitrary values of the parameters

Proof.

Glue a positive exponential solution with a linear solution of the problem with f
replaced by ‖f ‖∞. If c is large enough, contact points only occur at salient
angles, contradiction.
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Existence of travelling waves

Outline of the main steps

Prop. : limiting conditions

Comparison with the exponential solutions give the uniform limit to the
left.

Classical computations from Berestycki, Larrouturou, Lions gives the
uniform limit to the right.
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Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Outline of the main steps

Openness : ideas of the proof

Linearise the problem around a solution for some value of the parameter
(e.g. s0). Construct an auxiliary function to reduce the problem to a
homogeneous boundary value problem.

In a suitable Hölder space weighted by exponential decay at x → −∞, the
linearised have the Fredholm property of index 0 : Lyapunov-Schmidt
reduction is possible.

Write the equation as some F (s, c1, vR , vN) = 0. For s = s0 the equation is
linear and solved step by step. For s > s0 close to s0 use the implicit
function theorem.

Limiting conditions are obtained thanks to exponential solutions.
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Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Outline of the main steps

Step 2 to step 1 : the singular perturbation ε ∼ 0

Here, the existence of the auxiliary function becomes totally unclear since the
exchange condition d∂yψ = µφ− ψ degenerates into the Wentzell condition

Wψ1 + ε
c1

µ
∂xψ1 +

(
−εD
µ
∂xx + ε

c0 + c1ε

µ
∂x

)
d∂yψ1

=− c1

µ
∂xψ0 −

(
−D

µ
∂xx +

c0 + c1ε

µ
∂x

)
d∂yψ0

(2)

Key lemma : construction of an auxiliary function

Compute ψ̃ not for the linearised operator but for the simpler problem
−d∆u + u = 0 by a partial Fourier transform.
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Front propagation directed by a line of fast diffusion : existence of travelling waves.

Existence of travelling waves

Outline of the main steps

By taking a small enough exponent in the weight, there exists u = ψ̃(ε, c1, v) in
C2,α that solves for v ∈ C3,α

Wu + ε
c1
µ
∂x u +

(
− εD
µ
∂xx + ε

c0+c1ε
µ

∂x

)
d∂y u = h0 − ε

c1
µ
∂x v −

(
− εD
µ
∂xx + ε

c0+c1ε
µ

∂x

)
d∂y v

−d∆u + u = 0

∂yu = 0

and |u|C2,α ≤ C1|h0|∞ + C2

∣∣∣ 1
ε
K0

(
|x|
dε

)
∗ (h0 + εh(v))

∣∣∣
α

+ C3|h0 + εh(v)|α
where K0 denotes the 0-th modified Bessel function of the second kind
(K0 ∈ L1, K̂0 = π√

1+ξ2
). Moreover, the weighted spaces are stable.

Proof.

Uses explicit (heavy) computations by partial Fourier transform, and a
Paley-Wiener type theorem.
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Front propagation directed by a line of fast diffusion : existence of travelling waves.

The limit D → +∞

Rescaled problem

Set uD(x) = φ(
√
Dx), vD(x , y) = ψ(

√
Dx , y), cD = c√

D
. Equation on (c, u, v)

d∂yv = µu − v(x , 0)

−u′′ + cu′ = v(x , 0)− µu u → 1/µ0← u

− d
D
∂xxv − d∂yyv + c∂xv = f (v)

∂yv = 0

v → 10← v

Upper bound : cD ≤ M (the exp. sols. pass to the limit D → +∞)

Lower bound : needs a uniform local C1,α estimate on vD (true when
D = +∞).
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Thank you for your attention.
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The limit D → +∞

Oblique case

Search for p(x , y) = eλxφ(y) zero of −d∆ + c∂x with (Ob)s boundary
condition.


−φ′′ + λ( c

d
− λ)φ = 0 on (−L, 0)

dφ′(0) + c
µ
sλφ(0) = 0

φ′(−L) = 0

φ > 0

We get φ(y) = cos
(√

λ(λ− c
d

)(y + L)
)
, and we are left with λ > c

d
solving

tan

(√
λ
(
λ− c

d

)
L

)
=

csλ

µd
√
λ
(
λ− c

d

) (3)
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The limit D → +∞

λ
c
d λ∗

tan
(√

λ
(
λ− c

d

)
L
)

csλ

µd
√
λ(λ− c

d )

Figure: Equation (3) on λ, oblique case.



Front propagation directed by a line of fast diffusion : existence of travelling waves.

The limit D → +∞

Wentzell case

Comparison between d and sD (in [?] : 2d and D but here f ′(0) = 0) :

sD < d : φ(y) = cos
(√

λ(λ− c
d

)(y + L)
)

and λ > c
d

solves

tan

(√
λ
(
λ− c

d

)
L

)
=

cλ− sDλ2

µd
√
λ
(
λ− c

d

) (4)

sD > d : φ(y) = cosh
(√

λ( c
d
− λ)(y + L)

)
and λ < c

d
solves

tanh

(√
λ
( c
d
− λ

)
L

)
= − cλ− sDλ2

µd
√
λ
(
c
d
− λ

) (5)

sD = d : φ ≡ 1 and λ = c
d
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λ
c
d λ∗

tan
(√

λ
(
λ− c

d
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L
)

cλ−s1Dλ
2

µd
√
λ(λ− c

d )

cλ−s2Dλ
2

µd
√
λ(λ− c

d )

Figure: Equation (4) on λ, Wentzell case with s1D < d , s2D > d and λ > c
d

.
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λ
0

c
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− cλ−sDλ2
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√
λ( c

d
−λ)

tanh
(√

λ
(
c
d
− λ

)
L
)

Figure: Equation (5) on λ, Wentzell case with sD > d and λ < c
d

.
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The limit D → +∞

POb is open

Starting with a solution c0, ψ0 of some (Ob)s0 we set
ψ = ψ0 + (s − s0)ψ1, c = c0 + (s − s0)c1 and solve the problem in c1, ψ1 :

d∂yψ
1 + c0s0∂xψ

1 = −(c0 + c1s)∂xψ
0 − (c0 + c1s)(s − s0)∂xψ

1

Lψ1 + c1∂xψ
0 = R(s − s0, c1, ψ1)

∂yψ
1 = 0

with Lg = −d∆g + c0∂xg − f ′(ψ0) and R being a quadratic remainder in
ψ1, c1 that goes to 0 as s → s0.



Front propagation directed by a line of fast diffusion : existence of travelling waves.

The limit D → +∞

POb is open

Starting with a solution c0, ψ0 of some (Ob)s0 we set
ψ = ψ0 + (s − s0)ψ1, c = c0 + (s − s0)c1 and solve the problem in c1, ψ1 :

d∂yψ
1 + c0s0∂xψ

1 = −(c0 + c1s)∂xψ
0 − (c0 + c1s)(s − s0)∂xψ

1

Lψ1 + c1∂xψ
0 = R(s − s0, c1, ψ1)

∂yψ
1 = 0

with Lg = −d∆g + c0∂xg − f ′(ψ0) and R being a quadratic remainder in
ψ1, c1 that goes to 0 as s → s0.
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The limit D → +∞

POb is open : functional setting

In a suitable weighted Hölder space inspired from works of [?, ?], the linearised
L has the Fredholm property of index 0 so that we can apply a
Lyapunov-Schmidt reduction :

Weight : a smooth function w s.t. w(x) = e
cmin
d

x for x < 0 and w(x) = 2 for
x > 1, concave and increasing on 0 < x < 1. Set w1 = 1

w
and

Cαw (ΩL) := {u ∈ Cα(ΩL) | w1u ∈ Cα(ΩL)}

X = {u ∈ C2(ΩL) | Dβu ∈ Cα(ΩL), |β| = 2}

We endow X with the norm ‖u‖X = ‖w1u‖C2,α .
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The limit D → +∞

Prop. : reduction to a homogeneous boundary problem

There exists ψ̃(s, c1, ·) : C2,α
w (ΩL)→ C2,α

w (ΩL) a C1 function such that by
writing ψ1 = ψ̃(s, c1, v) + v we have the equivalent equation

Lv + c1∂xψ0 = R − Lψ̃

on v = vR + vN∂xψ0 ∈ X = N(L)⊕ X1 endowed with the (Ob)s0 boundary
condition.

ψ̃(s, c1, v) solves for A > 0 fixed large enough

d∂yu + c0s0∂xu = −(c0 + c1s)∂xψ
0 − (c0 + c1s)(s − s0)∂x(u + v)

Lu + Au = 0

∂yu = 0
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