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Introduction

“ This is how you do it: you sit down at the keyboard and you
put one word after another until it’s done. It’s that easy, and

that hard. ”
—Neil Gaiman

Objet de la thèse
L’objet général de cette thèse est l’étude de l’accélération de la propagation dans
les équations de réaction-diffusion par une ligne de diffusion rapide. On y étudiera
un système d’équations paraboliques couplant une équation de réaction diffusion
dans un demi-plan ou dans une bande, avec une équation de diffusion sur son
bord (supérieur) par l’intermédiaire d’une condition de Robin non homogène. On
représentera le modèle par le diagramme suivant :

d∂yv = µu− v

∂tu−D∂2
xxu = v− µu

∂tv− d∆v = f(v) (1)

On notera que la condition de bord est naturelle au sens où c’est l’unique condition
qui permet d’obtenir conservation de la masse totale pour le système en l’absence
de réaction (c’est-à-dire quand f = 0). Les diffusivités d et D sont des constantes
positives, µ est une constante positive indiquant l’intensité des échanges « route
vers champ » au bord, et f est une fonction non linéaire telle que f(0) = f(1) = 0
qu’on spécifiera plus tard. Les inconnues u(t,x) et v(t,x, y) représentent des
densités de population.

Ce système a été proposé par Berestycki, Roquejoffre et Rossi [22] pour étudier
mathématiquement l’influence des réseaux de transport sur les invasions biologiques :
les données dont on dispose montrent par exemple que le moustique tigre ([5]) ou
la chenille processionnaire du pin (cf. le projet ANR URTICLIM) – deux insectes
posant des problèmes de santé publique – envahissent leur territoire plus vite que
prévu, et l’on pense que les réseaux routiers jouent un rôle dans cette invasion. De
manière générale, il existe de nombreuses situations biologiques où des parasites
de végétaux sont transportés par des fleuves ou une infrastructure routière, comme

1



2 INTRODUCTION

par exemple le cas de l’arrivée récente du frelon à pattes jaunes en France. Dans
ce contexte, on réferera au demi-plan comme étant « le champ » et à son bord
comme étant « la route ».

Figure 1: Processionnaires du pin (Wikipédia, licence CC BY-SA 3.0)

Figure 2: Vespa velutina (Wikipédia, licence CC BY-SA 3.0)

La question générale qui sous-tend l’étude du modèle est la suivante : quelle
est l’influence de ce couplage et d’une forte diffusivité D � d sur la propagation ?
Dans [22] il est démontré que si f est de type KPP (f(v) ≤ f ′(0)v) alors quand
D > 2d, la vitesse de propagation dans la direction x devient supérieure à la
vitesse usuelle (c∗ = 2

√
df ′(0) cf. ci-dessous) et qu’elle se comporte même en

c
√
D quand D → +∞. En ce sens dans le régime D > 2d c’est la route qui dirige

la propagation.
Il s’avère que la structure particulière de f permet de réduire cette étude à des

calculs algébriques. De tels calculs s’avèrent indisponibles pour des non-linéarités
plus générales, ce qui pose la question de la robustesse du phénomène découvert
dans [22] : c’est cette question qui sous-tend toute la thèse. De fait, certains
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phénomènes d’accélération sont inhérents à la structure KPP de la non-linéarité.
Par exemple, pour l’équation de réaction-diffusion fractionnaire

∂tu+ (−∆)su = u(1− u)

les solutions se propagent exponentiellement vite en temps (Cabré, Coulon, Roque-
joffre [27, 28]) mais dans le cas d’une non-linéarité de type ignition (f(u) = 0 si
u ≤ θ pour un seuil 0 < θ < 1), Mellet, Roquejoffre et Sire [64] démontrent que
pour s ≥ 1/2 il existe des ondes progressives. Grâce au principe du maximum (voir
[24]) on peut alors montrer qu’elles attirent la dynamique des données initiales à
support compact : ces dernières se propagent donc à vitesse finie.

En choisissant f de type ignition (par exemple f(v) = 1v>θ(v− θ)2(1− v)), la
dégénérescence dans la zone v ≤ θ nous assure l’impossibilité de mener les calculs
susmentionnés. D’un point de vue biologique, de telles classes de f sont utilisées
pour modéliser l’effet Allee (voir [37]). Enfin, puisqu’on s’intéressera seulement à
la propagation dans la direction des x, on remplacera le demi-espace par une bande
munie d’une condition de Neumann homogène sur son bord inférieur. D’un point
de vue biologique, cette hypothèse signifie que les agents ne peuvent pas traverser
cette frontière. Le modèle retenu est donc le suivant :

d∂yv = µu− v

∂tu−D∂2
xxu = v− µu

∂tv− d∆v = f(v)

−∂yv = 0 (2)

Nous allons démontrer que l’accélération par la ligne de diffusion rapide est
bien une propriété structurelle du système (2) et n’est nullement un effet dû à
l’hypothèse KPP. Ceci nous conduira à étudier les ondes progressives de (2), le
comportement asymptotique de leur vitesse quand D → +∞, et un mécanisme
d’attraction des données initiales plutôt subtil.

Contexte : propagation et accélération de fronts
de réaction-diffusion

Résultats généraux
Dans cette section on rappelle quelques notions classiques concernant la propaga-
tion dans les équations de réaction-diffusion. La littérature étant très vaste sur ce
sujet, on ne saura être exhaustif et on se contentera de citer des références de base
et pertinentes dans le cadre de la thèse. Pour l’équation homogène

∂tu− d∆u = f(u) x ∈ RN , t > 0 (3)
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où par exemple f > 0 et f(u) ≤ f ′(0)u, on sait depuis Kolmogorov-Petrovski-
Piskunov [56] qu’il existe des solutions ondes progressives v(t,x) = ψ(x · e− ct)
dans toute direction e et pour toute vitesse c > c∗ = 2

√
df ′(0), où le profil ψ(x)

définit une fonction croissante reliant 0 à 1. En particulier, la vitesse des ondes
progressives est proportionnelle à la racine de la diffusivité d, ce que l’on peut
obtenir très simplement via le changement d’échelle

x←
√
dx, c← c/

√
d.

Comme expliqué par Aronson-Weinberger [1], dans ce contexte la vitesse minimale
des ondes c∗ est aussi la vitesse de propagation des données initiales « pas trop
grandes » : toute donnée initiale positive à support compact non vide convergera
en temps long et dans chaque direction vers l’onde de vitesse minimale. En ce sens,
la vitesse de propagation de la masse est c∗ : un observateur se déplaçant dans une
direction fixée à une vitesse strictement supérieure à c∗ ne verra plus rien autour
de lui en temps long et s’il se déplace à une vitesse strictement inférieure, il verra
l’environnement rempli à sa capacité maximale autour de lui. Ceci indique qu’au
premier ordre en temps long, les lignes de niveau de u(t,x) avancent dans chaque
direction à vitesse c∗. Ces phénomènes ont par la suite été généralisés à d’autres
types de non-linéarités et leur description raffinée (voir par exemple Fife-McLeod
[42] où les auteurs prouvent un mécanisme précis de convergence vers les ondes
progressives), le changement principal étant que si f ′(0) ≤ 0, il n’existe qu’une
seule vitesse admissible pour les ondes. On peut aussi citer les travaux pionniers
de Kanel′ [53] où l’auteur étudie (3) (en dimension 1) pour des non-linéarités
satisfaisant

f(v) ≤ 0 pour v ≤ θ (4)

pour un seuil 0 < θ < 1. Naturellement – et contrairement au cas KPP où
même une masse de Dirac se propage au sens ci-dessus – il est alors nécéssaire
que la donnée initiale dépasse le seuil θ quelque part pour qu’il puisse y avoir
propagation et non pas convergence uniforme vers 0. Ce phénomène souligne la
différence fondamentale entre les non-linéarités de type KPP et celles satisfaisant
(4) ; il jouera un rôle important dans cette thèse et on y reviendra. Dans [53] Kanel′
étudie la classe de données initiales v0(x) = 1(−L,L)(x) et démontre l’existence de
seuils L0,L1 > 0 tels que si L < L0 il y a convergence uniforme vers 0, et si L > L1,
la solution se propage au sens défini ci-dessus. Récemment, Zlatoš [80] démontre
que dans ce contexte, L0 = L1. Ce résultat a par la suite été généralisé par Du et
Matano [40] pour diverses familles de données initiales à un paramètre.

Ce genre de résultat – par exemple l’utilisation du simple changement d’échelle
ci-dessus – devient beaucoup plus ardu à démontrer en présence d’hétérogénéités,
c’est-à-dire quand (3) n’est pas posée dans RN tout entier, ou a des coefficients
dépendants de l’espace, ou en présence d’un système avec un couplage spatial
comme (1). Les travaux pionniers dans l’étude des équations de réaction-diffusion
hétérogènes remontent à Freidlin et Gärtner ([45]), qui étudient une équation de
Fisher-KPP où

f(x,u) = µ(x)u− u2
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où µ est une fonction 1-periodique en toutes ses variables sur RN . Ils étu-
dient la vitesse de propagation (au sens défini ci-dessus) à l’aide d’arguments
de grandes déviations et prouvent que la vitesse c∗(e) n’est plus isotrope, don-
nant une formule explicite pour la calculer dans chaque direction. Le traite-
ment des hétérogénéités dans les équations de réaction-diffusion continue d’être
grandement étudié depuis. Dans le cadre de l’influence sur la propagation, on
peut citer Berestycki-Larrouturou-Lions [17] et Berestycki-Nirenberg [20] qui dé-
montrent l’existence de fronts non planaires dans des cylindres en présence d’un
champ d’advection (α(y), 0, · · · , 0). Les travaux de Roquejoffre [76] adaptent à
ce cas multi-dimensionnel hétérogène les résultats de convergence de Fife-McLeod
et Kanel′. Plus récemment, on citera Berestycki-Hamel [8] et Berestycki-Hamel-
Nadirashvili [15, 16] où les auteurs donnent de nouvelles informations sur l’influence
de la géométrie du domaine ou des coefficients de l’équation, dans un cadre péri-
odique dans un premier temps puis pour des domaines plus généraux. L’influence
de la géométrie sur la propagation a aussi été étudiée dans le cadre des cylindres
à section variable par Chapuisat et Grenier [32] ou encore Berestycki-Bouhours-
Chapuisat [7].

Enfin, on citera des travaux récents de Liang, Matano et Xiaotao [58, 59] où
les auteurs étudient une équation de Fisher-KPP en dimension 1 ou 2 et où

f(x, y,u) = b(x)u(1− u)

avec b une mesure de Radon L-périodique, et s’intéressent à maximiser la vitesse
de propagation. Sous la contrainte de masse

∫ L
0 b(x)dx = αL (α > 0 étant une

constante), ils démontrent que la mesure qui maximise la vitesse de propagation
c∗(θ, b) dans la direction θ est (pour n’importe quelle direction θ) non pas une
fonction lisse mais un peigne de Dirac.

Accélération de fronts de réaction-diffusion
Dans cette section, on poursuit l’étude bibliographique commencée ci-dessus en
mettant l’accent sur l’accélération de fronts, ou sur l’augmention de la vitesse de
propagation.

Suite aux premiers travaux dans des cylindres hétérogènes cités ci-dessus, la
question de l’influence d’un champ d’advection sur la vitesse de propagation a été
beaucoup étudiée. Le phénomène est intéréssant car il peut être à double tran-
chant2 : l’advection peut d’une part augmenter la vitesse de propagation (et quan-
tifier cette effet est déjà une question subtile) mais en présence de non-linéarités
à seuil elle peut aussi faire passer la donnée initiale sous le seuil et condamner la
solution à converger uniformément vers zéro (quenching ou extinction) : il s’agit
alors de comprendre en termes de taille de la donnée initiale, comment obtenir
propagation ou quenching. L’influence de l’amplitude du champ d’advection joue

2une bonne image donnée dans [41] est celle de l’influence du vent sur le feu : il y a d’une
part l’effet « le vent propage le feu » mais il y a aussi l’effet « essayer d’allumer un feu de camp
en présence d’un vent fort ... »
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ici un rôle fondamental et a été étudiée dans de nombreux articles, à commencer
par Audoly-Berestycki-Pomeau [3]. Dans le cas KPP et pour des écoulements par-
allèles de cisaillement (à moyenne nulle afin de se mettre dans le cas d’un drift
nul) dans des cylindres :

∂tu− ∆u+Aα(y)∂xu = f(u) t > 0,x ∈ R, y ∈ ω ⊂ RN

Berestycki [6] démontre une augmention linéaire de la vitesse en l’amplitude A du
flot

c∗(A) ∼
A→+∞

kA

Ce résultat a aussi été obtenu et généralisé par Constantin-Kiselev-Oberman-
Ryzhik [33] en introduisant la notion de bulk burning rate. Pour les non-linéarités
de type ignition, le résultat reste vrai et est récemment démontré par Hamel et
Zlatoš [49] (voir la section « Résultats » ci-dessous et le Chapitre 2 pour une de-
scription précise de leur résultat). En revanche, Constantin-Kiselev-Ryzhik [34]
et Kiselev-Zlatoš [55] démontrent que dans ce cas, le prix à payer pour cette aug-
mention de la vitesse est une augmentation linéaire elle aussi en les seuils L0 et L1
introduits ci-dessus

L0 ∼
A→+∞

k0A, L1 ∼
A→+∞

k1A

lorsque l’écoulement n’est pas constant sur des intervalles trop grands. En d’autres
termes, on échange une augmention de la vitesse linéaire en A contre une augmen-
tion linéaire en A de la taille critique menant au quenching.

Le cas des écoulements « cellulaires » (en rouleaux périodiques, voir [3]) a aussi
été étudié : le même phénomène intervient, mais l’augmention de la vitesse est
de l’ordre de A1/4 comme démontré par Novikov et Ryzhik [68] dans le cas KPP
et plus récemment par Zlatoš [81] dans le cas ignition. En revanche, Fannjiang-
Kiselev-Ryzhik [41] prouvent (pour des écoulements avec des cellules assez petites)
que si L4 ln(L) < kA où L représente la taille du carré qui supporte la donnée
initiale, il y a quenching. On citera aussi les simulations numériques de [79].

Enfin, un autre mécanisme intéréssant peut être trouvé dans [35] : les auteurs
étudient un système couplant une équation de reaction-diffusion et une équation
de Burgers. Ils démontrent différents résultats de quenching par rapport à un
paramètre de gravité, l’un d’entre eux étant un quenching indépendant de la taille
de la donnée initiale L, lorsque la gravité est suffisamment forte.

Un tout autre mécanisme d’accélération de la propagation réside bien sûr dans
la diffusion : Cabré et Roquejoffre [28, 29] démontrent qu’en remplaçant dans
l’équation de Fisher-KPP homogène le laplacien par un laplacien fractionnaire
(−∆)α 3 :

∂tu+ (−∆)αu = f(u) t > 0,x ∈ RN (5)
on passe d’une propagation linéaire en temps à une propagation exponentielle en
temps : si σ > σ∗ := f ′(0)

N+2α , u(t,x) → 0 uniformément dans {|x| ≥ eσt} lorsque
3microscopiquement cela revient à considérer que les agents ne se déplacent plus selon un

mouvement brownien, mais selon un processus de Lévy (donc à sauts) α-stable
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t → +∞ et si σ < σ∗, u(t,x) → 1 uniformément dans {|x| ≤ eσt}. Garnier
[44] démontre aussi un tel résultat de vitesse asymptotique infinie et donne des
bornes inférieures sur l’avancement des lignes de niveaux, pour des noyaux de dis-
persion généraux à queues lourdes. Cabré-Coulon-Roquejoffre [27] étudient quant
à eux (5) en milieu périodique et démontrent qu’en contraste avec la formule de
Freidlin-Gärtner [45], la vitesse exponentielle de propagation ne dépend pas de
la direction. Inversement, si f est de type ignition dans (5), Mellet-Roquejoffre-
Sire [64] démontrent que jusque α ≥ 1/2 il existe des ondes progressives. Grâce
au principe du maximum (cf. [24]) on peut alors adapter le résultat d’Aronson-
Weinberger et montrer que la propagation des données initiales à support compact
est nécéssairement linéaire en temps.

Cette thèse s’inscrit dans ce contexte général et propose d’étudier un mécanisme
d’accélération nouveau, à travers un couplage spatial avec une ligne de diffusion
rapide.

Le système (1)
Dans cette sous-section, on présente l’état de l’art concernant le système (1).
L’article [22] qui introduit le modèle démontre qu’il est bien posé et qu’il dispose
d’un principe de comparaison : une sous-solution et une sur-solution (c’est-à-dire
des solutions où les signes = sont remplacés resp. par ≤ ou ≥) initialement or-
données restent ordonnées pour tout temps (pour l’ordre usuel composante par
composante). Le résultat principal de l’article est le théorème suivant :

Théorème. ([22])
Soit f de type KPP : 0 < f(v) ≤ f ′(0)v pour tout v ∈]0, 1[. Alors on a les
propriétés suivantes.

i) Spreading. Il existe une vitesse c∗ = c∗(µ, d,D) > 0 telle que : pour tous
(u0, v0) ≥ 0 et 6≡ (0, 0),

• pour tout c > c∗, limt→+∞ sup|x|≥ct(u(x, t), v(x, y, t)) = (0, 0).
• pour tout c < c∗, limt→+∞ inf |x|≥ct(u(x, t), v(x, y, t)) = (1/µ, 1).

ii) Vitesse asymptotique. Si d et µ sont fixes et D > 0 on a :

• Si D ≤ 2d, alors c∗(µ, d,D) = cKPP

• Si D > 2d alors c∗(µ, d,D) > cKPP et limD→+∞ c∗(µ, d,D)/
√
D est

finie.

Comme mentionné ci-dessus, ce théorème utilise l’hypothèse KPP sur la non-
linéarité afin de se ramener à des calculs sur le linéarisé en 0. Le seuil D = 2d
plutôt que d peut paraître surprenant à première vue. La présence du facteur 2
est en fait due à l’absence de réaction sur la route. Des formules plus précises
pour le seuil dans un cadre plus général ont été introduites dans le second article
de Berestycki, Roquejoffre et Rossi [21]. Dans cet article, les auteurs ajoutent un
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terme de transport et de réaction dans l’équation sur la route et étudient l’influence
de ces paramètre sur c∗. Le modèle augmenté s’écrit :

d∂yv = µu− v

∂tu−D∂2
xxu+ q∂xu = v− µu+ g(u)

∂tv− d∆v = f(v) (6)

Ils démontrent le théorème suivant, sous une hypothèse un peu plus forte que
KPP (on notera qu’une classe de g(u) convenables est donnée par les mortalités
g(u) = −ρu) :

Théorème. ([21])
Soit f comme ci-dessus avec de plus s 7→ f(s)/s décroissante. Soit g telle que
g(0) = 0, ∃S > 0, g(S) ≤ 0 et s 7→ g(s)/s soit décroissante. Alors

i) Le système (6) admet un unique état stationnaire positif borné (U ,V ), de plus
U ≡ constante et V ≡ V (y).

ii) Il existe deux vitesses de spreading w±∗ (dans les directions ±e1) vers cet état
stationnaire.

iii) Si Dd ≤ 2− g′(0)
f ′(0) ∓

q√
df ′(0)

alors w±∗ = cKPP . Sinon w±∗ > cKPP .

iv) lim
D→+∞

w±∗√
D

= h > 0 indépendant de q et lim
q→+∞

w±∗
|q| = k si g′(0) ≤ µ et 1 sinon,

avec 0 < k < 1 indépendant de D.

Les convergences vers les états stationnaires mentionnées ci-dessus ont lieu à y
fixé et dans la direction e1. Le troisième article de la série [23] étudie précisément
le défaut de convergence uniforme en y lors de cette convergence. Les auteurs y
montrent qu’en fait la propagation est aussi améliorée dans les directions ν avec
ν · (−e2) > 0, jusqu’à un certain angle limite où la vitesse se met à coller à
cKPP . Des estimations quantitatives sur les vitesse dans chaque direction lorsque
D → +∞ y sont aussi données et il y est prouvé que l’angle limite tend vers π/2
quand D → +∞ : asymptotiquement toutes les directions hormis e2 voient leur
vitesse de spreading améliorées.

Dans le contexte KPP, les papiers de Pauthier [71, 72] étudient quant à eux
l’influence des échanges intégraux : il y démontre que l’équation (1) où l’on rem-
place les échanges localisés au bord par un mécanisme d’échanges intégraux :∂tu−D∂2

xxu = −µ̄u+
∫+∞
−∞ ν(y)v(t,x, y)dy x ∈ R, t > 0

∂tv− d∆v = f(v) + µ(y)u(t,x)− ν(y)v(t,x, y) (x, y) ∈ R2, t > 0
(7)

(où µ̄ =
∫

R µ(y)dy) préserve la propriété d’accélération de la propagation décou-
verte dans [22]. Dans [71], l’auteur étudie la limite de (7) lorsque les fonctions
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d’échanges µε/µ̄ et νε réalisent une approximation de l’unité : il y démontre que
les solutions de (7) convergent vers les solutions de (1) (étendues en les y > 0 par
parité) uniformément en espace et uniformément sur tout compact en temps.

Enfin, toujours dans le contexte KPP, dans la thèse d’A.C. Coulon Chalmin
[36] se trouve une étude de (1) où la diffusion sur la route est fractionnaire et en
présence d’un terme de mortalité :

d∂yv = µu− v

∂tu+ (−∂2
xx)

αu = v− µu− ρu

∂tv− d∆v = f(v) (8)

L’auteure y démontre que pour α ∈]1/4, 1[, la propagation est exponentielle
en temps sur la route et caractérise l’exposant limite : pour tout γ < f ′(0)

1+2α ,
lim

t→+∞
inf
|x|≤eγt

u(t,x) > 0 et pour tout γ > f ′(0)
1+2α , lim

t→+∞
sup
|x|≤eγt

u(t,x) = 0. De plus,

il est aussi démontré que pour toute direction non horizontale, la vitesse de prop-
agation dans cette direction dans le champ reste linéaire mais explose quand la
direction tend vers e1.

Résultats de la thèse

En l’absence de calculs directs sur le linéarisé en 0, il est naturel d’attaquer ce
problème par le point de vue des ondes progressives. Dans un premier temps
l’article [39] étudie l’existence et l’unicité de telles ondes pour le modèle (2). Ce
système dispose d’un principe de comparaison, et pour cette raison l’existence
des ondes n’est pas une grande surprise. Cependant, j’ai obtenu cette existence
grâce à une méthode de continuation reliant le système à l’onde plane classique
de combustion. Cette continuation passe par l’intermédiaire d’un problème au
bord de type Wentzell et d’une perturbation singulière qui semble nouvelle dans
ce contexte. Le résultat est aussi valable (et la démonstration plus simple) pour
le cas bistable.

La suite naturelle à ce travail est l’étude de la vitesse de ces ondes lorsque
le paramètre D devient grand. C’est l’objet de l’article [38]. Dans cet article, je
montre que la vitesse c(D) des ondes ci-dessus se comporte en c∞

√
D lorsque

D → +∞, ce qui généralise en un sens le résultat de Berestycki, Roquejoffre et
Rossi dans [22]. J’ai aussi caractérisé le ratio c∞ comme l’unique vitesse admissible
pour des ondes dans un système hypoelliptique a priori dégénéré, où l’espèce de
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densité v ne diffuserait que verticalement :

d∂yv = µu− v
−u′′ + c∞u

′ = v− µu u→ 1/µ0← u

c∞∂xv− d∂2
yyv = f(v)

∂yv = 0

v → 10← v

(9)

Il s’avère que ce système admet bien une unique onde progressive (à translation
près) de vitesse c∞. Ce résultat révèle un parallèle intéressant avec un récent
article de Hamel et Zlatoš [49] qui étudie l’augmentation de la vitesse de fronts de
combustion par un écoulement de cisaillement. Le modèle étudié est

∂tv+Aα(y)∂xv = ∆v+ f(v), t ∈ R, (x, y) ∈ R×RN−1 (10)

où l’amplitude du flot A > 1 est grande et où α(y) est lisse et (1, · · · , 1)-périodique.
Les auteurs démontrent l’existence de γ∗(α, f) ≥

∫
TN−1 α(y)dy telle que la vitesse

c∗(Aα, f) des ondes de (10) satisfait

lim
A→+∞

c∗(Aα, f)
A

= γ∗(α, f)

De plus, sous une hypothèse de type Hörmander sur α, ils caractérisent γ∗ comme
l’unique vitesse admissible pour le système dégénéré suivant :

∆yU + (γ − α(y))∂xU + f(U) = 0 dans D′(R×TN−1)

0 ≤ U ≤ 1 p.p. dans R×TN−1

limx→+∞ U(x, y) ≡ 0 unif. dans TN−1

limx→−∞ U(x, y) ≡ 1 unif. dans TN−1

(11)

Dans [38], le rôle de cette condition de Hörmander est joué par une borne inférieure
sur la vitesse c(D) lorsque D → +∞ dans le modèle renormalisé :

d∂yv = µu− v
−u′′ + cu′ = v− µu u→ 1/µ0← u

− d
D∂

2
xxv− d∂2

yyv+ c∂xv = f(v)

∂yv = 0

v → 10← v

(12)

J’ai obtenu cette estimée grâce à des identités intégrales nouvelles qui ont dues être
menées à partir de zéro, puisque sans cette estimée (12) perd toute hypoelliptic-
ité. Une fois cette estimée obtenue, la compacité s’obtient en itérant les identités
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intégrales. Enfin, des arguments usuels de comparaison comme la méthode de
sliding sont adaptés dans un cadre combinant théorie parabolique (dans le champ)
et elliptique (sur la route) pour conclure. Cette forme originale du principe de
comparaison a motivé l’étude de (9) par une méthode directe, qui a permis de
retrouver l’existence de l’onde limite sus-mentionnée, prouvant en un sens que (9)
est bien posé.

Pour clore l’étude de ce phénomène d’accélération, il reste à comprendre en
quelle mesure les ondes de (2) attirent les données initiales. C’est l’objet du
Chapitre 3 du présent manuscrit. Dans un premier temps, en adaptant des ré-
sultats classiques dans notre cas hétérogène, on étudie le cas des données « front-
like », puis des données à support compact assez grandes sur un intervalle assez
grand (de l’ordre de D1/2 selon un résultat classique). Il s’avère cependant que
ces ondes ne se limitent pas à cette forme d’attraction pour le moins attendue, la
taille du support initial étant très liée à la taille de la diffusion. Des simulations
numériques m’ont permis de découvrir un mécanisme plus subtil, qu’on qualifiera
de « propagation à deux vitesses » : une donnée à support trop petit se propagera
d’abord à une vitesse lente – c’est-à-dire indépendante de D – pendant un temps
au plus

tD = D1/2 lnD+ O
D→+∞

(1)

avant d’atteindre le régime susmentionné. On donne ci-dessous un aperçu de ces
simulations.

Figure 3: t = 0

Figure 4: t = 75∆t
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Figure 5: t = 300∆t

Figure 6: t = 1000∆t

Ce résultat est surprenant dans le sens où, comme mentionné ci-dessus, les
résultats d’accélération de la propagation dans les équations de réaction-diffusion
ont tendance à demander en contre-partie un renforcement des hypothèses sur les
données initiales pour qu’elles ne mènent pas à l’extinction. Dans le cas présent
on démontre un résultat d’accélération à des vitesses de l’ordre D1/2 pour des
données initiales indépendantes de D. Enfin, la dernière partie du chapitre étudie
le comportement du système pour des données initiales supportées uniquement
sur la route : contrairement au résultat précédent, on démontre que les données
à support trop petit (par rapport à D1/2) mènent à l’extinction, et que pour les
données à support assez grand, extinction tout comme invasion peuvent apparaître
selon la valeur du paramètre d’échange µ.

Organisation du manuscrit
• Le chapitre 1 est l’article [39] qui s’intéresse aux questions d’existence et

d’unicité d’ondes progressives pour le modèle (2).

• Le chapitre 2 est l’article [38] où on démontre l’asymptotique c(D) ∼ c∞
√
D

de la vitesse de ces ondes et où on caractérise le ratio c∞ > 0 comme l’unique
vitesse admissible pour les ondes d’un système hypoelliptique dont on démon-
tre aussi qu’il est bien posé du point de vue des ondes progressives.

• Le chapitre 3 étudie la stabilité des ondes sus-mentionnées : on y met en
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lumière un mécanisme d’accélération qui permet aux ondes d’attirer les don-
nées initiales à support trop petit par rapport à D1/2.

• Enfin, dans le chapitre 4 on présente quelques perspectives.
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Notations

Operators

∆ Laplace operator

(−∆)s Fractional laplacian of order s ∈ (0, 1) :

(−∆)sh(x) = cd,sp.v.
∫

Rd

h(x)− h(y)
|x− y|d+2s dy

q̇ Time-derivative of the function q

f̂(ξ) Fourier transform of the real function f(x)

F−1g Inverse Fourier transform of g

û(ξ, y) Partial Fourier transform of the real function u(x, y)

Miscellaneous

|x| Any norm of the finite-dimensional vector x ∈ RN

[a, b], ]a, b[ Resp. the closed and open intervals between a and b in R

N(L),R(L) Resp. the kernel and range of the operator L

Ω Closure of the open set Ω ⊂ RN

<z,=z Resp. real and imaginary parts of the complex number z

f|[a,b] Restriction on [a, b] of the real function f

Lipf Lipschitz constant of f

cosh, sinh, tanh Hyperbolic trigonometric functions

(a, b) ≤ (c, d) Product order : a ≤ c and b ≤ da
b

 ≤
c
d

 Same as above

15
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Function spaces

| · |X Norm in the Banach space X

| · |∞ Abbreviation for | · |L∞

Ck(Ω) Scalar functions on Ω with bounded continuous derivatives up to
order k

Ck(X;Y ) The same as above but for functions between the spaces X and Y

Ck(Ω) Scalar functions on Ω with bounded continuous derivatives up to
order k and up to the boundary of Ω

C(Ω) C0(Ω)

Ckloc(Ω) Scalar functions with continuous derivatives up to order k

Ck,α(Ω) Banach space of scalar functions with bounded and α-Hölder
continuous derivatives up to order k

Cα(Ω) C0,α

BUC(Ω) Banach space of bounded uniformly continuous scalar functions
on Ω

UC0(Ω) Subspace of the above of functions decaying to 0 as |x| → +∞

↪→ Compact embedding

BV (a, b) Functions f : (a, b)→ R with bounded variation.

W k,p(Ω) Sobolev space of functions with distributional derivatives up to
order k belonging in Lp(Ω)

Hk(Ω) The same as above with p = 2

Hk
loc(Ω) The same as above but derivatives needing only to be in L2

loc.

Hs(RN ) {f ∈ L2(RN ) | F−1
(
1 + |ξ|2

)s/2
f̂ ∈ L2(RN )} (agrees with Hk

above when s ∈N)

Cα/2,α Functions v(x, y) that are Cα/2 in a first variable and Cα in the
others : |v(x, y)− v(x′, y′)| ≤ C

(
|x− x′|α/2 + |y− y′|α

)
C1+α/2,2+α Functions v(x, y) whose derivatives up to order 1 with respect to

the x-variable and up to order 2 with respect to the y-variables
all lie in Cα/2,α.

These Banach spaces are to be endowed with their usual norms, see [26] and [46].
Usually the last two are used in a context where x is replaced by the time-variable t
(and y by a general space variable) : this will be the case in Chapter 3. The specific
notation above will be used at the end of Chapter 2.



Chapter 1

Continuation of a travelling wave

« Les loups sont entrés dans Paris. »

—Serge Reggiani (1922-2004)

We prove existence and uniqueness of travelling waves for a reaction-
diffusion system coupling a classical reaction-diffusion equation in a
strip with a diffusion equation on a line. To do this we use a sequence
of continuations which leads to further insight into the system. In par-
ticular, the transition occurs through a singular perturbation which
seems new in this context, connecting the system with a Wentzell type
boundary value problem.

This chapter is an article accepted for publication in Appl. Math. Res.
Express.
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18 CHAPTER 1. CONTINUATION OF A TRAVELLING WAVE

1.1 Introduction
This paper deals with the following system with unknowns c > 0,φ(x),ψ(x, y) :

−d∆ψ+ c∂xψ = f(ψ) for (x, y) ∈ ΩL := R×]−L, 0[
d∂yψ(x, 0) = µφ(x)− ψ(x, 0) for x ∈ R

−d∂yψ(x,−L) = 0 for x ∈ R

−Dφ′′(x) + cφ′(x) = ψ(x, 0)− µφ(x) for x ∈ R

along with the uniform in y limiting conditions

µφ,ψ → 0 as x→ −∞

µφ,ψ → 1 as x→ +∞
and where d,D,µ are positive constants. Those equations will be represented from
now on as the following diagram

d∂yψ = µφ−ψ
−Dφ′′ + cφ′ = ψ− µφ φ→ 1/µ0← φ

−d∆ψ+ c∂xψ = f(ψ)

∂yψ = 0

ψ → 10← ψ

(1.1)

If (c,φ,ψ) is a solution of (1.1), then (φ(x + ct),ψ(x + ct, y)) is a travelling
wave solution connecting the states (0, 0) and (1/µ, 1) for the following reaction-
diffusion system

d∂yv = µu− v
∂tu−Du′′ = v− µu

∂tv− d∆v = f(v)

∂yv = 0 (1.2)

This system in the whole half-plane y < 0 was introduced by Berestycki, Roque-
joffre and Rossi in [22] to give a mathematical description of the influence of trans-
portation networks on biological invasions. Under the assumption f(v) = v(1− v)
(which will be referred to from now on as a KPP type non-linearity) the authors
showed the following : when D ≤ 2d, propagation of the initial datum along the x
direction occurs at the classical KPP velocity cKPP = 2

√
df ′(0), but when D > 2d

it occurs at some velocity c∗(µ, d,D) > cKPP which satisfies

lim
D→+∞

c∗√
D

= c > 0
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In the present work, we take another viewpoint to extend these results to more
general non-linearities. Indeed, the KPP assumption

f(v) ≤ f ′(0)v

enables a reduction of the question to algebraic computations. For more general
reaction terms (e.g. bistable, or ignition type), propagation is usually governed by
the travelling waves. As a consequence, it is necessary to investigate the existence,
uniqueness, and stability of solutions of (1.1) in order to generalise this result,
which will be seen through the velocity c(D) of the solution.

We assume f to be in a biologically relevant class of nonlinearities that arise
in the modelling of Allee effect. Namely f will be of the ignition type :

Assumption A. f : [0, 1] → R is a smooth non-negative function, f = 0 on
[0, θ] ∪ {1} with 0 < θ < 1, and f ′(1) < 0. For convenience we will still call f
an extension of f on R by zero at the left of 0 and by its tangent at 1 (so it is
negative) at the right of 1.

θ0 1
u

f(u)

Figure 1.1: Example f = 1u>θ(u− θ)2(1− u)

But f could also be of the bistable type. In this case – thanks to the non-
degeneracy of f on (0, θ) – the method described in this paper becomes even
simpler. This will be discussed at the end of the paper.

Assumption B. f : [0, 1] → R is a smooth function, f(0) = f(θ) = f(1) for
some 0 < θ < 1 and f < 0 on (0, θ), f > 0 on (θ, 1) with moreover f ′(0), f ′(1) < 0
and f is of positive total mass :

∫ 1
0 f(s)ds > 0.

Our objective is to study (1.1) by a continuation method : we will show that
(1.1) can be reduced, through "physical" steps, to the classical one dimensional
equation

−ψ′′ + cψ′ = f(ψ)

ψ(−∞) = 0,ψ(+∞) = 1
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When f satisfies Assumption A, this is the simplest model in the description of
propagation of premixed flames (see the works of Kanel [52]). More precisely, the
steps we will follow are :
1) First, a good way of reaching a unique equation is to have µφ = ψ on the

boundary y = 0. To achieve that, we divide the exchange term by a small
ε > 0 and send ε → 0. Setting µφ = ψ(x, 0) + εφ1 we get after a simple
computation the limiting model for ψ :

−D
µ
∂2
xxψ+

c

µ
∂xψ = −φ1

and so this limit is a singular perturbation that sends (Sε) :

d∂yψ = (µφ−ψ(x, 0))/ε

−Dφ′′ + cφ′ = (ψ(x, 0)− µφ)/ε µφ→ 10← φ

−d∆ψ+ c∂xψ = f(ψ)

-∂yψ = 0

ψ → 10← ψ

(Sε)

to a unique equation with a Wentzell boundary condition that we call (Ws)
(with s = 1):

d∂yψ = s
(
D
µ ∂

2
xxψ− c

µ∂xψ
)

−d∆ψ+ c∂xψ = f(ψ)

-∂yψ = 0

ψ → 10← ψ

(Ws)

2) By sending the parameter s ∈ [0, 1] to 0, we can pass from (Ws) to (W0), which
is a Neumann problem, which is known to have a unique velocity c0 > 0 and a
unique smooth profile ψ0(x) (up to translations) as solutions. Existence is due
to Kanel [52] and uniqueness to Berestycki-Nirenberg [18].
We will show the following :

Theorem 1.1.1. (Existence for the Wentzell model)
There exists cw > 0 and ψw ∈ C3,α(ΩL) for some 0 < α < 1, solution of

(W1) obtained by continuation from (c0,ψ0) that satisfies 0 < ψw < 1, and ψw is
increasing in the x direction. Moreover, if (c,ψ) is a classical solution of (W1),
we have c = c and there exists r ∈ R such that ψ(·+ r, y) = ψw(·, y).
Theorem 1.1.2. (Transition from Wentzell to the system)

There exists ε0 > 0 such that for 0 < ε < ε0, (Sε) has a solution given
by cε > 0 and (φε,ψε) ∈ C2,α(R) × C2,α(ΩL) obtained by continuation from(
cw, 1

µψw(·, 0),ψw
)
that satisfies 0 < φε <

1
µ , 0 < ψε < 1, and φε and ψε are

increasing in x.
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Remark 1.1.1. We wish to emphasise on this result : it consists in a singular
perturbation between a system of two unknowns and a scalar boundary value
problem of the Wentzell type. This is a non-standard relaxation that appears to
be new in this context. Also, observe that we had to pay the loss of one derivative
for solving this problem.

Theorem 1.1.3. (Existence for the full system)
There exists c > 0 and (φ,ψ) ∈ C2,α(R)×C2,α(ΩL) a solution of (S1) obtained

by continuation from (cε0 ,φε0 ,ψε0) that satisfies 0 < φ < 1
µ , 0 < ψ < 1, and φ and

ψ are increasing in x. Moreover, if (c,φ,ψ) is a classical solution of (S1), we have
c = c and there exists r ∈ R such that φ(·+ r) = φ(·) and ψ(·+ r, y) = ψ(·, y).

The organisation of the paper is as follows :

• In Section 1.2 we show some common a priori properties for solutions of (Sε)
or (Ws). In particular we deal with the uniqueness questions.

• In Section 1.3 we prove Theorem 1.1.1.

• Section 1.4 proves Theorem 1.1.3, provided Theorem 1.1.2, by slight modifi-
cations of Section 1.3.

• Finally, we postponed the proof of Theorem 1.1.2 in Section 1.5 because of
its particularity (see Remark 1.1.1).

1.2 First properties

1.2.1 A priori bounds, monotonicity, uniqueness
This section is devoted to the proofs of a priori properties. As noticed in [22], the
system (1.2) has the structure of a monotone system, which provides a maximum
principle. The elliptic counterpart of this maximum principle holds for (Sε) or
(Ws) and it will be our main tool along with the sliding method ([19]) throughout
the current section.

Lemma 1.2.1. Let (c,φ,ψ) solve some (Sε). Then

inf ψ ≤ µφ ≤ sup ψ

Proof. Because of its uniform limits as x → ±∞, necessarily ψ is bounded and
|ψ|∞ ≥ 1. Because of the limits of φ, either φ ≤ 1

µ or φ− 1
µ reaches a positive

maximum. But then at this maximum φ′ = 0 and φ′′ ≤ 0 which means ψ−µφ ≥ 0,
so in every case φ ≤ supψ

µ . The other inequality is similar.

Proposition 1.2.1. Let (c,φ,ψ) be a solution of some (Sε), then

0 < µφ,ψ < 1

Similarly, if (c,ψ) solves some (Ws), 0 < ψ < 1.



22 CHAPTER 1. CONTINUATION OF A TRAVELLING WAVE

Proof. Suppose there exists a point (x0, y0) where ψ(x0, y0) > 1. Then, because
ψ is assumed to have limits as x → ±∞, we see that ψ − 1 must reach a posi-
tive maximum somewhere. But ψ− 1 satisfies locally at this point −d∆(ψ− 1) +
c∂x(ψ − 1) < 0. This point cannot be in ΩL by the strong maximum principle,
since ψ− 1 would be locally constant which is impossible by looking at the equa-
tion. So it has to be on the boundary. It cannot be on y = −L because of the
Hopf lemma. So it has to be on y = 0 and by the Hopf lemma, µφ > ψ at this
point, which is impossible because of Lemma 1.2.1. So ψ ≤ 1, and then φ ≤ 1

µ .
Now knowing these bounds and that the solutions are not constants, compari-

son with 0 by the strong maximum principle gives φ < 1
µ ,ψ < 1.

Finally, since ψ < 1, f(ψ) ≥ 0 and the strong maximum principle along with
Lemma 1.2.1 gives ψ > 0 and then φ > 0.

The same proof holds for equation (Ws), the case y0 = 0 being treated by the
sole Hopf lemma thanks to the sign of ∂2

xxψ and the nullity of ∂xψ on an extremum
of ψ.

We turn now to the monotonicity of the fronts, using the sliding method of [18]
and simplified in [78] in the travelling waves context. We start with a fundamental
lemma which asserts that we can slide a supersolution above a subsolution by
translating it enough to the left. This lemma is valid for any reaction term such
that f(0) = f(1) = 0 and f ′(0), f ′(1) ≤ 0.

Definition 1. We call a super (resp. sub) solution of some (Sε) or (Ws) a function
which satisfies those equations with the = signs replaced by ≥ (resp. ≤), and the
uniform limits replaced by some constants ≥ 0,≥ 1 (resp. ≤ 0,≤ 1).

Lemma 1.2.2. Let (c,φ,ψ) be a subsolution of some (Sε) and (c,φ,ψ) a super-
solution. Then there exists r0 such that for all r ≥ r0, φ

r := φ(r + ·),ψr :=
ψ(r+ ·, ·) satisfy

φ
r
> φ,ψr > ψ

The same holds with ψ, ψ resp. sub and supersolution of some (Ws).

Proof. We present only the proof for (Sε), the case (Ws) being simpler. We also
assume that ψ,µφ,ψ,µφ→x→−∞ 0 and ψ,φ,ψ,µφ→x→+∞ 1, the case of different
limits being considerably simpler.

First we show that by translating enough, we have the desired order on some
x ≥ a (which is trivial if the sub and the supersolution have different limits to the
right). Fix ε > 0 small enough such that f ′ ≤ 0 on [0, ε] ∪ [1− ε, 1]. Because of
the conditions at ±∞ it is clear that there exists r1 > 0 and a > 0 large enough
such that

µφ,ψ > 1− ε on x ≥ a (1.3)
For all r ≥ r1, µφ

r
(a) > µφ(a), ψr(a, y) > ψ(a, y) (1.4)

For all r ≥ r1, µφ
r
> 1− ε, ψr > 1− ε on x ≥ a (1.5)
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Conditions (1.4) and (1.5) are obtained simultaneously by taking r1 large enough.
We assert that this suffices to have

µφ
r
> µφ,ψr > ψ on x ≥ a for all r ≥ r1

Indeed, call U = φ
r − φ and V = ψ

r − ψ. Then in [a,+∞[×[−L, 0] we have the
following :

d∂yV + V /ε ≥ µU/ε

−DU ′′ + cU ′ + µU/ε ≥ V /ε U → 0

LV := −d∆V + c∂xV ≥ f(ψ
r
)− f(ψ)

−∂yV ≥ 0

V > 0 V → 0

U > 0

B−

p

B+

p

B
p

Suppose there is a point where V < 0. Then because of its limits, V reaches a
minimum V (p) = m < 0 at some p ∈]a,+∞[×[−L, 0].

• Case 1 : p ∈]a,+∞[×]− L, 0[. By continuity, there is a ball B around p
such that on B, 1− ε < ψ

r
< ψ. On B, LV ≥ f(ψ

r
)− f(ψ) ≥ 0 since f(s)

is decreasing on s ≥ 1− ε. By the strong maximum principle, V ≡ m in B.
Thus, {V = m} is open. Being trivially closed and being non-void, it is all
of [a,+∞[×[−L, 0] which is a contradiction.

• Case 2 : p lies on y = −L. Again, by continuity there is a half ball B+ just
as B in the previous case. By the Hopf lemma, since ∂yV (p) ≥ 0 necessarily
V = m is also reached in the interior of B+, and we fall in case 1.

• Case 3 : p lies on y = 0. Taking another half ball B− as above, either we
fall in case 1 or µU < m < 0 at xp. But this is impossible also. Indeed, U
would reach a negative minimum somewhere, but looking at the equation it
satisfies at that minimum, µU ≥ V ≥ m.

Every case leading to a contradiction, we conclude that ψr −ψ ≥ 0 on x ≥ a. The
strong maximum principle applied on U yields now φ

r − φ ≥ 0 on x ≥ a and that
the orders are strict.

We do the same thing for x ≤ b up to the following subtlety : we can only ask
for the following conditions

µφ,ψ < ε on x ≤ b (1.6)
For all r ≥ r2, µφ

r
(b) > µφ(b), ψr(b, y) > ψ(b, y) (1.7)

Of course an equivalent of condition (1.5) is not available here : we cannot ask to
put the supersolution everywhere below ε on x ≤ b whereas before it was automatic
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to put it above 1− ε. Nonetheless, the exact same proof as above works, since on
an eventual minimum of ψr − ψ we would have this order for free : ψr < ψ < ε.

Finally, taking r3 = max(r1, r2) we end up with the supersolution above the
subsolution on all x 6∈]b, a[ : thanks to the uniform limits of φr3 ,ψr3 to the right,
we just have to translate enough again to cover the compact region left.

For the case of equation (Ws), just observe that case 3 is similar to case 2,
since on a minimum, ∂2

xxV ≥ 0, ∂xV = 0.

Remark 1.2.1. The use of the maximum principle in the proof above could be
simplified, since on x ≥ a we know the sign of

k(x, y) = −
f(ψ

r
)− f(ψ)

ψ
r − ψ

∈ L∞

we could apply it directly in all ΩL with the operator −d∆+ c∂x+ k. Nonetheless,
this is not true any more on x ≤ b and this is the reason why we chose the proof
above.

Proposition 1.2.2. Let (c,φ,ψ) be a solution of some (Sε), then

φ′, ∂xψ > 0

Similarly, if (c,ψ) solves some (Ws), ∂xψ > 0.

Proof. Use Lemma 1.2.2 with the solution serving as the sub and the supersolution
at the same time : we can translate some µφr,ψr over µφ,ψ. Call r the inf of such
r0, i.e. slide back until the solutions touch (which clearly happens since at r0 = 0
they are the same). Monotonicity will be proved if we show that

r = 0

Suppose by contradiction that r > 0. By continuity

U := φr − φ ≥ 0
V := ψr − ψ ≥ 0

Moreover, U ,V solves

d∂yV + V = µU

−U ′′ + cU ′ + µU = V U → 00← U

−d∆V + c∂xV + k(x, y)V = 0

−∂yV = 0

V → 00← V

with k(x, y) = −f(ψ
r)−f(ψ)
ψr−ψ ∈ L∞. The strong maximum principle and Hopf’s

lemma for comparison with a minimum that is 0 gives that U ,V > 0 (otherwise
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φ,ψ would be periodic in x, which is impossible). Then by continuity, for any
compact

Ka = [−a, a]× [−L, 0]

we can still translate a bit more to the right while keeping the order :

µφr−εa > µφ, ψr−εa > ψ on Ka

for some small εa > 0. Now just do this with a large enough so that on x ≤ −a,
ψ < ε and on x ≥ a, ψ > 1− ε (and so ψr−εa too, even on x ≥ a− εa). Then the
exact same proof as in Lemma 1.2.2 applies to conclude that

µφr−εa > µφ, ψr−εa > ψ

everywhere, which is a contradiction with the minimality of r.
We now know that φ and ψ are increasing in x, that is φ′, ∂xψ ≥ 0. To conclude

that φ′, ∂xψ > 0 everywhere, just differentiate (Sε) or (Ws) with respect to x and
apply the strong maximum principle and Hopf’s lemma for comparison with a
minimum 0. We emphasise on the fact that this result is valid up to the boundary
of ΩL.

The proof above gives directly the following rigidity result and its corollaries :

Proposition 1.2.3. (Uniqueness among sub or supersolutions.)
Fix c > 0. If (Sε) has a solution, then every supersolution or subsolution is a

translate of this solution. The same holds for (Ws).

Proof. Denote (φ,ψ) the solution mentioned and (φ,ψ) an arbitrary supersolution.
Let r,U ,V be as in the proof of Proposition 1.2.2 (this time r exists thanks to the
limit conditions : at some point the supersolution and the solution touch). We
end up with either U ,V > 0 or U ,V ≡ 0. The first case is impossible for the exact
same argument as in Proposition 1.2.2 and this concludes the proof.

Proposition 1.2.4. (Uniqueness of the velocity and the profiles up to translation.)

1. There is a unique cε ∈ R such that (Sε) can have solutions. The same holds
for cs with (Ws).

2. Solutions of (Sε) are unique up to x-translations, i.e. if (c,φ1,ψ1) and
(c,φ2,ψ2) are solutions of (Sε), then there exists r ∈ R such that

φ2(·+ r) = φ1(·),ψ2(·+ r, ·) = ψ1(·, ·)

The same holds for (Ws).

Proof.
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1. Call (c,φ,ψ) and (c,φ,ψ) two solutions such that c > c. Observe that thanks
to monotonicity :

− d∆ψ+ c∂xψ = f(ψ) + (c− c)∂xψ < f(ψ)

− φ′′ + cφ′ + µφ/ε = ψ/ε+ (c− c)φ′ < ψ/ε

so that (φ,ψ) is a subsolution of equation (Sε) with c and is not a solution,
which is impossible thanks to Proposition 1.2.3. The case of equations (Ws)
is treated in a similar way, just observe that

d∂yψ = s

(
D

µ
∂2
xxψ−

c

µ
∂xψ

)
< s

(
D

µ
∂2
xxψ−

c

µ
∂xψ

)

2. Apply Proposition 1.2.3, knowing that a solution is also a subsolution.

1.2.2 Uniform bounds for c
Our continuation method will need compactness on c > 0 if we want to extract
a solution from a sequence of solutions. Getting an upper bound will depend on
finding supersolutions of (Sε) or (Ws). Then a lower bound will follow easily via
an argument of [17].

Proposition 1.2.5. There exists cmax > 0 such that any solution (cε,φε,ψε) of
(Sε) satisfies

cε < cmax

The same holds for (Ws).

Proof. Observe that if −Dr2 + cr ≥ 0
−dr2 + cr ≥ Lipf

Then (erx,µerx) is a supersolution of (Sε) which is not a solution. The first
inequation gives r = αc/D with α ∈ [0, 1] and the best choice for minimising c in
the second one is α = D/(2d) or α = 1 depending on D ≶ 2d. More precisely,

cmax =


2
√
dLipf if D ≤ 2d√
D2

D− d
Lipf if D ≥ 2d

(1.8)

The exact same computation holds for (Ws).

Remark 1.2.2. Note that at s = 0, D does not appear in the equation so the
lowest cmax is valid but exhibits a discontinuity as soon as s > 0 (if D > 2d).
Of course, since this is only an upper bound it is not a problem. Actually, this
is just technical : if we had done the continuation from Neumann to oblique and
from oblique to Wentzell in two steps, this discontinuity would not be since the
comparison would occur between sD ≶ 2d.
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Proposition 1.2.6. There exists cmin > 0 such that any solution of (Sε) satisfies

cε ≥ cmin > 0

The same holds for equation (Ws).

Proof. In this proof we get rid of the ε for the sake of notations. We integrate the
equation for ψ on ΩL,M := [−M ,M ]× [−L, 0] using integration by parts. For the
first term, we have

∫
ΩL,M

−d∆ψ =
∫
∂ΩL,M

−d∂νψ

=
∫
[−L,0]

d∂xψ(−M , y)dy−
∫
[−L,0]

d∂xψ(M , y)dy+
∫ M

−M
−d∂yψ(x, 0)dx

=
∫
[−L,0]

d∂xψ(−M , y)dy−
∫
[−L,0]

d∂xψ(M , y)dy+
∫ M

−M
(ψ(x, 0)− µφ(x))dx

Using elliptic estimates and dominated convergence, we see that the first two terms
go to zero as M →∞, which gives∫

ΩL

−d∆ψ =
∫

R
(ψ(x, 0)− µφ(x))dx =

∫
R
(−Dφ′′ + cφ′)dx =

c

µ

thanks to elliptic estimates on ψ.
For the second term, we have∫

ΩL,M
c∂xψ =

∫
[−L,0]

cψ(M , y)dy−
∫
[−L,0]

cψ(−M , y)dy → cL

by dominated convergence. We thus have

c =
1

L+ 1/µ

∫
ΩL

f(ψ) (1.9)

Now, any solution satisfies −d∆ψ+ c∂xψ = f(ψ) in ΩL with c and f(ψ) bounded
independently of c by the constant M0 = max(d, cmax, sup f). Thus on the ball
B of centre (0,−L/2) and radius L/4, standard L2 elliptic estimates and the
Sobolev embedding give for any 0 < β < 1

|ψ|Cβ(B) ≤ C1
(
|ψ|L2(2B) + |f(ψ)|L2(2B)

)
≤ C1|2B|(1 + sup f2) ≤ C2

with C2 independent of ε and where 2B denotes B with doubled radius, and
|2B| its measure. We just proved that all solutions share a modulus of continuity
independent of ε on the ball B. Since f is Lipschitz, the same holds for f(ψ).

Now normalise the solutions by translation so that

ψ
(

0, −L2

)
=

1 + θ

2
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The previous estimate enables us to choose a radius r0 > 0 small enough that
depends only on C2 and Lipf such that f(ψ) ≥ 1

2f(
1+θ

2 ) on the ball r0B. This
implies the lower bound

∫
ΩL

f(ψ) ≥ |r0B|
1
2f

(
1 + θ

2

)
> 0

that gives the existence of

cmin =
|r0B|

2(L+ 1/µ)
f

(
1 + θ

2

)

that depends only on d,µ,L, cmax, sup f ,Lipf .
For equation (Ws), the exact same proof holds since (1.9) is replaced by

c =
1

L+ s/µ

∫
ΩL

f(ψ) ≥ 1
L+ 1/µ

∫
ΩL

f(ψ)

for s ∈ [0, 1].

1.3 From Neumann to Wentzell
Set

PW = {s ∈ [0, 1] | (Ws) has a solution}

The main goal of this section is to prove that PW is open and closed in [0, 1], as
in [4]. We will proceed as follows :

• We already know that 0 ∈ PW so that PW 6= ∅.

• In Section 1.3.1 we prove that PW is closed, using the bounds on c from
Section 1.2 and a regularity result up to the boundary for (Sε) or (Ws).

We emphasise on a small but interesting technical difficulty : in the context
of (Ws), no standard Lp estimates up to the boundary appear to be in the
literature. As a consequence, we had to use a weak Harnack inequality up
to the Wentzell boundary to prove the Hölder regularity of f(ψ), which is
needed to use the Schauder estimates of [63].

• In Section 1.3.2 we prove that PW is open, by perturbing (Ws) for s close to
some s0 ∈ PW in a weighted space where we can apply the implicit function
theorem.

Together with the uniqueness properties of Section 1.2, this will prove Theorem
1.1.1.
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1.3.1 PW is closed
In this section we consider a sequence (sn) ⊂ PW that converges to s∞ ∈]0, 1]
and we want to show that (Ws∞) has a solution thanks to the compactness results
we already obtained. Denote (cn,ψn) a solution of (Wsn). Throughout all this
section we break the translation invariance by making the normalisation

max
x≤0

ψn = θ (1.10)

We also drop a finite number of terms of the sequence (sn) so that for all n ≥ 0,
sn > s∞

2 > 0, which will be needed to ensure the uniform ellipticity of the boundary
operator in (Ws) so that we can use the elliptic estimates up to the Wentzell
boundary.

By Section 1.2.2 we can extract from cn some subsequence still denoted cn that
satisfies

lim
n→+∞

cn = c∞ ∈ [cmin, cmax] (1.11)

We now derive global Schauder estimates for (Ws) from the standard local ones
of [63]. We describe the argument exhaustively for once because we will refer to
it later for the more complicated case of (Sε). We chose deliberately to use that
|ψs| ≤ 1 only at the end to give the inequality in its full generality, since the proof
will serve later purposes.

Proposition 1.3.1. There exists α > 0 and a constant CSch = C(D, d, cmax,Lipf ,L,µ)
such that for all n ≥ 0

|ψn|C2,α(ΩL) ≤ CSch
(
|ψn|L∞(ΩL)

)
≤ CSch (1.12)

Proof. We only prove a local estimate near y = 0, the rest of the strip being treated
similarly but with classical interior Schauder estimates or up to the Neumann
boundary (see [46], Theorem 6.29).

Schauder estimates up to the Wentzell boundary are already proved in [63], but
of course they need a bound on the Cα norm of the data f(ψ) (or on the bounded
coefficient −f(ψ)/ψ after rewriting the equation). Usually, this not a problem
and, for example, can be derived from W 2,p estimates up to the boundary.

Nonetheless, no such Lp estimates appear to be in the literature concerning
Wentzell boundary conditions. We overcome this technical difficulty by using
directly a Cα (for some small α > 0) estimate up to the boundary (see [61], Theo-
rem 2) which relies on a weak Harnack inequality up to the boundary (see [62]) :
in other words, the Krylov-Safonov inequality of [57] is valid up to a Wentzell
boundary.

Call B− ⊂ ΩL (resp. 2B−) some half-ball of centre (x, 0) and radius ε >
0 (resp. 2ε) small. By the references above there exists α > 0 and some Cα
depending only on cmax, d,D,µ, ε such that

|ψn|Cα(B−) ≤ CαLipf |ψn|L∞(2B−)
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since f is Lipschitz and f(0) = 0. This yields

|f(ψn)|Cα(B−) ≤ Cα (Lipf)2 |ψn|L∞(2B−)

and then by plugging this in the Schauder estimates up to the Wentzell boundary
([63], Theorem 1.5) :

|ψn|C2,α(B−) ≤ CW
(
|ψn|L∞(2B−)

)
for some CW = C(d,D, cmax,µ,Lipf).

To obtain the global estimate, just use the global L∞ bound and observe that
the above estimate does not depend on the position of B−.

Remark 1.3.1. Of course we can now iterate the Schauder estimate for any Ck,α

provided enough regularity on f . Namely, if f has k Lipschitz derivatives, ψn is
uniformly in Ck+2,α for every 0 < α < 1.

Using (1.12) with Ascoli’s theorem and the process of diagonal extraction for
every [−N ,N ] × [−L, 0], we get a subsequence still denoted ψn that converges
in C2

loc(ΩL) to a function ψ∞ ∈ C2(ΩL). Remembering (1.11) we can pass to
the limit in (Wsn) to get that (c∞,ψ∞) solves (Ws∞) apart from the limiting
conditions. This is the aim of the following lemmas.

Proposition 1.3.2. ψ∞(x, ·) converges uniformly to 0 as x→ −∞.

Proof. This relies on a comparison with the exponential supersolution already
computed in Proposition 1.2.5. Observe that thanks to (1.10), any solution of
(Ws)+(1.10) satisfies f(ψs) ≡ 0 on x ≤ 0. As a consequence

ps := θersx

where
rs =

cs
max(d,D)

≥ cmin
max(d,D)

=: r

is a supersolution of (Ws) on x ≤ 0.
Since ps−ψs is non-negative on x = 0, goes uniformly to 0 as x→ −∞, satisfies

a Neumann boundary condition on y = −L, a Wentzell boundary condition on
y = 0 and −d∆u+ c∂xu ≥ 0 inside x < 0, the strong maximum principle and
Hopf’s lemma give for all x ≤ 0 :

ψs(x, y) ≤ θersx ≤ θerx (1.13)

The result is obtained by taking s = sn and making n → +∞ in the above
inequality.

The right limit condition is obtained by simple computations already done in
[17] in the Neumann case, we adapt them here.

Proposition 1.3.3. ψ∞(x, ·) converges uniformly to 1 as x→ +∞.
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Since bounds and monotonicity pass to the C2 limit, we have 0 ≤ ψ∞ ≤ 1, as
well as ψ∞x ≥ 0. As a consequence there exists β(y) ≤ 1 such that ψ∞(x, y) →
β(y) as x → +∞. Let us define the functions ψ∞j (x, y) = ψ∞(x + j, y) in
[0, 1]× [−L, 0] for every integer j. Elliptic estimates and Ascoli’s theorem tell us
that up to extraction, ψ∞j → δ in the C1 sense for a C1 function δ. By uniqueness
of the simple limit, β = δ ∈ C1. So ψ∞j lies in a compact set of C1([0, 1]× [−L, 0])
and has a unique limit point β ∈ C1 : then it converges to it in the C1 topology.

Lemma 1.3.1.
∫

ΩL
f(ψ∞) < +∞ and

∫
ΩL
|∇ψ∞|2 < +∞

Proof. For the first integral we integrate (Ws∞) on QM := [0,M ]× [−L, 0] using
integration by parts. We obtain

∫
QM

f(ψ∞) =
∫ 0

−L
−d∂xψ∞(M , y)dy+

∫ 0

−L
d∂xψ

∞(0, y)dy

+
s∞

µ
(c∞(ψ∞(M , 0)− ψ∞(0, 0))−D(∂xψ

∞(M , 0)− ∂xψ∞(0, 0)))

+
∫ 0

−L
c∞ψ∞(M , y)dy−

∫ 0

−L
c∞ψ∞(0, y)dy

which can be written as ∫
QM

f(ψ∞) = A(M)−A(0)

with

A(m) = c∞
∫ 0

−L
ψ∞(m, y)dy+ s∞

µ
(c∞ψ∞(m, 0)−D∂xψ∞(m, 0))−d

∫ 0

−L
∂xψ

∞(m, y)dy

Since the first two terms in A(m) are bounded (thanks to ψ∞ ≤ 1 and elliptic
estimates) and the last one is non-positive, the boundedness of the positive integral∫
QM

f(ψ∞) as M → +∞ follows.
For the second integral, we proceed in the same manner, but integrating the

equation multiplied by ψ∞ and integrating by parts on QM = [−M ,M ]× [−L, 0]
we get

d
∫
QM
|∇ψ∞|2 = B(M)−B(−M)+

∫
QM

f(ψ∞)ψ∞− s∞D
µ

∫ M

−M
(∂xψ

∞)2(x, 0)dx
(1.14)

with

B(m) =− c∞

2

∫ 0

−L
ψ∞(m, y)2dy− c∞s∞

2µ ψ∞(m, 0)2 +
s∞D

µ
(∂xψ

∞ψ∞)(m, 0)

+ d
∫ 0

−L
(ψ∞∂xψ

∞)(m, y)dy
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The third term in (1.14) is bounded thanks to 0 ≤ ψ∞ ≤ 1 and what we just saw.
The last one is non-positive. The first two terms in B(m) are bounded, the third
one also by elliptic estimates, so

∫
QM
|∇ψ∞|2 → +∞ would mean

d
∫ 0

−L
(ψ∞∂xψ

∞)(m, y)dy −→
m→+∞

+∞

which is impossible since it is the derivative of the bounded function

m 7→ d
∫ 0

−L

1
2ψ
∞(m, y)2dy.

End of the proof of Prop. 1.3.3. We now turn back to the study of the right limit.
The second integral in Lemma 1.3.1 being finite, necessarily ∇β = 0 1. So β is a
constant. Moreover,

0 ≤ θ ≤ max[−L,0]ψ
∞(0, y) ≤ β ≤ 1

We also have f(β) = 0 because of the finiteness of the first integral2 so β = θ or
β = 1. Suppose by contradiction that β = θ. Then f(ψ∞) ≡ 0, and integrating
the equation satisfied by ψ∞ on [−m,m] × [−L, 0] just as above and making
m→ +∞ yields

0 = A(∞)−A(−∞) = c∞
(
L+

s∞

µ

)
θ

since ∂xψ∞(m, y) → 0 uniformly in y as x → ±∞. This is of course, impossible,
since c∞ > cmin > 0 and θ > 0.

As a conclusion, ψ∞ satisfies all the desired properties, and we have proved
that PW is closed.

1.3.2 PW is open
This part is about applying the implicit function theorem to some function F (s, c,ψ)
in order to get a solution for s > s0 close to a value s0 of the parameter for which
we already have a solution c0,ψ0. In this section we take µ = 1 without loss of
generality to clarify the diagrams. We also suppose s0 > 0, the case s0 = 0 is
simpler and will be discussed at the end of the subsection. We set

ψ = ψ0 + (s− s0)ψ1, c = c0 + (s− s0)c1

where s ∈ [s0, s0 + δ], δ > 0 small to be fixed later. After a simple but tedious
computation, we get that the corresponding equation for ψ1, c1 is :

1or else we have uniformly |∇uj |2 → g, with g > δ > 0 in [y0 − ε, y0 + ε] and the second
integral would be greater than

∫
[R,∞)×[y0−ε,y0+ε]

δ/2 = +∞ for R large enough.
2∫
Q∞

f(ψ∞) =
∑∞
j=0

∫
Q1
f(ψ∞2j ) so

∫
Q1
f(ψ∞2j )→ 0, but this →

∫ 0
−L f(β(y))dy too.
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Wψ1 = −(c0 + c1s)∂xψ0 +D∂2
xxψ

0 − (s− s0)(c0 + c1s)∂xψ1 + (s− s0)D∂2
xxψ

1

Lψ1 + c1∂xψ0 = R(s− s0, c1,ψ1)

∂yψ
1 = 0

where
W = d∂y + c0s0∂x − s0D∂2

xx

and
L = −d∆ + c0∂x − f ′(ψ0)

and R being a function that goes to 0 as s → s0 and decays quadratically in the
variables ψ1, c1 in a setting that will be defined later3.

We will solve the order 1 problem, i.e. the one obtained by taking s = s0 and
then we will apply the implicit function theorem in a good functional setting to
obtain the existence of a solution to the above problem for s close to s0. The
upper boundary condition should be seen as close to a fixed non-homogeneous
Wentzell boundary condition. That is why we first need some information about
the operator L with Wentzell condition.

Wg = 0

Lg = 0

−∂yg = 0

It is well known (see [77],[74]) that this operator is not Fredholm in the usual
spaces of bounded uniformly continuous functions due to the degeneracy of f in
the range [0, θ]. The way to circumvent this difficulty is to endow the space with
a weight that sees the exponential decay of the solutions as x→ −∞.
Definition 2. Let

r =
cmin

4 max(d,D)
(1.15)

so that −dr2 + c0r ≥ 0 and −Dr2 + c0r ≥ 0 (the 4 will serve later purposes, see
Lemma 1.3.4). Define w to be a C2 function such that

w(x) =

erx for x < 0
constant for x > 1

(1.16)

and such that
w′′(x) ≤ c0

D
w′ (1.17)

for x ∈ (0, 1). Define also w1 = 1/w.
3R(s− s0, c1,ψ1) = −(s− s0)c1∂xψ1 + (s− s0) f

′′(ψ0)
2 (ψ1)2 + (s− s0)2 f ′′′(ψ0)

6 (ψ1)3 + · · · =
(s− s0)O(c1,ψ1), the O being in R×C1,α norm.
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Proof of the exitence of w. Satisfying the differential inequation (1.17) will be nec-
essary because of the Wentzell condition. Take for instance

w(x) =
∫ x

0
rer(s−s

2)ds+ 1

for x ∈ (0, 1/2) so that

w(0) = 1
w′(0) = r

w′′(0) = r2

fits with the definition of w as x < 0. Since r < c0/D, (1.17) is satisfied. Moreover

w(1/2) = a > 0
w′(1/2) = a′ > 0
w′′(1/2) = 0

so now we can just continue w in a concave increasing way (so that (1.17) is also
satisfied) :

w′′(x) =
a′

48

(
x− 1

2

)
(x− 1)

w′(x) =
∫ x

1/2
w′′(s)ds+ a′

w(x) =
∫ x

1/2
w′(s)ds+ a

and choose the constant in Def. 2 to be
∫ 1
1/2w

′(s)ds+ a. The author wishes to
thank an anonymous referee for detecting a problem with the initial definition of
w.

Definition 3. Let

Cαw(ΩL) = {u ∈ Cα(ΩL) | w1u ∈ Cα(ΩL)}

and
X = C2,α

w (ΩL)

the set of C2 functions on ΩL whose derivatives up to order 2 are in Cαw(ΩL). We
endow X with the norm

|u|X = |w1u|C2,α

X is clearly a Banach space, which contains ψ0. Indeed, at the left of ΩL,
w1ψ0 satisfies a linear homogeneous Wentzell problem. Thus, the C2,α

w estimate
directly comes from the Schauder estimates of [63] by the L∞ estimate for w1ψ0,
which was already proved to get the left-limit condition, in Proposition 1.3.2. At
the right of ΩL, w1 is a bounded smooth function and being C2,α

w here is equivalent
to being C2,α. Now we have :
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Lemma 1.3.2. L has closed range and there exists X1 ' R(L) a closed subspace
of X and Y2 ' N(L) such that

X = N(L)⊕X1

Y = R(L)⊕ Y2

Moreover N(L) = N(L2) = R∂xψ0. Finally, denote L∗ the adjoint of L. Then
N(L∗) is one dimensional too. Calling e∗ the unique generator that satisfies

< e∗, ∂xψ0 >= 1

we get that e∗ is a positive measure that happens to be a smooth positive function,
solving

L∗e∗ =
(
−d∆− c0∂x − f ′(ψ0)

)
e∗ = 0

endowed with the dual boundary conditions

d∂ye
∗ − c0s0∂xe

∗ − s0D∂2
xxe
∗ = 0 on y = 0

∂ye
∗ = 0 on y = −L

Moreover e∗ is bounded on x > 0 and has at most Ce−rx growth as x→ −∞.

Proof. The proof will be postponed to the last paragraph of this section. It all
relies on the fact that L is a Fredholm operator of index 0 on the weighted space
X.

Now we want to transform the problem into a fixed Wentzell homogeneous
problem. We do this by creating an auxiliary function ψ̃(s, c1, v) such that we
search for ψ1 as

ψ1 = ψ̃(s, c1, v) + v

where ψ̃(s, c1, v) solves for A > 0 large enough

Wu = D∂2
xxψ

0 − (c0 + c1s)∂xψ0 − (c0 + c1s)(s− s0)∂x(u+ v) +D(s− s0)∂2
xx(u+ v)

Lu+Au = 0

∂yu = 0

Lemma 1.3.3. Such a function exists and satisfies ψ̃ ∈ C1([0, 1]×R×C2,α
w (ΩL); C2,α

w (ΩL)).

Proof. For A > |f ′(ψ0)|∞ it is known that the above problem has a unique solution
that lies in C2,α(ΩL) provided v ∈ C2,α(ΩL), since this gives that the data for the
Wentzell condition lies in Cα(R) (see theorem 1.6 in [63] along with the remark
at its end). What is important to show is that if v lies in the weighted space,
the solution u is in it too. On x ≥ 0, w1u is trivially C2,α as the product of a
smooth bounded function and a C2,α function. The only problem might come from
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unboundedness at x → −∞. In other words, we need to show that u decays like
Cerx as x→ −∞. We see that w1u satisfies an elliptic problem too, so conversely
by Schauder estimates the problem is reduced to showing this L∞ bound for w1u
on x < 0. More precisely : we see that w1u solves :

(d∂y − sD∂2
xx + a1∂x + a2)(w1u) = w1ϕ ∈ C1,α(R)

(−d∆ + b1∂x + b2)(w1u) = 0

∂y(w1u) = 0

B

T

where on x < 0

a1 = c0s+ c1s(s− s0)− 2sDr
a2 = s

(
−3Dr2 + c0r+ c1r(s− s0)

)
≥ 0

b1 = c0 − 2dr
b2 = A− f ′(ψ0) + c0r− dr2 ≥ 0

and where

ϕ(c1, s, v) = −(c0 + c1s)∂xψ
0 +D∂2

xxψ
0− (c0 + c1s)(s− s0)∂xv+D(s− s0)∂2

xxv

Using Schauder estimates up to the boundary for the Wentzell problem, we see
that provided a global L∞ estimate for w1u, w1u is in C2,α(B ∪ T ) with constant
independent of the position of the closed half balls B ∪ T depicted on the diagram
above. Since we can cover all ΩL with translations of B ∪ T , this gives w1u ∈
C2,α(ΩL). This weighted L∞ global estimate is the object of the next lemma. It
simply relies on the maximum principle.
Lemma 1.3.4. Let u = ψ̃(s, c1, v). There exists two constants K ′ < 0,K > 0
such that

K ′ ≤ w1u ≤ K

Proof. We already have u ≤ Kw for K > max(0, sup u) on Ω+
L . We now want

to show that this is also (eventually with a larger constant) true in Ω−L by using
the maximum principle. Suppose there exists a point where u > Kw. That means
that Kw− u reaches a negative minimum somewhere in Ω−L or tends to a negative
infimum as x → −∞. First, let us see that this minimum cannot be reached.
Kw− u satisfies :

(d∂y − sD∂2
xx + (c0s+ c1s(s− s0)∂x)(Kw− u) = rs(−Dr+ c0 + c1(s− s0))Kw− ϕ

(L+A)(Kw− u) = (−dr2 + c0r+A− f ′(ψ0))Kw > 0

∂y(Kw− u) = 0
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In order to conclude to a contradiction thanks to Hopf’s lemma, we only need to
ensure

rs(−Dr+ c0 + c1(s− s0))Kw− ϕ > 0

so that
(−Dr+ c0 + c1(s− s0))K >

supw1ϕ

rs0

suffices. Now observe that thanks to (1.15) and since s ∈ [s0, s0 + δ] then provided

c1 >
Dr− cmin

2δ (1.18)

we have that K > max
(

0, 2sup(w1ϕ)

rs0(cmin −Dr)

)
suffices and in the end we have the

desired result with

K = max
(
max (0, sup(u)) ,max

(
0, 2sup(w1ϕ)

rs0(cmin −Dr)

))

From now on, we assume condition (1.18) and we will see that this is not restrictive.
Now if the minimum is obtained at infinity, let us denote (xn, yn) a minimizing

sequence. Since yn is bounded we can extract a subsequence that converges to
y∞ ∈ [−L, 0]. Let us set

(Kw− u)n(x, y) := (Kw− u)(x+ xn, y+ y∞) (1.19)

We have two subcases :

i) y∞ ∈]−L, 0[. Then (1.19) defines a sequence of uniformly bounded functions
in some small ball B in the interior of ΩL. By standard elliptic estimates, we
can extract from it a subsequence that converges in C2(B) to some (Kw−u)∞
that satisfies (−d∆ + c0∂x+A)(Kw− u)∞ ≥ 0 in B but reaches its negative
infimum m < 0 inside B : as a consequence, (Kw− u)∞ ≡ m in B, but this
is impossible since Am < 0.

ii) y∞ = 0 or −L : the exact same analysis applies, replacing the ball B by a
half-ball B± supported on y = 0 or y = −L and using elliptic estimates up
to the boundary, and Hopf’s lemma.

For the other bound, we proceed in the same way by looking at u−K ′w with
K ′ < min(0, inf u) and using the existence of inf(wϕ), we get

K ′ = min
(
min (0, inf u) ,min

(
0, 2 inf(w1ϕ)

rs0(cmin −Dr)

))

that works.

Thanks to this auxiliary function, we are now left with the following equivalent
problem, on v :
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Wv = 0

Lv+ c1∂xψ0 = R(s− s0, c1, v)−Lψ̃(s, c1, v)

∂yv = 0

Calling P =< e∗, · > ∂xψ
0 and Q = Id−P the projections onto Y2 and R(L)

we are now able to apply these projections onto the equation to get a set of two
equations that are equivalent to this one. Nonetheless, since ψ̃ on the boundary
y = 0 depends on c1 even when s = s0, we should be careful and try to make this
dependence explicit. For this, we need to have an explicit representation of e∗ to
be able to compute the projections. This technical difficulty only comes from the
fact that the unknown c appears in the boundary condition of (Ws).

Thanks to the smoothness and decay properties of e∗, v and ∂xψ0, all the
integration by parts make sense and we find

∫
ΩL

e∗Lv =
∫
y=0

(vd∂ye
∗ − e∗d∂yv) = 0

∫
ΩL

e∗Lψ̃ =
∫
y=0

e∗
((
c0 + c1s

)
∂xψ

0 −D∂2
xxψ

0
)

+ (s− s0)
∫
y=0

e∗
((
c0 + c1s

)
∂x(ψ̃+ v)−D∂2

xx(ψ̃+ v)
)

and we get the first equation 4:

c1
(

1 + s
∫
y=0

e∗∂xψ
0
)
=−

∫
y=0

e∗
(
c0∂xψ

0 −D∂2
xxψ

0
)

+
∫

ΩL

e∗R

− (s− s0)
∫
y=0

e∗
((
c0 + c1s

)
∂x(ψ̃+ v)−D∂2

xx(ψ̃+ v)
)

(1.20)

The second equation should be seen as an equation on vR ∈ X1 with the decom-
position

v = vN∂xψ
0 + vR

and vN ∈ R being free : this is, of course, due to the x-translation invariance of
(Ws). From now on, we fix vN ∈ R.

4where ψ̃ means ψ̃(s, c1, v) and R means R(s− s0, c1, v+ ψ̃(s, c1, v))
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LvR = R−
(∫

ΩL

e∗R
)
∂xψ

0 −Lψ̃

+ (c0 + c1s)

(∫
y=0

e∗∂xψ
0 + (s− s0)

∫
y=0

e∗∂x(ψ̃+ v)

)
∂xψ

0

− (s− s0)D
∫
y=0

e∗∂2
xx(ψ̃+ v)

−
(∫

y=0
e∗D∂2

xxψ
0
)
∂xψ

0

(1.21)

The system of equations (1.20), (1.21) is non-linear and coupled but in the case
s = s0 it is much simpler. It becomes

c1
(

1 + s0
∫
y=0

e∗∂xψ
0
)
= −

∫
y=0

e∗
(
c0∂xψ

0 −D∂2
xxψ

0
)

(1.22)

LvR = −Lψ̃+ (c0 + c1s0)

(∫
y=0

e∗∂xψ
0
)
∂xψ

0 −
(∫

y=0
e∗D∂2

xxψ
0
)
∂xψ

0

(1.23)

which has clearly a unique solution : since
∫+∞
−∞ (e∗∂xψ0)(x, 0)dx > 0, (1.22) has a

solution c1∗ that satisfies condition (1.18) provided we take δ small enough. (1.23)
is automatically uniquely solvable with a solution v∗R since its right hand side lies
in R(L) and does not depend on v.

Now for s > s0 we said that this system was non-linear and coupled, but this
is when the implicit function theorem does all the work. Since X1 is closed in X
and L is Fredholm so image-closed, we have the right Banach setting to apply it.
We may see this system of equations as F (s, c1, vN , vR) = 0 with

F :
[
s0, s0 + δ

]
×
[
Dr− cmin

2δ ,+∞
[
×X1 → R×R(L)

associating to its parameters the equations (1.20), (1.21) in this order. F is a C1

function because it consists in affine bounded operators composed with usual and
C1 functions. Moreover, we can compute the differential of F at (s0, c1∗, v∗R) with
respect to (c1, vR). In matrix representation, it is(

1 + s0 ∫
x=0 e

∗∂xψ
0 0

∗ L

)
which is invertible since 1 + s0 ∫

x=0 e
∗∂xψ

0 > 0, and L is invertible on X1. That
being, the implicit function theorem says that there exists δ′ > 0 and a neigh-
bourhood V of (c1∗, v∗R) such that for each s ∈ [s0, s0 + δ′[, the system of equations
has a unique solution (c1s, vsR) ∈ V . Then we can construct back ψ from c1s, vsR, vN
and it will clearly satisfy the original equation. The left limit condition for it is
obtained directly because of the structure of X. The only thing left to show is that
the right limit condition holds. This is the case provided δ is taken small enough,
and it is the object of the next proposition.
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Remark 1.3.2. Note that this is valid for every vN ∈ R, which will provide us
with a whole 1-dimensional manifold of solutions in the end. Of course, thanks to
Proposition 1.2.4 all of these solutions will be x-translates of each other.

Proposition 1.3.4. Let

c = c0 + (s− s0)c1, ψ = ψ0 + (s− s0)ψ1

If δ > 0 is small enough, we have uniformly in y :

lim
x→+∞

ψ(x, y) = 1

Proof. First, we show that ψ < 1, by contradiction. We know that ψ ∈ C2,α
w is

bounded. Suppose there exists a point where ψ > 1. Then either ψ − 1 reaches
a positive maximum somewhere, or it tends to a positive maximum as x → ∞.
These two cases are both impossible, because of respectively the argument given
in theorem 1.2.1 and the compactness argument given in the proof of Lemma 1.3.4
(take B or B± small enough so that f(ψ) < 0 on it). So ψ ≤ 1 and the strong
maximum principle and Hopf’s lemma and the fact that ψ cannot be constant give

ψ < 1

Now we fix ε > 0. For a large enough we have ψ0 > 1− ε
2 on x ≥ a. Moreover,

we can take δ small enough such that |(s− s0)ψ1|∞ < ε
2 , what gives 1− ε < ψ < 1

for x ≥ a. We assert that this property suffices to have ψ → 1 for δ small enough,
and we will show that by a maximum principle argument using an exponential
solution to the right for the linearised problem near 1.

On x ≥ a, by Taylor’s formula applied on f , we have

−d∆(1− ψ) + c∂x(1− ψ) = f ′(1)(1− ψ) + o(ε)

So by choosing ε > 0 small enough, we have

L1(1− ψ) := −d∆(1− ψ) + c∂x(1− ψ)−
1
2f
′(1)(1− ψ) ≤ 0

We now look for a positive solution p of L1p = 0 endowed with the bound-
ary condition of (Ws) that has exponential decay as x → +∞, for comparison
purposes. Unlike the proof of Proposition 2.2.2, we cannot expect a supersolution
with the form p(x, y) = e−γx with γ > 0, since inequations

−dγ2 − cγ − 1/2f ′(1) ≥ 0
s(−Dγ2 − cγ) ≥ 0

cannot be solved simultaneously. This motivates the research for a p(x, y) =
e−γxφ(y), φ > 0. For p to be a solution of L1p = 0 endowed with the boundary
condition of (Ws), the equations are
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−φ′′ +

(
− 1

2df
′(1)− γ

(
γ + c

d

))
φ = 0

dφ′(0)− s(−Dγ2 − cγ)φ(0) = 0
φ′(−L) = 0

(1.24)

Since f ′(1) < 0, this can be solved by

φ(y) = cosh (β(γ) (y+ L))

where
β(γ) =

√
−f ′(1)/(2d)− γ(γ + c/d)

and 0 < γ < γlim =
√
c2−2df ′(1)−c

2d solving

s(Dγ2 + cγ) = dβ(γ) tanh(β(γ)L)

as pictured in Figure (1.3.2).

0 γlim

dβ(γ) tanh(β(γ)L)

s(Dγ2 + cγ)

Figure 1.2: Equation (1.24) on γ

Now chose C > 0 such that 1− ψ < Cp on x = a and observe that U =
Cp− (1− ψ) solves on x ≥ a

d∂yU + s
(
−D∂2

xxU + c∂xU
)
= 0

L1U ≥ 0

−d∂yU = 0

U > 0

Now suppose that there is a point where U < 0. Then either U reaches a negative
minimum or tends to a negative infimum m < 0 as x → +∞. The first case
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is impossible thanks to the strong maximum principle and Hopf’s lemma. The
second is impossible also thanks to the compactness argument already given in
Proposition 1.3.4, since L1(m) = −1/2f ′(1)m < 0. As a consequence, for all
x ≥ a :

0 < 1− ψ ≤ Ce−γxφ(y) ≤ C max(φ)e−γx

which gives the desired result by sending x→ +∞.

This section is now finished and Theorem 1.1.1 is proved.
Remark 1.3.3. Note that the above subsection does not apply exactly when s0 =
0. Indeed, in this case the estimates up to the Wentzell boundary do not hold.
Nonetheless, this situation is way simpler : just apply the standard estimates up
to the Neumann boundary. We leave it to the reader to check that everything
holds, all the other computations being simpler (for instance, no information on
e∗ is required).

1.3.3 Proof of lemma 1.3.2
Proof of the Fredholm property

L is Fredholm of index 0 as an operator C2,α
w → Cαw if and only if

L̃u :=
1
w
L(wu)

defines a Fredholm operator of index 0 as an operator C2,α → Cα endowed with the
boundary condition ∂yu = 0 on y = −L and d∂yu+ 1

wc
0s0∂x(wu)− 1

ws
0D∂2

xx(wu) =
0 on y = 0.

We do not have any closed formula for the coefficients of L̃, but we know that

L̃u = −d∆u+ (c0 − 2dr)∂xu+ (c0r− dr2 − f ′(ψ0))u on x < 0, L̃ = L on x > 1

Moreover the 0-order term of L̃ is c0r− dr2 > 0 on x < 0, and tends to −f ′(1) > 0
uniformly in y as x → ∞ ; thus it is greater than some positive constant, away
from a compact set : this indicates a decomposition invertible + compact for L.

The boundary condition L̃ is endowed with is unchanged on y = −L and is

W̃u := d∂yu+

(
c0s0 − 2w

′

w
s0D

)
∂xu− s0D∂2

xxu+
s0

w

(
c0w′ −Dw′′

)
u = 0

on y = 0, and we know that the zero order term satisfies

c0w′ −Dw′′ > 0

thanks to the definition of r and the properties of w asked in Definition 2.
Now call γ(x) a positive function that smoothly connects c0r − dr2 > 0 on

x < 0 with −f ′(1) on x > 1 such that γ ≥ min(c0r− dr2 > 0,−f(1)) := γ0 > 0.
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We now call T̃ the operator L̃ with its 0-order term replaced by γ(x), and we want
to show that T̃ is invertible, and that S̃ := L̃ − T̃ satisfies S̃T̃ −1 is compact on
Cα and T̃ −1S̃ on C2,α, in order to have

L̃ = (Id+ S̃T̃ −1)T̃ = T̃ (Id+ T̃ −1S̃)

which is the Fredholm property with index 0 we want.
First suppose that T̃ is indeed invertible : then the compactness of the per-

turbation is easy to obtain. Indeed, S̃ is no more than the multiplication by a
function that is ≡ 0 on x ≤ 0 and that tends uniformly in y to 0 as x → ∞. So,
taking (un) a bounded sequence in Cα(ΩL), we have that (T̃ −1un) is bounded
in C2,α, so by applying a chain of Ascoli theorems and the process of diagonal
extraction we can extract from (T̃ −1un) a sequence we note (vn) that converges
in C2

loc to v. We now want to extract from (S̃vn) a sequence that converges in Cα.
But this is easy since S̃vn = 0 on x < 0 and S̃vn → 0 uniformly in y as x → ∞,
so in fact the C2

loc convergence of vn suffices to have S̃vn → S̃v in whole C2, so
in Cα. For T̃ −1S̃ on C2,α we apply the same argument : we just have to see that
T̃ −1(S̃(un)) is bounded in C4,α since un is bounded in C2,α. Then we extract from
it something that converges in C3

loc, but in fact, in whole C3 so in C2,α.
It remains to show that T̃ : C2,α → Cα is indeed invertible, that is, to show

that the following problem is uniquely solvable

W̃u = 0

T̃ u = f ∈ Cα(ΩL)

∂yu = 0

but this is the case, since the 0-order terms of T̃ and W̃ are > 0 (see theorem 6.31
in [46] and more precisely the remark at the end of its proof).

Computation of the kernel

Suppose Lu = 0. We will show that

P := {Λ ∈ R |∀λ < Λ, u > λ∂xψ
0}

has a supremum λ0, and that u = λ0∂xψ0. First, we show that this set is non-void :
for every truncated (compact) rectangleK, we can find λ ∈ R such that u > λ∂xψ

0

onK. Now just choseK big enough such that outsideK we have f ′(ψ0) ≤ 0, so we
have the strong maximum principle, and since L(u− λ∂xψ0) = 0, the comparison
u−λ∂xψ0 > 0 is inherited in all ΩL

5. Now P being non-void and trivially bounded
5a point where it is ≤ 0 at the left of K means that a non-positive minimum is reached at

the left of K, which is impossible ; the right of K is treated in the same way but with the
compactness argument given in Lemma 1.3.4 since we do not know a priori that u− λ∂xψ0 → 0
as x→∞ even if it is the case.
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from above, it has the supremum we announced. By continuity, u− λ0∂xψ0 ≥ 0,
and moreover we have L(u − λ0∂xψ0) = 0. Now suppose u − λ0∂xψ0 6≡ 0 by
contradiction : because of the strong maximum principle, we have u−λ0∂xψ0 > 0,
and again on any truncated rectangle K we can find ε > 0 small enough such that
u > (λ0 + ε)∂xψ0 on K, and choosing K large enough and proceeding as above,
we have a contradiction regarding the maximality of λ0.

Now, suppose L2u = 0. Then Lu = α∂xψ
0 for some α ∈ R. We suppose

α 6= 0 and we will obtain a contradiction. By linearity we can suppose α = 1, i.e.
Lu = ∂xψ

0 > 0. Now, the fact that for every λ ∈ R, L(u− λ∂xψ0) = ∂xψ
0 is

positive, enables to do the exact same proof as above to have a contradiction too
(we will necessarily have u > λ0∂xψ0 and the contradiction, since Lu 6= 0).

Properties of e∗

Finally, let e∗ generate the kernel of the adjoint of L. Let us normalise e∗ by the
condition < e∗, ∂xψ0 >= 1, and show that e∗ is a positive measure. Similarly to
[74]6 we infer that L is sectorial on BW0 := {u ∈ UC0(ΩL) | w1u ∈ UC0(ΩL)}
and that 0 is the bottom of its spectrum. As a consequence we have the following
realisation of e∗ on BW0 :

∀u0 ∈ BW0, lim
t→+∞

e−tLu0 =< e∗,u0 > ∂xψ0

Indeed, decomposing u0 on N(L) ⊂ BW0 and its orthogonal complement we get
e−tLu0 = e−tL(< e∗,u0 > ∂xψ0 + b0), the first term being constantly < e∗,u0 >
∂xψ0 and the second one decaying exponentially fast to zero as t→ +∞. Knowing
that ∂xψ0 > 0 and applying this on every non-negative u0 in D(ΩL) ⊂ BW0, since
non-negativity is preserved over time for e−tLu0, we get that e∗ is a non-negative
distribution, that is a positive measure.

Moreover, e∗ satisfies L∗e∗ = 0 in the sense of distributions along with its dual
boundary condition, which is an hypoelliptic problem (see [31] Thm 4.2 or [70]
Thm 3)(iii)). As a consequence, e∗ is a smooth non-negative function up to the
boundary of ΩL.

Then, the strong maximum principle gives e∗ > 0. Finally, using the weak Har-
nack inequality up to the boundary of [62] and the classical subsolution estimate
up to the boundary of [46], Theorem 9.20, we obtain a full Harnack inequality up
to the boundary for e∗. Using it in x large (where −f ′(ψ0) > 0)) on half-balls
touching the boundaries we get that e∗ is bounded : indeed, if its supremum were
blowing up, its infimum would also : but this is impossible since e∗ is integrable
on x > 0 (note that w ∈ X).

The same argument for −x large gives that e∗ has at most a Ce−rx growth.

6where the author treats this exact problem with a Neumann condition instead of a Wentzell
one, but this does not change his proof.
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1.4 Continuation from small ε > 0 to ε = 1
First we avoid the singularity near ε = 0 : it will be studied later since it deals
with a very unusual boundary condition. Let us set for ε0 > 0,

Pε0 = {ε ∈ [ε0, 1] | (Sε) has a solution}

We now adapt the proofs of the previous section, following the same steps. The
main differences are technical : all the computations are adapted easily, the coun-
terpart of the regularity result in Proposition 1.3.1 has no technical difficulty any
more, but the weight function in Section 1.4.2 changes a bit. For technical rea-
sons we had to chose erx everywhere, so we will need to be careful about the
boundedness of solutions.

1.4.1 Pε0 is closed
This subsection follows exactly subsection 1.3.1. Consider a sequence εn → ε∞ ∈
[ε0, 1] and call (cn,φn,ψn) the associated sequence of solutions of (Sεn) normalised
in translation by

max
x≤0,y∈[−L,0]

(µφn(x),ψn(x, y)) = θ (1.25)

Thanks to Propositions 1.2.5 and 1.2.6 we can extract from cn a subsequence
such that

lim
n→+∞

cn = c∞ > 0 (1.26)

We now state a regularity result which is the counterpart of Proposition 1.3.1 in
the case of (Sε) :

Proposition 1.4.1. There exists α > 0 and constants CSch1,2 = C(D, d, cmax,Lipf ,L,µ)
such that for all n ≥ 0

|ψn|C2,α(ΩL) ≤ CSch1
(
|ψn|L∞(ΩL) + |µφn|L∞(R)

)
≤ 2CSch1

|µφn|C2,α(R) ≤ CSch2
(
|ψn|L∞(ΩL) + |µφn|L∞(R)

)
≤ 2CSch2

Proof. We adapt the proof of Proposition 1.3.1. By classical ODE theory (use
Fourier transform or the variation of constants), there exists Code = C(D,µ, cmax)
such that

|µφn|C1,α ≤ |µφn|W 2,∞ ≤ Code (|µφn|∞ + |ψn|∞) ≤ 2Code

Seeing the right-hand side f(ψn) in (Sε) as −f(ψn)ψn
ψn in the left-hand side, which

yields a bounded 0-order term since f is Lipschitz, we can use the Hölder continuity
estimate up to the mixed boundary of [60] and iterate with the classical Schauder
estimate up to the Robin boundary (see [46], Lemma 6.29) so that on half-balls
B− supported on y = 0 on a segment T :

|ψn|C2,α(B−) ≤ CR
(
(1 +Code)|ψn|L∞(2B−) +Code|µφn|∞

)
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for some constant CR. Finally we obtain the desired result by plugging the above
estimate in the standard Schauder estimates for φ :

|φn|C2,α(T ) ≤ CSch
(
|φn|L∞(2T ) +CR

(
(1 +Code)|ψn|L∞(2T ) +Code|µφ|∞

))
As before, we obtain the global estimate by covering R×ΩL with such T and

B− using that the above estimate holds independently of the position of B−, and
other half-balls where standard Schauder estimates up to the Neumann boundary
hold.

Thanks to the previous estimate, as before we extract from (φn,ψn) a subse-
quence still denoted (φn,ψn) that converges in C2

loc to φ∞,ψ∞ satisfying (Sε∞)
except the limiting conditions. We now conclude just as in Propositions 1.3.2 and
1.3.3 :

Proposition 1.4.2. µφ∞ and ψ∞ satisfy uniformly in y

lim
x→−∞

µφ∞(x),ψ∞(x, y) = 0

lim
x→+∞

µφ∞(x),ψ∞(x, y) = 1

Proof. For the left limit, just observe that thanks to condition (1.25), (1.13) still
holds for both µφε and ψε. For the right limit, the computations of Proposition
1.3.3 still hold : the only difference is that the boundary term

s∞

µ

∫ M

0

(
−D∂2

xxψ
∞(x, 0) + c∞∂xψ

∞(x, 0)
)
dx

should be replaced here by∫ M

0

(
−D∂2

xxφ
∞(x) + c∞∂xφ

∞(x)
)
dx

which is treated in the exact same way.

1.4.2 Pε0 is open
To simplify the notations, we note M = 1/ε and we search around a solution
(c0,φ0,ψ0) for M = M0, a solution c = c0 + (M −M0)c1,φ = φ0 + (M −
M0)φ1,ψ = ψ0 + (M −M0)ψ1. The equations on c1,φ1,ψ1 are

E(φ1,ψ1) = (M −M0)(µφ1 −ψ1) + µφ0 −ψ0

l(φ1,ψ1) = (M −M0)(ψ1 − µφ1)− c1φ′0 − (M −M0)c1φ′1 + ψ0 − µφ0

Lψ1 + c1∂xψ0 = R(M −M0, c1,ψ1)

∂yψ = 0

(1.27)
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where

l(φ,ψ) = −Dφ′′ + c0φ′ −M0(ψ− µφ)
Lψ = −d∆ψ+ c0∂xψ− f ′(ψ0)ψ

E(φ,ψ) = d∂yψ−M0(µφ− ψ)

The functional setting will be r = min( cminD , cmind ), w(x) = erx on the whole
real line (we will see later why we need to take the exponential everywhere instead
of connecting it with a constant like before)

X = C2,α
w (R)×C2,α

w (ΩL)

and we will work with the operator from X to Y = Cαw(R)×Cαw(ΩL)

L (φ,ψ) := (l(φ,ψ),Lψ)

endowed with the exchange condition E(φ,ψ) = 0 on y = 0 and the Neumann
condition −d∂yψ = 0 on y = −L.

Treating the boundary as usual in the system case, we can obtain the same
properties as in Lemma 1.3.2, with this time N(L ) generated by (φ′0, ∂xψ0) :

Lemma 1.4.1. L : X → Y is a Fredholm operator of index 0. As a consequence,
the following decompositions hold

X = N(L )⊕X1

Y = R(L )⊕ Y2

where X1 ' R(L) is a closed subspace of X and Y2 ' N(L). Moreover

N(L ) = N(L 2) = R(φ′0, ∂xψ0)

Proof. This proof is postponed in section 1.4.3 to lighten this section. It relies
on the same arguments as Lemma 1.3.2, up to the subtlety of the system case.
These technicalities are the reason why we chose w(x) = erx everywhere. Observe
that the exponential growth of w as x → +∞ adds a difficulty in proving the
Fredholm property : we have to prove that the invertible part of L yields bounded
solutions.

In order to work with this fixed problem, we have to kill the non-homogeneities
and the small terms, so as before we look for solutions with form

φ1 = φ̃(M , c1,φ,ψ) + φ

ψ1 = ψ̃(M , c1,φ,ψ) + ψ

where φ̃, ψ̃ solves, for A large enough,
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d∂yψ̃−M(µφ̃− ψ̃) = (M −M0)(µφ−ψ) + µφ0 −ψ0

−Dφ̃′′ + c0φ̃′ −M(ψ̃− µφ̃) +Aφ̃ = (M −M0)(ψ− µφ)− c1φ′0 − (M −M0)c1φ′ + ψ0 − µφ0

(−d∆ + c0∂x − f ′(ψ0) +A)ψ̃ = 0

∂yψ = 0

(1.28)

Lemma 1.4.2. Such a function (φ̃, ψ̃) exists and satisfies

(φ̃, ψ̃) ∈ C1 (R×R×X;X)

Proof. See Section 1.4.3 for the solvability of this equation providedA large enough.
The fact that φ̃, ψ̃ are not only C2,α but C2,α

w is shown just as before : thanks to
the Schauder type estimate as in Proposition 1.4.1, it suffices to show that w1ψ̃
and w1φ̃ are bounded. For this, repeat the proof of Lemma 1.3.4 but treating the
boundary as usual in the system case.

Thus we are left with the following problem to solve in c1 ∈ R, (φ,ψ) ∈ X :

L (φ,ψ) + c1(φ′0, ∂xψ0) = (R1,R2)−L (φ̃, ψ̃) (1.29)

As before, applying the projection P onto Y2 on (1.29) yields an equation on c1,
and applying Q = Id−P yields an equation on the image part of the decom-
position of (φ,ψ) = Λ(φ′0, ∂xψ0) + (φR,ψR) ∈ X, Λ ∈ R being free in all this
procedure. The set of equation obtained is

c1 = P((R1,R2)−L (φ̃, ψ̃)) (1.30)
L (φR,ψR) = Q((R1,R2)−L (φ̃, ψ̃)) (1.31)

For M > M0, the auxiliary functions depend on c1,φ and ψ so this system is
non-linear and coupled, but at M = M0, we have R1 = R2 ≡ 0, and the auxiliary
functions depend only on φ0,ψ0, so in this case the system, as before, can be solved
step by step. Moreover, since here c does not appear in the boundary condition,
we do not need the duality argument of the previous section : (1.30) is trivially
solvable.

Finally, as before the differential of this system of equations with respect to
c1, (φR,ψR) ∈ R×X1 at M = M0 and the corresponding solutions yields an iso-
morphism since L is invertible on X1, and the implicit function theorem provides
for M close to M0 a solution of (Sε) apart from the limiting conditions.

The right-limit condition is then obtained by an adaptation of the computations
of Proposition 1.3.4. We wish to emphasise on the fact that even though w has
exponential growth as x → +∞, φ1,ψ1 are indeed bounded, as highlighted in
Lemma 1.4.1.
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Proposition 1.4.3. Let

c = c0 + (M −M0)c
1, φ = φ0 + (M −M0)φ1, ψ = ψ0 + (M −M0)ψ1

If M −M0 is small enough, we have

lim
x→+∞

µφ(x),ψ(x, y) = 1

uniformly in y.

Proof. By treating the upper boundary as usual in the system case, the arguments
of Proposition 1.3.4 hold. The only thing to check is the existence of another
supersolution with exponential decrease in this case. We look for a solution of the
type (e−γx, e−γxh(y)). The equations on γ > 0,h > 0 are

−h′′ +
(
− 1

2df
′(1)− γ

(
γ +

c

d

))
h = 0 (1.32)

dh′(0) = µ− h(0) (1.33)
−h′(−L) = 0 (1.34)
−Dγ2 − cγ = h(0)− µ (1.35)

Since f ′(1) < 0, this can be solved by

h(y) = C cosh (β(γ) (y+ L))

where
β(γ) =

√
−f ′(1)/(2d)− γ(γ + c/d)

Moreover, equation (1.33) gives that

C =
µ

dβ(γ) sinh(β(γ)L) + cosh(β(γ)L)

which, plugged in equation (1.35) yields the equation on γ :

Dγ2 + cγ =
µdβ(γ)

1 + tanh(β(γ)L)

which has a solution 0 < γ < γlim (where γlim is the positive zero of β(γ)) for the
same reasons as in Proposition 1.3.4.

1.4.3 Proof of Lemma 1.4.1
Throughout all this section, in order to simplify the notations, we have taken
M0 = 1 without loss of generality. In this section we show that L is Fredholm
of index 0 on X, and that N(L ) = N(L 2) is generated by (φ′0, ∂xψ0). The
proof of the second property does not change : (φ′0, ∂xψ0) is indeed a solution of
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0 γlim

µdβ(γ)
1+tanh(β(γ)L)

Dγ2 + cγ

Figure 1.3: Equation (1.35) on γ

the problem, and by treating the boundary condition as usual in the system case,
the proof of lemma 1.3.2 in section 1.3.3 still holds. The proof of the Fredholm
property on the other hand changes a bit, since we did not take the usual weight
but the exponential weight on the whole real line. This is because of the exchange
condition : suppose we had taken the usual weight, and did all the machinery
L̃ = T̃ + S̃ . Then we would not be able to show that T̃ is invertible. Indeed,
suppose we want to solve T̃ (φ,ψ) = (g,h) ∈ Cα(R) × Cα(ΩL). In order to
obtain that T̃ is injective (and that its inverse is bounded if it exists), we want
to control (φ,ψ) by the data (g,h), by starting with the L∞ norm. So suppose
ψ reaches a maximum somewhere. Then if it is on y = 0 and on x > 1, we
have a problem. Indeed, the Hopf lemma only gives ψ < µφ and then looking the
equation for φ gives nothing : that is why we want to pull a bit the 0-order term
of the equation on φ, and that is why we have chosen w(x) = erx everywhere, so
that T̃ (φ,ψ) = (g,h) is no more than

d∂yψ = µφ−ψ

−Dφ′′ + (c0 − 2Dr)φ′ + (µ+ αr)φ− ψ = g

(−d∆ + (c0 − 2dr)∂x + γ(x))ψ = h

∂yψ = 0 (1.36)

with αr = −Dr2 + c0r > 0. In this setting, a maximum point of ψ reached on
the road is no more a problem, we always have that ψ < µ

αr
|g|∞ in this case, and

actually, in every case
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|ψ|∞ ≤
1

min γ |h|∞ +
µ

αr
|g|∞

|φ|∞ ≤
|g|∞ + |ψ|∞
µ+ αr

≤ 1
min γ(µ+ αr)

|h|∞ +
1
αr
|g|∞

For the surjectivity, unlike before, the literature does not give any existence
theorem for such a linear problem, so we have to do it by ourselves : just observe
that the estimate above gives that T̃ has closed range. Indeed, if T̃ (φn,ψn) =
(gn,hn) and (gn,hn) converges in Cα to a (g,h), then by the above estimate and
the Cauchy criteria, (φn,ψn) converges uniformly to a bounded continuous (g,h).
But also T̃ (φn,ψn) is bounded in Cα, so by regularity as in Proposition 1.4.1,
(φn,ψn) converges up to extraction and diagonal process in C2,β. Uniqueness of
the limit implies that (φ,ψ) is indeed C2,β and the convergence holds in the C2,β

sense. Finally, passing to the limit we get T̃ (φ,ψ) = (g,h) and (φ,ψ) ∈ C2,α so
that (g,h) lies in R(T̃ ). Finally, observe that the above estimate also holds for
the formal adjoint of T̃ . Then, since the operators have smooth coefficients, the
duality can be obtained thanks to the formal adjoint, and so R(T̃ ) = R(T̃ ) =
N(T̃ ∗)⊥ = Cα.

The only thing left to see is that solving something for tilded operators really
yields something back in the untilded world : what we mean is that since w
has exponential growth as x → +∞, we might have a problem. Indeed, we
wanted to solve T u = (g,h) in the weighted spaces, so we saw this equation as
1
wT (w× (φ,ψ)) = 1

w (g,h) ∈ C
α(R)× Cα(ΩL) and obtained a solution (φ,ψ) ∈

C2,α. In the former cases, since w ∈ C∞,α we did not have any problem to claim
that also wv ∈ C2,α but here it is not the case any more, w is not even bounded,
and we might not have wψ ∈ C2,α, we might even not have that it is bounded.
Actually, C2,α and boundedness for w× (φ,ψ) are equivalent because of Schauder
estimates, so we just have to see that it is indeed bounded. We will do that by
showing that φ,ψ have actually a Ce−rx decay as x→ +∞.

For this, letK = max(|g|∞, |h|∞) and observe that ifA ≥ max(K,K/−f ′(1))
then

(φ,ψ) =
(
A

µ
e−rx,Ae−rx

)

is a supersolution of (1.36) on x > 1, where (1.36) has constant coefficients and
a positive 0-order term. Now just multiply this supersolution by a constant large
enough so that it is above (φ,ψ) on x = 1 and apply the usual maximum principle
and compactness argument to (φ− φ,ψ − ψ) : it can neither reach a negative
minimum, nor have a negative infimum as x → +∞, which yields that φ,ψ ≤
Ce−rx for some constant C > 0. The same argument works for finding C ′ < 0
such that φ,ψ ≥ −C ′e−rx.
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1.5 The case ε ' 0
We start with

(
cw,ψw,φw = 1

µψw(·, 0)
)
. We want to continue this solution to a

solution of (Sε) for small ε > 0. If we set as usual φ = φw+ εφ1,ψ = ψw+ εψ1, c =
cw + εc1, using

φ1 =
ψ1 + d∂yψw + εd∂yψw

µ

from the exchange condition yields the equation

Wψ1 + ε
c1
µ
∂xψ1 +

(
−εD
µ
∂2
xx + ε

cw + c1ε

µ
∂x

)
d∂yψ1

=− c1
µ
∂xψw −

(
−D
µ
∂2
xx +

cw + c1ε

µ
∂x

)
d∂yψw

(1.37)

where
W = d∂y −D/µ∂2

xx + cw/µ∂x

as the upper boundary condition for the usual linearised problem in ψ1 :

− d∆ψ1 + cw∂xψ1 − f ′(ψw)ψ1 = −c1∂xψw +R(ε, c1,ψ1) (1.38)

In particular, by taking ε = 0 in (1.37), (1.38) we retrieve a linear Wentzell
problem, i.e. (1.37), (1.38) is a singular perturbation of a Wentzell problem on
which we already applied the implicit function theorem. Conversely, we can see
(1.37) as an integro-differential regularisation of the Wentzell boundary condition,
but the regularity theory of [30] does not apply easily to this situation.

As before, we want to transform (1.37) in a fixed Wentzell problem by using
an auxiliary function. This time, since we do not have any existence or regularity
theorem for such problems, we will have to compute everything by hand. Hopefully,
since we work in a strip, we can use the partial (in x) Fourier transform which will
be a very helpful tool. On the other hand, this time we will have to work with a
constant coefficient operator instead of the linearised itself in order to be able to
do the computations, but we will see that this is not a problem. From now on, let
w denote the same weight function as in the Wentzell section. We now give two
simple technical lemmas that we will use throughout the next computations.

Lemma 1.5.1. If k ∈ L1, k̂ ∈ C∞ ∩L2 and h ∈ L∞, ĥ ∈ S ′ then the formula

F−1(k̂ĥ) = k ∗ h

makes sense and holds (where F−1 denotes the inverse Fourier transform).

Proof. Since k̂ is a smooth function, the product distribution k̂ĥ makes sense and
we can compute its inverse Fourier transform : result follows by using the classical
properties of the Fourier transform on L2 and the Fubini-Tonelli theorem.
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Lemma 1.5.2. Let r > 0. If h ∈ L∞(R) and e−rxh(x) ∈ L∞(R) as well as
K ∈ L1(R) and e−rtK(t) ∈ L1(R) then

K ∗ h ∈ L∞(R) and e−rx(K ∗ h)(x) ∈ L∞(R)

If moreover e−rxh ∈ Cα(R), then e−rx(K ∗ h)(x) ∈ Cα(R).

Proof.

|e−rx(K ∗ h)(x)| ≤
∫

R
|K(t)e−rxh(x− t)|dt ≤

∫
R
|e−rtK(t)||e−r(x−t)h(x− t)|dt

≤ |e−rtK(t)|L1|e−rxh(x)|L∞

For the second part of just observe that

|e−ry(K ∗ h)(y)− e−rx(K ∗ h)(x)|
|x− y|α

≤
∫

R
K(t)e−rt

|e−r(y−t)h(y− t)− e−r(x−t)h(x− t)|
|y− x|α

dt

≤ |e−rtK(t)|L1|e−rxh(x)|α

Now we assert the following :

Lemma 1.5.3. By taking r > 0 small enough in the definition of w, we have

ψ̃ ∈ C1([0, 1]×R×C3,α
w (ΩL); C2,α

w (ΩL))

where u = ψ̃(ε, c1, v) solves

Wu+ εc1
µ ∂xu+

(
−εDµ ∂

2
xx + εcw+c1ε

µ ∂x
)
d∂yu = h0 − εc1

µ ∂xv−
(
−εDµ ∂

2
xx + εcw+c1ε

µ ∂x
)
d∂yv

−∆u+ u = 0

∂yu = 0

and h0 := −c1
µ ∂xψw −

(
−Dµ ∂

2
xx +

cw+c1ε
µ ∂x

)
d∂yψw ∈ Cα(R). Moreover, we have

the estimate

|u|C2,α(ΩL) ≤ C1|h0|∞ +C2

∣∣∣∣∣1εK0

(
|x|
dε

)
∗ (h0 + εh(v))

∣∣∣∣∣
α

+C3|h0 + εh(v)|α

where K0 denotes the 0-th modified Bessel function of the second kind (which is
integrable7 and whose Fourier transform is π√

1+x2 ) so that 1
εK0

( |x|
dε

)
realises an

approximation to the identity, and where h(v) denotes ∂xv+∂xyv+∂xxyv. Finally,
we also have

Lψ̃(ε, c1, v) ∈ C1,α
w (ΩL)

7it increases in a logarithmic fashion as x → 0 and decreases as e−x/x as x → ∞, see [69]
p.532.
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Proof. The proof is based on the kernel analysis of this problem after applying
a partial Fourier transform. First, let us see that v ∈ C3,α

w (R) implies that the
right-hand side in the boundary condition for u is in Cαw(R). In the following,
for the sake of notations we will only write it h. Applying formally the x-Fourier
transform, we get a one parameter (in ξ) family of two-points boundary problems
(in y) which are solved necessarily by

û(ξ, y) = C(ξ) cosh(
√
ξ2 + 1(y+ L))

and the upper boundary condition yields, if we set β(ξ) =
√
ξ2 + 1

C(ξ) =
ĥ(ξ)

dβ (ξ) sinh (β (ξ)L)
(
1 + εD

µ ξ
2 + εcw+c1ε

µ iξ
)
+
(
D
µ ξ

2 + cw+c1ε
µ iξ

)
cosh (β (ξ)L)

i.e. we get

û(ξ, y) = C(ξ) cosh (β (ξ) (y+ L)) ĥ(ξ) =: k̂y(ξ)ĥ(ξ)

Now for each −L ≤ y < 0, this kernel is in the Schwartz space S (R) and u(x, y)
for such y can be obtained by the usual convolution product between the Fourier
inverse of k̂y(ξ) and h(x). Moreover, since for −L ≤ y < −δ with δ > 0 the
kernels are a C∞ family that is uniformly bounded in the Schwartz space S (ξ),
we have by dominated convergence that u is a C∞ function in ΩL, in particular it
is locally C2,α. We now want to investigate the regularity of u on the line y = 0
in order to use Schauder estimates to conclude to a uniform C2,α regularity.

On y = 0, things get a little more complicated since the kernel involved is

k̂0(ξ) =
1

dβ (ξ) tanh (β (ξ)L)
(
1 + εD

µ ξ
2 + εcw+c1ε

µ iξ
)
+
(
D
µ ξ

2 + cw+c1ε
µ iξ

)

which decays only like 1
1 + D

µ ξ
2 + εdD

µ |ξ|3
, and (iξ)2k̂0(ξ) like

ξ2

1 + D
µ ξ

2 + εdD
µ |ξ|3

.

Keep in mind that we are interested in ε independent estimates, so we cannot use
the little bonus decay it gives. Nonetheless, observe that k̂0 is C1 with respect to
the parameters (c1 ∈ R, ε ∈ [0, 1]) (this is something we will need in the end to
apply the implicit function theorem) and decays at worst (when ε = 0) as µ

D(1+ξ2) .
Heuristically, we see that ε > 0 is not a problem in the sense that it adds decay
and does not prevent analyticity, so in a Fourier point of view, the worst case
is when ε = 0, and in this case the kernels are nothing more than the kernels
for the Wentzell problem in a strip, which is known to be well posed. We use a
Paley-Wiener type theorem to prove this :

• k̂0(ξ) is a C1 in (c1 ∈ R, ε ∈ [0, 1]) family of integrable (because the worst
decay is 1

1+D
µ ξ

2 for ε = 0) and real analytic functions (as the inverse of
real analytic functions that have no zero). Moreover, independently from
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ε and c1, these real analytic functions admit an analytic continuation to a
complex strip |=ζ| < a with a > 0 that have a η-uniformly bounded L1

norm on the real lines R+ iη, −a < η < a, see lemma 1.5.4. By virtue of the
Paley-Wiener type theorem of [73] (IX.14) and the dominated convergence
theorem we know that k0(x) is a C1 in c1 ∈ R, ε ∈ [0, 1] family of bounded
continuous real functions that satisfy all |k0(x)| ≤ Cae

−a|x|. Now, we can
say that u(x, 0) = k0 ∗ h is a bounded continuous function that is C1 with
respect to the parameters ε, c1 and v (since h is C1 in those parameters as
product and sum of affine functions).

• For the sake of simplicity, we divide the analysis of ξ2k̂0(ξ) in two cases :
ε > 0 or ε = 0 and we will see that the result is smooth in ε.
Case ε = 0 : in this case, the asymptotic behaviour of ξ2k̂0(ξ) as |ξ| →
∞ yields ξ2k̂0(ξ) = µ

D −
µ2d

D2
√

1+ξ2 + r1(ξ) where r1 denotes an integrable

function (it decays like 1/ξ2) that has an analytic continuation in some
complex strip |=| < a, i.e. to which the same analysis as above applies.
Thus, the Fourier transform of ξ2k̂0(ξ) is given by µ

Dδ −
µ2d
D2

1
πK0(|x|) + ř1,

where δ denotes the Dirac distribution, K0 the modified Bessel function of
order 0, and where ř1 has the properties described in the section above. By
lemma 2.3.2 we get

∂2
xxu(x, 0) = µ

D
h0 −

µ2d

D2
1
π
K0(| · |) ∗ h0 + ř1 ∗ h0 ∈ Cα(R)

since h0 ∈ Cα(R)

Case ε > 0. This changes the decay of the kernel from constant to 1/ξ, so
we will not get a Dirac term in the Fourier transform. Nonetheless, what is
tricky is that we want u = ψ̃ to be a C1 function in ε to be able to use the
implicit function theorem, i.e. we separated the computations for ε > 0 or
= 0, but in the end the results should agree when ε→ 0. This will be based
on the fact that the functions we will obtain will behave as an approximation
to the identity as ε→ 0.
Indeed, ξ2k̂0(ξ) =

µ
D

1√
1+(dε)2ξ2 + r2. Notice that we chose to put ε in front

of ξ inside the square root rather than just let it appear as 1
ε : this is the

right way to get smoothness in ε, since this gives the correct decay even if
ε = 0. Now, observe that the inverse Fourier transform of the first term is
µ
D

1
π

1
dεK0(

|x|
dε ) : since K0(| · |) is an integrable function on R1 whose integral

equals to π, this clearly is µ
D times an approximation to the identity. We

finish by saying that the term r2 can be computed as C(ε)√
1+ξ2 + r3 where C(ε)

is a smooth function that satisfies C(0) = −µ
2d
D and r3 is a smooth family

with respect to (c1, ε) of integrable functions to which the same analysis as
r1 applies, and that goes to r1 as ε→ 0.
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This analysis gives that u ∈ C2,α(y = 0) and then by applying Schauder estimates
for the Dirichlet problem, we get that u ∈ C2,α(ΩL). We describe now with more
details the same technique applied on w1u.

We are now left to show that a weighted data yields a weighted solution, i.e.
that w1u ∈ C2,α(ΩL). We observe that v = w1u solves the following equation in
ΩL :

v = v

−∆v+ 2
(
∂xw1
w1

)
∂xv+

(
1 + ∂2

xxw1
w1
− 2

(
∂xw1
w1

)2)
v = 0

∂yv = 0

B

T

Thanks to the expression of w1, the coefficients of this equation are smooth
bounded functions and we can use local estimates up to the boundary for the
Dirichlet or the Neumann problem (see Cor. 6.7 and Lemma 6.29 in [46]), so it
suffices to show that w1u is bounded and that w1u(·, 0) ∈ C2,α(R), which thanks
to the expression of w1, is similar to w1∂2

xxu ∈ Cα(R). We show that these are
true provided r < min(ρ, 1) (see lemma 1.5.4 for the definition of ρ).

• w1u is bounded thanks to lemma 1.5.2 : indeed w1u(x, y) = w1(x)(ky ∗
h)(x). As we already said, ky is a family of bounded continuous functions
uniformly bounded in L1. Moreover, they have a uniform Ce−ρ|x| decay as
x→ ±∞ : for this see lemma 1.5.4 below and use [73], Theorem IX.14.

• w1∂2
xxu(·, 0) is bounded and has Cα regularity since K0(| · |) has e−|x|/|x|

decay and the other kernels appearing in ∂2
xxu(·, 0) satisfy lemma 1.5.2 too,

thanks to their common analyticity ; see lemma 1.5.4.

Lemma 1.5.4. Replacing ξ with the complex variable ζ in k̂y(ξ) yields a mero-
morphic continuation of k̂y in the strip −1 < =z < 1 that has no pole in a strip
−ρ < =z < ρ for ρ > 0 small enough.

Proof. First, observe that apart from β(ξ), the denominator of k̂y, which we will
note F (ξ) in this proof :

dβ (ξ) sinh (β (ξ)L)

(
1 + εD

µ
ξ2 + ε

cw + c1ε

µ
iξ

)
+

(
D

µ
ξ2 +

cw + c1ε

µ
iξ

)
cosh (β (ξ)L)

is composed of holomorphic functions over the whole complex plane. The only
limiting function is β(ξ) which is holomorphic in the strip −1 < =z < 1. As a
result, k̂y is meromorphic in this strip. Moreover, thanks to the D

µ ξ
2 cosh(β(ξ)L)

term we can see that if ξ is large enough, |F (ξ)| is large enough (independently
from =ζ in the strip and from c1, ε), so its zeroes have to be in a rectangle centred
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at the complex origin whose length depends on the parameters (but not on ε or
c1). Since the zeros of a non-zero holomorphic functions are isolated, we know that
F has a finite number of zeros in such a rectangle. Moreover, a direct computation
shows that it cannot have any zero on the real line. Thus, there exists ρ > 0 small
enough such that on the strip −ρ < =ξ < ρ, F does not vanish.8

We now turn to the implicit function theorem procedure that concludes this
section. Searching as usual for ψ1 with form ψ1 = v + ψ̃(v), we are reduced to
solving the following problem on v :

d∂yv− D
µ ∂

2
xxv+

cw
µ ∂xv = 0

Lv+ c1∂xψ0 = R(ε, c1, v)−Lψ̃(s, c1, v)

∂yv = 0

We now use the analysis of section 1.3.2 to claim that L endowed with this
Wentzell boundary condition has the Fredholm property of index 0 between C3,α

w

and C1,α
w . Since R lies also in C1,α

w , the procedure is then exactly the same as in
1.3.2 and for ε > 0 small enough leads to a solution c1,ψ1 = v + ψ̃(ε, c1, v) of
(1.37), (1.38) that lies in C2,α

w (ΩL).

Then, setting φ1(x) =
ψ1(x, 0) + d∂yψw(x, 0) + εd∂yψ1(x, 0)

µ
we get that φ1 ∈

C2,α
w (R) and that φ = 1

µψw(x, 0) + εφ1,ψ = ψw + εψ1 solves (Sε) except for the
right limit condition. But the analysis of Proposition 1.3.4 with the maximum
principle and Hopf lemma for the system gives that if ε > 0 is taken small enough,
this limit holds.
Remark 1.5.1. Observe that solving this singular perturbation had a price of one
derivative: we started by assuming ψw ∈ C3,α(ΩL) but we end up with a solution
of (Sε) that is only C2,α(R)×C2,α(ΩL).
Remark 1.5.2. Finally, we wish to detail the changes that are to be made when f
satisfies Assumption B :

• On the one hand, since f ′(0) < 0, no weighted spaces are needed : the
linearised operators will be Fredholm in the usual function spaces. This
simplifies considerably the above method.

• On the other hand, the estimates by below on cn will not hold anymore since
we lose the positivity of

∫
f(ψ). Nonetheless if one multiplies by ∂xψ the

8Actually, contour integrals of F ′/F show that F has only one or two zeros, depending on
d,D,µ, cw and L, and we can easily see that these are on the imaginary axis by solving for ζ = iη
the equation d

√
1− η2 tanh(

√
1− η2L)(1− εDµ η

2 − ε cw+c1ε
µ η) = D

µ η
2 + cw+c1ε

µ η.
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equation satisfied by ψ in (Sε) and integrate by parts, one gets

c
(∫

ΩL

(∂xψ)
2 +

∫
R
φ′2
)
= L

∫ 1

0
f(s)ds

Thus, since f is of positive total mass one ensures the positivity of c and
one can take cmin = 0. This will not be a problem thanks to f ′(0) < 0 : for
instance in Prop. 1.3.2 the exponent r can now be defined as

r :=

√
−f ′(0)

2d > 0

and this will yield a suitable supersolution if one normalises the solutions by
translation in such a way that f(ψ) ≤ f ′(0)

2 ψ on x < 0.
Finally, the end of the proof of Prop. 1.3.3 adapts as follows :

c∞(L+ s∞/µ) =
∫

ΩL

f(ψ∞)

but this is impossible if β = θ since c∞ ≥ 0 and
∫
f(ψ∞) < 0.

Acknowledgement
The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n.321186 - ReaDi -Reaction-Diffusion
Equations, Propagation and Modelling. I also would like to thank Professors
H. Berestycki and J.M. Roquejoffre for their support and their help during the
preparation of this work and two anonymous referees for their fruitful remarks
and corrections.



Chapter 2

The large diffusion limit

“ If you try and take a cat apart to see how it works, the first
thing you have on your hands is a non-working cat. ”

—Douglas Adams (1952-2001)

We study the velocity of travelling waves of a reaction-diffusion system
coupling a standard reaction-diffusion equation in a strip with a one-
dimensional diffusion equation on a line. We show that it grows like
the square root of the diffusivity on the line. This generalises a result of
Berestycki, Roquejoffre and Rossi in the context of Fisher-KPP propa-
gation where the question could be reduced to algebraic computations.
Thus, our work shows that this phenomenon is a robust one. The ratio
between the asymptotic velocity and the square root of the diffusivity
on the line is characterised as the unique admissible velocity for fronts
of an hypoelliptic system, which is shown to admit a travelling wave
profile.

This chapter is an article submitted in Trans. Amer. Math. Soc.
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2.1 Introduction
This paper deals with the limit D → +∞ of the following system with unknowns
c > 0,u(x), v(x, y) :

−d∆v+ c∂xv = f(v) for (x, y) ∈ ΩL := R×]−L, 0[
d∂yv(x, 0) = µu(x)− v(x, 0) for x ∈ R

−d∂yv(x,−L) = 0 for x ∈ R

−Du′′(x) + cu′(x) = v(x, 0)− µu(x) for x ∈ R

along with the uniform in y limiting conditions

µu, v → 0 as x→ −∞

µu, v → 1 as x→ +∞
These equations will be represented from now on as the following diagram

d∂yv = µu− v
−Du′′ + cu′ = v− µu u→ 1/µ0← u

−d∆v+ c∂xv = f(v)

−∂yv = 0

v → 10← v

(2.1)

In [22], Berestycki, Roquejoffre and Rossi introduced the following reaction-
diffusion system :

d∂yv = µu− v
∂tu−D∂xxu = v− µu

∂tv− d∆v = f(v)

−∂yv = 0 (2.2)

but in the half plane y < 0 with f(v) of the KPP-type, i.e f > 0 on (0, 1),
f(0) = f(1) = 0, f ′(1) < 0 and f(v) ≤ f ′(0)v. Such a system was proposed
to give a mathematical description of the influence of transportation networks on
biological invasions. If (c,u, v) is a solution of (3.1), then (u(x+ ct), v(x+ ct))
is a travelling wave solution of (3.2), connecting the states (0, 0) and (1/µ, 1). In
[22], the following was shown :

Theorem. ([22])

i) Spreading. There is an asymptotic speed of spreading c∗ = c∗(µ, d,D) > 0
such that the following is true. Let the initial datum (u0, v0) be compactly
supported, non-negative and 6≡ (0, 0). Then :
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• for all c > c∗

lim
t→+∞

sup
|x|≥ct

(u(x, t), v(x, y, t)) = (0, 0)

uniformly in y.
• for all c < c∗

lim
t→+∞

inf
|x|≤ct

(u(x, t), v(x, y, t)) = (1/µ, 1)

locally uniformly in y.

ii) The spreading velocity. If d and µ are fixed the following holds true.

• If D ≤ 2d, then c∗(µ, d,D) = cKPP =: 2
√
df ′(0)

• If D > 2d then c∗(µ, d,D) > cKPP and limD→+∞ c∗(µ, d,D)/
√
D exists

and is a positive real number.

Thus a relevant question is whether the result of [22] is due to the particular
structure of the nonlinearity or if it has a more universal character. This is a
non trivial question since the KPP case benefits from the very specific property
f(v) ≤ f ′(0)v : in such a case propagation is dictated by the linearised equation
near 0, and the above question can be reduced to algebraic computations. Observe
also that some enhancement phenomena really need this property : for instance,
for the fractional reaction-diffusion equation

∂tu+ (−∆)su = u(1− u)

in [27, 29], Cabré, Coulon and Roquejoffre proved that the propagation of an
initially compactly supported datum is exponential in time. Nonetheless, this
property becomes false and propagation stays linear in time with the reaction
term studied here, as proved by Mellet, Roquejoffre and Sire in [64]. In this paper,
we will show that the phenomenon highlighted in [22] persists under a biologically
relevant class of nonlinearities that arise in the modelling of Allee effect. Namely
f will be of the ignition type :
Assumption A. f : [0, 1] → R is a smooth non-negative function, f = 0 on
[0, θ] ∪ {1} with θ > 0, f(0) = f(1) = 0, and f ′(1) < 0. For convenience we will
still call f an extension of f on R by zero at the left of 0 and by its tangent at 1
(so it is negative) at the right of 1.

With our choice of f , dynamics in the system (3.2) is governed by the travelling
waves, which explains our point of view to answer the question through the study
of equation (3.1). Replacing the half-plane of [22] by a strip is a technical simplifi-
cation, legitimate since we are only interested in the propagation in the direction
x. Observe that in the light of [23] and the numerical simulations in Chapter 3,
translating our results in the half-plane setting seems to be a deep and non-trivial
question that goes outside the scope of this paper and will be studied elsewhere.

Our starting point is the following result :
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θ0 1
u

f(u)

Figure 2.1: Example f = 1u>θ(u− θ)2(1− u)

Theorem 1. ([39])
Let f satisfy Assumption (A). Then there exists c(D) > 0 and u, v smooth

solutions of (3.1). Moreover, c(D) is unique, u and v are unique up to translations
in the x direction, and u′, ∂xv > 0.

The first result we will prove is the following :

Theorem 2. There exists c∞ > 0 such that

c(D) ∼D→+∞ c∞
√
D

Remark 2.1.1. We would like to point out that in the homogeneous equation in
Rn :

− d∆v+ c∂xv = f(v) (2.3)

it is trivial by uniqueness (see the works of Kanel [52]) that c(d) = c0
√
d where

c0 is the velocity solution of (2.3) with d = 1. Indeed, to see this, just rescale
(2.3) by ũ(x) = u(x

√
d) and c̃ = c/

√
d. Thus, in Theorem 2 we retrieve the same

asymptotic order for c(D) as in the homogeneous case. The comparison between
c0 and c∞ is an interesting question and we wish to answer it in another paper.

A by-product of the proof of Theorem 2 is the well-posedness for an a pri-
ori degenerate elliptic system, where the species of density v would only diffuse
vertically, which can be seen as an hypoellipticity result :

Theorem 3. c∞ can be characterised as follows : there exists a unique c∞ > 0
and u ∈ C2+α(R), v ∈ C1+α/2,2+α(ΩL) with u′, ∂xv > 0, unique up to translations
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in x that solve

d∂yv = µu− v
−u′′ + c∞u

′ = v− µu u→ 1/µ0← u

c∞∂xv− d∂yyv = f(v)

-∂yv = 0

v → 10← v

(2.4)

We will present two proofs of Theorem 3. One by studying the asymptotic be-
haviour of c(D) thanks to estimates in the same spirit as the ones of Berestycki and
Hamel in [9]. Another one of independent interest, by a direct method, showing
that the system (2.4) is not degenerate despite the absence of horizontal diffusion
in the strip. Both proofs consist in showing a convergence of some renormalised
profiles to a limiting profile, solution of the limiting system (2.4).

From now on, we renormalise (c,u, v) in (3.1) by making

x←
√
Dx, c← c/

√
D

ending up with the following equations

d∂yv = µu− v
−u′′ + cu′ = v− µu u→ 1/µ0← u

− d
D∂xxv− d∂yyv+ c∂xv = f(v)

−∂yv = 0

v → 10← v

(2.5)

for which we need to show

lim
D→+∞

c(D) = c∞ > 0

in order to prove Theorem 2.
Before getting into the substance, we would like to mention that there is an im-

portant literature about speed-up or slow-down of propagation in reaction-diffusion
equations in heterogeneous media and we wish to briefly present some of it.

Some other results
Closest to our work is the recent paper of Hamel and Zlatoš [49], concerned with
the speed-up of a combustion front by a shear flow. Their model is :

∂tv+Aα(y)∂xv = ∆v+ f(v), t ∈ R, (x, y) ∈ R×RN−1 (2.6)
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where A > 1 is large, and where α(y) is smooth and (1, · · · , 1)-periodic. They
show that there exists γ∗(α, f) ≥

∫
TN−1 α(y)dy such that the velocity c∗(Aα, f)

of travelling fronts of (2.6) satisfies

lim
A→+∞

c∗(Aα, f)
A

= γ∗(α, f)

and under an Hörmander type condition on α1 they characterise γ∗ as the unique
admissible velocity for the following degenerate system where γ ∈ R,U ∈ L∞ and
∇y U ∈ L2 ∩ L∞ :

∆yU + (γ − α(y))∂xU + f(U) = 0 in D ′(R×TN−1)

0 ≤ U ≤ 1 a.e. in R×TN−1

limx→+∞ U(x, y) ≡ 0 uniformly in TN−1

limx→−∞ U(x, y) ≡ 1 uniformly in TN−1

(2.7)

Let us also give a brief account of other results concerning enhancement of
propagation of reaction-diffusion fronts, especially motivated by combustion mod-
elling and in heterogeneous media. In the presence of heterogeneities, quantifying
propagation is considerably more difficult than the argument of Remark 2.1.1. The
pioneering work in this field goes back to the probabilistic arguments of Freidlin
and Gärtner [45] in 1979. They studied KPP-type propagation in a periodic en-
vironment and showed that the speed of propagation is not isotropic any more :
propagation in any direction is influenced by all the other directions in the envi-
ronment, and they gave an explicit formula for the computation of the propagation
speed.

Reaction-diffusion equations in heterogeneous media since then is an active field
and the question of the speed of propagation has received much attention. Around
2000, Audoly, Berestycki and Pommeau [3], then Constantin, Kiselev and Ryzhik
[33] started the study of speed-up or slow-down properties of propagation by an
advecting velocity field. This study is continued in [54] and later by Berestycki,
Hamel and Nadirashvili [14] and Berestycki, Hamel and Nadin [13] through the
study of the relation between the principal eigenvalue and the amplitude of the
velocity field.

Apart from speed-up by a flow field, the influence of heterogeneities in reaction-
diffusion is studied in a series of paper [15, 16] published in 2005 and 2010, where
Berestycki, Hamel and Nadirashvili, following [8] gave some new information about
the influence of the geometry of the domain and the coefficients of the equation.
The first paper deals with a periodic environment, the second with more general
domains. In 2010 also, explicit formulas for the spreading speed in slowly oscillat-
ing environments were also given for the first time by Hamel, Fayard and Roques
in [48].

The influence of geometry on the blocking of propagation was also studied
in periodic environment by Guo and Hamel [47] and in cylinders with varying
cross-section by Chapuisat and Grenier [32].

1Namely, α is smooth and there exists r ∈N∗ such that
∑

1≤|ζ|≤r |Dζα(y)| > 0
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The present paper highlights a totally different mechanism of speed-up by the
heterogeneity, through a fast diffusion on a line.

Organisation of the paper
The strategy of proof is the following : first, we show that there exists constants
0 < m < M independent of D such that m < c(D) < M . Then, we show that the
limit point of c(D) as D → +∞ is unique and we characterise it, which proves
Theorem 2 and 3. Another section is devoted to the proof of direct existence for
system (2.4). More precisely, the organisation is as follows :

• In Section 2.2 we compute positive exponential solutions of the linearised
near 0 of (2.5). Those are fundamental to study the tail of the solutions as
x→ −∞ for comparison purposes. We use them to show that c(D) ≤M .

• Section 2.3 is devoted to showing that c(D) ≥ m by proving some integral
estimates.

• Section 2.4 proves Theorem 2 by showing the uniqueness of the limiting point
c∞ > 0 of c(D). This uses integral identities and a mixed parabolic-elliptic
sliding method.

• Finally, in Section 2.5 we construct travelling waves to the limiting system
(2.4) by a direct method, proving Theorem 3. For this, we treat x as a time
variable and combine standard parabolic and elliptic theory.

2.2 Positive exponential solutions, upper bound
We compute positive exponential solutions of (2.5) with f = 0. Those play an
important role for comparison purposes as x → −∞ and in the construction of
supersolutions. Looking for φ(x) = eλx,ψ(x, y) = eλxh(y) with h > 0 we get the
equations



−h′′ + λ
(
c
d −

1
Dλ

)
h = 0 for y ∈ (−L, 0)

h′(−L) = 0
dh′(0) = µ− h(0)
−Dλ2 + cλ = h(0)− µ

(2.8)

Since we are interested in the asymptotic behaviour of c(D), we can assume D > d
and get a solution given by

ψD(x, y) = µeλx cosh (β(λ) (y+ L))

cosh (β(λ)L) + dβ(λ) sinh (β(λ)L)
= eλxhD(y)

φD(x) = eλx
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where β(λ) =
√
λ( cd −

λ
D ) and with c < λ < cDd solving

− λ2 + cλ =
−µdβ(λ) tanh(β(λ)L)
1 + dβ(λ) tanh(β(λ)L) (2.9)

as pictured in figure 2.2. Moreover, since the right-hand side of (2.9) is a decreasing

Figure 2.2: Eq. on λ in (2.8)

c cD/d

−λ2 + cλ

− µdβ(λ) tanh(β(λ)L)
1+dβ(λ) tanh(β(λ)L)

y = −µ

function of D, we know that λ is an increasing function of D, so λ < c+
√
c2+4µ
2

(see on Figure 2.2 the horizontal asymptote −µ of the graph of the right-hand side
of the equation when D = +∞). Thus we have the uniform bounds in D :

c < λ <
c+

√
c2 + 4µ
2

Remark 2.2.1. Actually we have even better : since the right-hand side of (2.9)
converges to

−µ
√
dcλ tanh(

√
dcλL)

1 +
√
dcλ tanh(

√
dcλL)

as D → +∞, we know that λ increases to the solution of

−λ2 + cλ =
−µ
√
dcλ tanh(

√
dcλL)

1 +
√
dcλ tanh(

√
dcλL)

as pictured on Figure 2.2.
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We will also keep in mind that for every D ∈ (d,+∞], c 7→ λ(D, c) is an
increasing function, indeed −λ2 + cλ is increasing and the right-hand side of the
equation is decreasing (it can be written −µg(c)1+g(c) with g′(c) < 0).

From now on, we normalise h(y) such that miny∈[−L,0] h(y) = 1 and study the
tail of the fronts as x→ −∞.

Proposition 2.2.1. Let (c,u, v) denote the unique solution of (2.5) that satisfies

max
x≤0,y∈[−L,0]

(µu(x), v(x, y)) = θ (2.10)

and call m = min
(
miny∈[−L,0] v(0, y),µu(0)

)
. Then on x ≤ 0,

m

max he
λxh(y) ≤ µu, v ≤ θeλxh(y)

with the notations of Section 2.2.

Proof. Call µū = θeλx, v̄ = θeλxh(y). Then µU := µ(ū− u),V := v̄− v satisfy :

d∂yV = µU − V (x, 0)

−U ′′ + cU ′ = V (x, 0)− µU U ≥ 00← U

− d
D∂

2
xxV − d∂2

yyV + c∂xV = 0

∂yV = 0

V ≥ 00← V

Suppose there is a point where V < 0. Since V decays to 0 uniformly in y
as x → −∞, V reaches a negative minimum somewhere. By the normalisation
condition (2.10), the strong maximum principle and Hopf’s lemma (see [11, 46]),
it can only be on x < 0, y = 0 and at this point we have µU < min V .

This is a contradiction : looking at the equation on U , its limit as x→ −∞ and
its non-negative value at x = 0, we can assert that it reaches a minimum at some
xU < 0 where the equation gives µU(xU ) = V (xU ) + U ′′(xU ) ≥ V (xU ) ≥ min V .
In the end, V ≥ 0 and the maximum principle applied on U gives U ≥ 0.

The exact same argument applied on u− u, v− v give the other inequality.

Proposition 2.2.2. There is a uniform bound in D on the velocity c(D) of solu-
tions of (2.5) :

c(D) ≤
√

D

D− d
Lipf ∼D→+∞

√
Lipf

Proof. Call µū = v̄ = ecx. A simple computation shows that if

c2(1− d/D) ≥ Lipf
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then (ū, v̄) is a supersolution of (2.5). We now use a sliding argument (see [19],
[78]):

Since λ > c in Prop. 2.2.1, we know that the graph of ecx is asymptotically
above the ones of µu and v. Knowing this and since µu, v ≤ 1, we can translate
the graph of ecx to the left above the ones of µu and v. Now we slide it back to the
right until one of the graphs touch, which happens since µu, v → 1 as x → +∞
whereas ecx → 0 as x→ −∞, uniformly in y. What we just said proves that

r0 = inf{t ∈ R | v̄(t+ x, y)− v(x, y) > 0 and ū(t+ x, y)− u(x) > 0}
exists as an inf over a set that is non-void and bounded by below. Now call

U(x) := ū(r0 + x)− u(x)
V (x, y) := v̄(r0 + x)− v(x, y)

By continuity, U ,V ≥ 0. But µU ,V satisfy

d∂yV = µU − V (x, 0)

−U ′′ + cU ′ = V (x, 0)− µU U → +∞0← U

− d
D∂

2
xxV − d∂2

yyV + c∂xV + k(x, y)V ≥ 0

∂yV = 0

V → +∞0← V

where k(x, y) = −f(v̄(r0 + x))− f(v(x, y))
v̄(r0 + x)− v(x, y) ∈ L∞ since f is Lipschitz. Using

the strong maximum principle to treat a minimum that is equal to 0 (so that no
assumption on the sign of k is needed) and treating the boundary y = 0 as above,
knowing that V 6≡ 0 we end up with V > 0.

But then for any fixed compactKa = [−a, a]× [−L, 0], minKa V , min[−a,a] U >
0 so that we can translate the graph of ecx a little bit more to the right while still
being above the ones of µu and v on Ka, i.e. ū(r0− εa+ x)− u(x) > 0 on [−a, a]
and v̄(r0 − εa + x)− v(x, y) > 0 on Ka for εa > 0 small enough.

Now just chose a large enough so that on resp. x < −a and x > a, µū(r0 +
εa+ x), v̄(r0 + εa+ x, y),µu, v are resp. close enough to 0 or large enough so that
ka(x, y) = −f(v̄(r0−εa+x))−f(v(x,y))

v̄(r0−εa+x)−v(x,y) has the sign of −f ′(0) = 0 or −f ′(1) > 0.
Now the maximum principle applies just like above on x < −a and x > a and
concludes that ū(r0 − εa + x)− u(x), v̄(r0 − εa + x)− v(x, y) > 0 on the whole
R×ΩL, which is a contradiction with the definition of r0.

In the end, no such ū, v̄ can exist, i.e. c2(1− d/D) ≤ Lipf .

Remark 2.2.2. This proof shows how rigid the equations of fronts are when in-
volving a reaction term with f ′(0), f ′(1) ≤ 0 : it is shown in [39] that there is no
supersolution or subsolution (in a sense defined in [39]) except the solution itself
and its translates. This fact was already noted in [18, 78] for Neumann boundary
value problems.
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2.3 Proof of the lower bound
In this section we show the following :

Proposition 2.3.1.
inf
D>d

c(D) = cmin > 0

We proceed by contradiction. Suppose that inf c(D) = 0. Then there exists a
sequence Dn → ∞ (since c is a continuous function of D, see [39]) such that the
associated solutions (cn,φn,ψn) satisfy cn → 0. Moreover, integrating by parts
the equation on v in (2.5) and using elliptic estimates to assert u′, ∂xv → 0 as
x→ ±∞ we get

cn =
1

L+ 1/µ

∫
ΩL

f(ψn)

so we know that
∫

ΩL
f(ψn)→ 0 which also gives∫

ΩL

f(ψn)ψn ≤
∫

ΩL

f(ψn)→ 0

Multiplying the equation by ψn and integrating by parts yields

d

Dn

∫
ΩL

∂xψ
2
n+d

∫
ΩL

∂yψ
2
n+

∫
R
φ′n∂xψn(·, 0)+ cn

∫
R
φ′nψn(·, 0)+ cnL

2 =
∫

ΩL

f(ψn)ψn

(2.11)
All the terms in the left hand side of this expression are positive quantities, so
each one of them must go to zero as n→∞. Now, we normalise ψn by

ψn(0, 0) = θ1 ∈]θ, 1[

and assert the following :

Lemma 2.3.1. Fix δ > 0 small. There exists N > 0 such that for all n > N we
have for all −1 ≤ x ≤ 1 :(

1− δ

2

)
θ1 < ψn(x, 0) <

(
1 + δ

2

)
θ1

Before giving the proof, we mention an easy but technical lemma that will be
used :

Lemma 2.3.2. If k ∈ L1, k̂ ∈ C∞ ∩L2 and h ∈ L∞ then the formula

F−1(k̂ĥ) = k ∗ h

makes sense and holds.

Proof. Since k̂ is a smooth function, the product distribution k̂ĥ makes sense
and we can compute its inverse Fourier transform : the result follows by using
the classical properties of the Fourier transform on L2 and the Fubini-Tonelli
theorem.



70 CHAPTER 2. THE LARGE DIFFUSION LIMIT

We now turn to the proof of lemma 2.3.1.

Proof. We know that
∫

R φ
′
n∂xψn(·, 0)→ 0. Note that

−φ′′n + cnφ
′
n + µφn = ψn(·, 0)

and so by lemma 2.3.2 and the fact that ξ2 − cniξ + µ has no real roots, we have
φn = Kn ∗ ψn(·, 0) where K̂n(ξ) =

1
ξ2−cniξ+µ , i.e.

Kn(x) =

√
2π

c2n + 4µe
− 1

2

(√
c2
n+4µ−cn

)
x
(
e
√
c2
n+4µxH(−x) +H(x)

)

This is a sequence of positive functions, uniformly bounded from below by a posi-
tive constant on any compact subset of R.

x0

√
π
2µe
−µ|x|

Figure 2.3: Graphs of Kn for µ = 1, cn ∈ {0, 0.3, 0.6, 0.9}

Now for −1 ≤ x ≤ 1 and since ∂xψn ≥ 0 we have

|ψn(x, 0)− θ1| ≤
∫ 1

−1
∂xψn(·, 0)

But since Kn, ∂xψn ≥ 0 and since Kn > α0 > 0 on [−2, 2] :

∫
R
(∂xψn)φ

′
n ≥

∫
R
(Kn ∗ ∂xψn)∂xψn ≥

∫ 1

−1

(∫
R
Kn(x− t)∂xψn(t, 0)dt

)
∂xψn(x, 0)dx

≥
∫ 1

−1

(∫ 1

−1
Kn(x− t)∂xψn(t, 0)dt

)
∂xψn(x, 0)dx

> α0

(∫ 1

−1
∂xψn(·, 0)

)2
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Thus ∫ 1

−1
∂xψn(·, 0) ≤

( 1
α0

∫
R
(∂xψn) φ

′
n

)1/2
→ 0

and for n large enough this quantity is less than δθ1/2.

Lemma 2.3.3. Fix 0 < δ < 2
√

2L
θ1

. There exists N ′ > 0 such that for all n > N ′,
there exists a borelian Jn of [−1, 1] with measure ≥ 1 such that for all x ∈ Jn :(∫ 0

−L
∂yψn(x, s)2ds

)1/2
≤ δθ1

2
√
L

Proof. This result is based on a Markov-type inequality. Call

h(x) :=
∫ 0

−L
∂yψn(x, s)2ds

We now use that

0 ≤
∫ 1

−1
h(x)dx ≤

∫
R

(∫ 0

−L
∂yψn(x, s)2ds

)
dx→ 0

Thus for all ε > 0, there exists N ′ > 0 such that for all n > N ′,
∫ 1
−1 h(x)dx ≤ ε.

Using then that h(x) ≥
√
ε1h>√ε we get that

|{x ∈ [−1, 1] | h(x) >
√
ε}| < 1

2
√
ε

where |A| denotes the Lebesgue measure of A. We get the result by choosing

Jn = {x ∈ [−1, 1] | h(x) ≤
√
ε}

and ε = δ4θ4
1/16L2. The fact that |Jn| ≥ 1 directly comes from the upper bound

assumed on δ.

We can now finish the proof. Indeed, for n > N ,N ′ fixed and for x ∈ Jn we
have

ψn(x, 0)−
∫ 0

−L
|∂y(x, s)ds| ≤ ψn(x, y) ≤ ψn(x, 0) +

∫ 0

−L
|∂y(x, s)ds|

Using the Cauchy-Schwartz inequality and Lemmas 2.3.1 and 2.3.3, we get on
Jn × [−L, 0]

(1− δ)θ1 ≤ ψn(x, y) ≤ (1 + δ)θ1

And so (
1 + L

µ

)
cn =

∫
ΩL

f(ψn) ≥
∫
Jn×[−L,0]

f(ψn) ≥ L inf
Jn×[−L,0]

f(ψn)

Choosing now θ1 and δ such that f([(1 − δ)θ1, (1 + δ)θ1]) > C > 0 we get a
contradiction with the assumption cn → 0.
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2.4 The equivalent c(D) ∼ c∞
√
D

We know that every sequence c(Dn) associated to a sequenceDn → +∞ is trapped
between two positive constants. Now we just have to show the uniqueness of the
limit point. We divide the proof in three steps.

• Compactness : we prove that any (φn,ψn) associated to Dn → ∞ and
cn → c > 0 is bounded in H3

loc. This uses integral identities.

• Treating the x variable as a time variable, we extract from such a family a
(c,φ,ψ) that solves (2.5) with D = +∞.

• We show uniqueness of c for such a problem using a parabolic version of the
arguments in Proposition 2.2.2.

But first, let us give an easy but technical lemma that will be used in the next
computations.

Lemma 2.4.1. Gagliardo-Nirenberg and Ladyzhenskaya type inequalities in ΩL

• For all α ∈]1
3 , 1[, there exists CGN > 0 s.t. for all u ∈ H1(ΩL)

|u|L3(ΩL) ≤ CGN |u|1−αL2(ΩL)
|u|αH1(ΩL)

• For all β ∈]1
2 , 1[, there exists CL > 0 s.t. for all u ∈ H1(ΩL)

|u|L4(ΩL) ≤ CL|u|1−βL2(ΩL)
|u|β

H1(ΩL)

Proof. The inequalities above with α = 1
3 and β = 1

2 are resp. Gagliardo-
Nirenberg and Ladyzhenskaya inequalities. We can prove that these are still valid
in ΩL by re-doing the computations of Nirenberg and using trace inequalities, but
the inequalities above will suffice for us and are easier to prove.

For this, we just use the Hölder interpolation inequality : if p, q, r ≥ 1 and
α ∈ [0, 1] such that 1

q = 1−α
r + α

s , then |u|Lq ≤ |u|
1−α
Lr |u|αLs . We apply this with

q = 3 resp. 4, r = 2, s → +∞, and control the |u|αLs part with the Sobolev
embedding |u|αLs ≤ C|u|αH1 for s ≥ 2.

We are now able to treat Step 1 :

Lemma 2.4.2. Let Dn →∞, (cn,φn,ψn) the sequence of solutions associated to
Dn and suppose cn → c > 0. Denote ΩL,M := [−M ,M ] × [−L, 0]. Then for
every M ∈N, there exists CM > 0 s.t. |ψn|H3(ΩL,M ) ≤ CM .

Proof. a) The H1 bound.
First, since 0 ≤ ψn ≤ 1, we know that (ψn) is bounded in L2(ΩL,M ). Then
we start from (2.11) : since (cn) is bounded and because the right-hand side of
(2.11) is bounded, we have that (∂yψn) is bounded in L2(ΩL).
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Then multiply the equation inside ΩL in (2.5) by ∂xψn and in a similar fashion
as (2.11), integrate by parts on ΩL,M . Boundary terms along the y axis decay
thanks to elliptic estimates. Using ∂xψn > 0 and |φn|W 2,∞(R) ≤ C (use Fourier
transform of the variation of constants) we get the sum of following terms

• − d

Dn

∫
ΩL

∂2
xxψn∂xψn = 0

•
∫

ΩL

−d∂2
yyψn∂xψn =

����������∫
ΩL

∂x

(1
2d∂yψ

2
n

)
+
∫

R
(−φ′′n + cnφ

′
n)∂xψn so

∣∣∣∣∫
ΩL

−d∂2
yyψn∂xψn

∣∣∣∣ ≤ C

•
∣∣∣∣∫

ΩL

f(ψn)∂xψn

∣∣∣∣ ≤ sup f ×L

• Finally, cn
∫

ΩL

∂xψ
2
n, which we want to bound.

so that in the end

|∂xψn|2L2(ΩL)
≤ L sup f +C

cmin
=: C1

b) The H2 bound
We apply the same process, on the equation satisfied by (zn,wn) := (φ′n, ∂xψn).
The linear structure is the same, but this time we do not have positivity of the
first x derivative any more. Multiplying by wn := ∂xψn > 0 the equation
satisfied by wn and integrating gives rise to the following terms :

•
∫

ΩL

(
− d

Dn
∂2
xxwn

)
wn =

d

Dn

∫
ΩL

∂xw
2
n ≥ 0

• cn
∫

ΩL

(∂xwn)wn = 0 thanks to elliptic estimates.

•
∣∣∣∣∫

ΩL

f ′(ψn)w
2
n

∣∣∣∣ ≤ |f ′|∞C1 by the result above.

•
∫

ΩL

(
−d∂2

yywn
)
wn =

∫
ΩL

d∂yw
2
n +

∫
R
(wn − µzn)wn where

∫
R
(wn − µzn)wn ≥

∫
R
w2
n − µC ≥ −µC

so that in the end

|∂ywn|2L2(ΩL)
≤ |f

′|∞C1 + µC

d
=: C2

We now multiply by ∂xwn the equation satisfied by wn. Integration yields the
sum of the following terms :
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•
∫

ΩL

(
− d

Dn
∂2
xxwn

)
∂xwn = 0

• cn
∫

ΩL

∂xw
2
n which we want to bound.

•
∫

ΩL

(−d∂2
yywn)∂xwn =

∫
R
(wn − µzn)∂xwn = µ

∫
R
z′nwn so that

∣∣∣∣∫
ΩL

(−d∂2
yywn)∂xwn

∣∣∣∣ ≤ µC

•
∫

ΩL

f ′(ψn)wn∂xwn = −1
2

∫
ΩL

f ′′(ψn)w
3
n so that

∣∣∣∣∫
ΩL

f ′(ψn)wn∂xwn

∣∣∣∣ ≤ |f ′′|∞2 |wn|3L3 ≤
|f ′′|∞

2 C3
GN

√
C1

2−ε
|wn|1+εH1(ΩL)

=: C3|wn|1+εH1

for a small ε > 0 of our choice thanks to the Gagliardo-Nirenberg type
inequality of Lemma 2.4.1.

Finally, we end up with the inequality

|wn|2H1(ΩL)
≤ C1 +C2 + µC +C3|wn|1+εH1(ΩL)

which yields the bound
|wn|2H1 ≤ C4

Then we use the original equation to assert that ∂2
yyψn is bounded in L2(ΩL),

so that in the end the lemma is true with H2
loc.

c) The H3 bound
For the H3 estimate, we iterate one last time with the equation satisfied by
(τn, ρn) := (φ′′, ∂2

xxψn). Multiplying the equation by ρn and integrating gives
as before a non-negative and a zero term, and the boundary integral as well as
the right-hand side have to be studied more carefully :

•
∫

ΩL

(
−d∂2

yyρn
)
ρn =

∫
ΩL

d∂yρ
2
n +

∫
R ρ

2
n − µ

∫
R τnρn. But∣∣∣∣∫

R
ρnτn

∣∣∣∣ = ∣∣∣∣∫
R
τ ′n∂xψn

∣∣∣∣ ≤ |τ ′n|L2|∂xψn(·, 0)|L2 ≤ C5

by elliptic estimates, since the φ′n satisfy an uniformly elliptic equation on
R with uniformly bounded coefficients and with data ∂xψn(·, 0) bounded
in H1/2, so (φn)′ is bounded in H2+1/2, which gives (τ ′n) bounded in
H1/2 so in L2 (this can be seen easily through the Fourier transform).
The second factor is bounded by the above result and the continuity of
the trace operator on ΩL.
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• The right-hand side is f ′′(ψn)∂xψ2
nρn + f ′(ψn)ρ2

n. For the first term, we
use that

∣∣∣∣∫
ΩL

(∂xψn)
2ρn

∣∣∣∣ ≤ (∫
ΩL

∂xψ
4
n

)1/2 (∫
ΩL

ρ2
n

)1/2

≤ C2
L|∂xψn|1−εL2 |∂xψn|1+εH1 |ρn|L2

≤ C2
L

√
C1

1−ε√
C4

2+ε
=: C6

for some small ε > 0 of our choice thanks to the Ladyzhenskaya type
inequality of Lemma 2.4.1.
For the second term we just have∣∣∣∣∫

ΩL

f ′(ψn)ρ
2
n

∣∣∣∣ ≤ |f ′|∞C4

so this procedure gives

|∂yρn|2L2(ΩL)
≤ C5 +C6 + |f ′|∞C4

d
=: C7

Now multiplying by ∂xρn and integrating gives a zero term, the
∫
∂xρ

2
n term

we want to bound, and a boundary integral as well as a right hand side that
are the following :

•
∫

R(ρn − µτn)∂xρn = −µ
∫

R τn∂xρn = −µ
∫

R φ
′′
n∂xxxψn. We bound this

term thanks to a “fractional integration by parts” : indeed, we need to
transfer more than one derivative on φ, but we do not control φ in H4,
only in H3+1/2. For this, we use Plancherel’s identity :∣∣∣∣∫

R
φ′′n∂xxxψn

∣∣∣∣ = ∣∣∣∣∫
R
−ξ2φ̂niξ

3ψ̂n

∣∣∣∣
≤
∫

R
|ξ|2+1/2|iξφ̂n||ξ|1/2|iξψ̂n|

≤
(∫

R
|ξ|2(2+1/2)|iξφ̂n|2

)1/2 (∫
R
|ξ|2(1/2)|iξψ̂n|2

)1/2

≤
(∫

R

(
1 + |ξ|2

)2+1/2
|iξφ̂n|2

)1/2 (∫
R

(
1 + |ξ|2

)1/2
|iξψ̂n|2

)1/2

≤ |φ′n|H2+1/2|∂xψn(·, 0)|H1/2

≤ CCtr
√
C4

where Ctr is a bound for the trace operator on ΩL.

• The right-hand side is
∫
f ′′(ψn)∂xψ2

n∂xρn+ f ′(ψn)ρn∂xρn. The first term
is controlled thanks to Cauchy-Schwarz and Ladyzhenskaya’s inequality
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again : ∣∣∣∣∫
ΩL

f ′′(ψn)∂xψ
2
n∂xρn

∣∣∣∣ ≤ |f ′′|∞ ∫
ΩL

|2ρn∂xψn∂2
xxψn|

≤ 2|f ′′|∞|ρn|L2 |∂xψn∂2
xxψn|L2

≤ 2|f ′′|∞|ρn|L2 |∂xψn|L4|∂2
xxψn|L4

≤ 2|f ′′|∞C2
L

√
C4

5/2−ε
|ρn|1/2+ε

H1(ΩL)

=: C8|ρn|1/2+ε
H1(ΩL)

by applying Ladyzhenskaya’s inequality twice.
The last term gives

∫
ΩL

f ′(ψn)ρn∂xρn = −
∫

ΩL

1
2ρ

2
nf
′′(ψn)∂xψn so by

Cauchy-Schwarz :
∣∣∣∣∫

ΩL

f ′(ψn)ρn∂xρn

∣∣∣∣ ≤ |f ′′|∞2

(∫
ΩL

|ρn|4
)1/2

|∂xψn|L2(ΩL)

≤ |f
′′|∞
2 |ρn|2L4

√
C1

≤ |f
′′|∞
2 C2

L

√
C1|ρn|1−εL2 |ρn|1+εH1

≤ |f
′′|∞
2 C2

L

√
C1
√
C4

1−ε
|ρn|1+εH1

:= C9|ρn|1+εH1

by Ladyzhenskaya’s inequality again.
As before, in the end we get

|ρn|2H1 ≤ C4 +C7 +CCtr
√
C4 +C8|ρn|1/2+ε

H1(ΩL)
+C9|ρn|1+εH1

which yields the boundedness of |ρn|H1 .
Finally, the terms ∂xyyψn and ∂yyyψn are bounded in L2(ΩL) thanks to
the equation : if we differentiate the original equation on ψn in y and then
in x, the result is immediate.

We could go on again to H4 by looking at the third derivatives, but the right-
hand side would involve too much computations and interpolation inequalities.
Instead, we stop here and use the following lemma.

Lemma 2.4.3. With the assumptions of Lemma 2.4.2, there exists (φ,ψ) ∈
C2(R)×C1x,2y(ΩL) such that (c,φ,ψ) satisfies (2.4) and φ′, ∂xψ ≥ 0.

Proof. Thanks to Lemma 2.4.2, (ψn) is bounded in H3
loc so by Rellich’s theorem

we can extract from it a sequence that converges strongly in H2
loc to ψ ∈ H3

loc.
Moreover, thanks to the Sobolev embedding H3(ΩL,M ) ↪→ C1,γ for every 0 < γ <
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1, by Ascoli’s theorem and the process of diagonal extraction we can assume that
ψn converges in C1,β to ψ ∈ C1,β for some 0 < β < 1 fixed. By elliptic estimates,
(φn) is bounded in C3,γ(R) for every 0 < γ < 1, so again, we can still extract and
assume that φn converges to a φ ∈ C3,β in the C3,β norm.

Since f satisfies f(0) = 0 and is Lipschitz continuous, we can assert that f(ψn)
converges to f(ψ) in H2

loc. Then we can pass to the L2 limit n → ∞ in equation
(2.5) satisfied by (cn,φn,ψn) and see that (2.4) is satisfied a.e. Moreover, φ′ and
∂xψ are non-negative as locally Hölder limits of positive functions. Finally, if
we fix x0 ∈ R we assert that ψ(x0, ·) ∈ L2(−L, 0) and ψ ∈ C1([x0,+∞[,L2(]−
L, 0[)∩C0(]x0,+∞[,H2(]−L, 0[). Indeed, this comes from ψ ∈ H3

loc and Jensen’s
inequality. For instance for x > x0 and h small :

∣∣∣∂2
yyψ(x+ h, ·)− ∂2

yyψ(x, ·)
∣∣∣
L2(−L,0)

=

(∫ 0

−L

(
∂2
yyψ(x+ h, y)− ∂2

yyψ(x, y)
)2
dy

)1/2

=

∫ 0

−L

(∫ x+h

x
∂xyyψ(s, y)ds

)2
dy

1/2

≤
(∫ 0

−L

(∫ x+h

x
∂xyyψ(s, y)2ds

)
dy

)1/2

≤ |ψ|H3(]x,x+h[×[−L,0]) → 0

as h→ 0 as the integral of an integrable function over a set whose measure tends
to zero. It is known (see [26], Section 10) that such a solution is unique and has
C1x,3+γy regularity on every [x0 + ε,+∞[×[−L, 0]. Since we can do this for every
x0 ∈ R, the regularity announced in the lemma is proved. The uniform limit to
the left is obtained thanks to Prop. 2.2.1 : on x ≤ 0

µφn,ψn ≤ θeλnxhn(y) ≤ θemxh−

where h− > 0 is a uniform lower bound on hn whose existence is proved in the
next lemma.

The right limits are obtained in a similar fashion as in [17] by integration
by parts and by using standard parabolic estimates instead of elliptic ones. See
Lemma 2.5.1 and Prop. 2.5.10 in the next section for similar and complete com-
putations.

We conclude this section with the following lemmas, that prove the uniqueness
of the limit point c.

Lemma 2.4.4. Suppose c and c̄ > c are two limit points of c(D) and denote
(cn,φn,ψn) and (c̄n,φ

n
,ψ

n
) some associated sequences of solutions that converge

to (c,φ,ψ) and (c̄,φ,ψ) as in the previous theorem. Then there exists X ∈ R and
N ∈N s.t. for all x ≤ X and n ≥ N , ψ

n
(x, y) < ψn(x, y).

Proof. This relies on comparison with exponential solutions computed in section
2.2 and on the uniform convergence of ψn resp. ψ

n
to ψ resp. ψ. Indeed, if as in
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section 2.2 we denote λ̄n and hn the exponent and the y part of the exponential
solutions, we claim that :

∃h−,h+ > 0 | h− < hn(y) < h+

Indeed, since c̄n → c̄, there exists c̄+ > 0 s.t. cn < c̄+. Then

βn(λ̄n) <

√√√√ c̄+
(
c̄+ +

√
c̄2+ + 4µ

)
2d =: β

+

so that
hn(y) ≤ µ cosh(β

+
L) =: h+

and
hn(y) ≥

µ

cosh(β
+
L) + dβ

+
sinh(β

+
L)

=: h−

The same holds for hn(y) with constants h+,h− > 0.
Now normalise hn s.t. min[−L,0] hn = 1. Then we have hn ≤

h+
h−

, and Prop.
2.2.1 yields on x ≤ 0 :

µφ
n
,ψ

n
≤ θeλ̄nx

h+
h−

On the other hand, there exists N ∈N s.t. for n ≥ N

mn = min
(

min
y∈[−L,0]

ψ(0, y),µφ(0)
)
≥ 1

2 min
(

min
y∈[−L,0]

ψ(0, y),µφ(0)
)
=: m

so that using Prop. 2.2.1 again on x ≤ 0, for n ≥ N ,

µφn,ψn ≥ meλnx
h−
h+

Finally, by monotonicity of λ (see Remark 2.2.1) λn → λ(+∞, c) and λ̄n →
λ(+∞, c̄) > λ(+∞, c), so for n ≥ N large enough, λn− λn > d := 1

2(λ(+∞, c̄)−
λ(+∞, c)) > 0. Now for

x <
1
d

ln
(
mh−h−
θh+h+

)
=: X

we have the inequality announced.

Lemma 2.4.5. If (c,φ,ψ) and (c̄,φ,ψ) solve the equations (2.4) in the conclusion
of Lemma 2.4.3, then c = c̄.

Proof. Since these solutions have classical regularity, we can apply the strong
parabolic maximum principle and the parabolic Hopf’s lemma (see for instance
[11, 43]) in a similar fashion as the elliptic case of Proposition 2.2.2.
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First, observe that

c∂xψ− d∂2
yyψ = f(ψ) + (c− c̄)∂xψ ≤ f(ψ)

Now, slide µφ,ψ to the left above µφ,ψ this way : just do it on a slice x = a with
a > 0 large enough so that on x > a we know the sign of f(ψ)−f(ψ)

ψ−ψ and can use
the parabolic maximum principle with initial "time" x = a (dotted line below) :

d∂y(ψ−ψ) + (ψ−ψ) = µ(φ− φ)

−(φ− φ)′′ + c(φ− φ)′ = (ψ− ψ)− µ(φ− φ) φ− φ→ 00← φ− φ

c∂x(ψ− ψ)− d∂2
yy(ψ− ψ)−

f(ψ)−f(ψ)
ψ−ψ (ψ− ψ) ≥ 0

∂y(ψ−ψ) = 0

µφ,ψ > µφ,ψ > 1− ε

ψ− ψ → 00← ψ− ψ

Treating the upper boundary as before, we obtain that µφ,ψ > µφ,ψ on x ≥ a.
Using Proposition 2.4.4, the order is also true for x negative enough, so that there
is only a compact rectangle left where the order is needed : for this, just slide
µφ,ψ enough to the left.

Now, as before, slide back to the right until the order is not true any more,
finishing with the minimum possible translate µφ(r0 + x) ≥ µφ(x),ψ(r0 + x, y) ≥
ψ(x, y). The strong parabolic maximum principle (without sign assumption) gives
that the order is still strict (use a starting x smaller than the x where an eventual
contact point happens) since ψ 6≡ ψ. Thus, on any compact Ka as large as we
want, we can slide µφ,ψ εa more to the right again, the order still being true on
Ka. Now just chose a large enough so that −a < X + r0− εa, and so that on x > a

we know the sign of f(ψ)−f(ψ)
ψ−ψ : Prop. 2.4.4 and the parabolic strong maximum

principle give that µφ(r0 − εa + x) > µφ(x),ψ(r0 − εa + x, y) > ψ(x, y) which is
a contradiction.

Remark 2.4.1.

• We could avoid the use of exponential solutions in the proof of Lemma 2.4.4 :
indeed, by considering some fixed translates φrn,ψrn of φ,ψ we can have, for
n large enough thanks to the locally uniform convergence and if r is large
enough
ψrn(−a, y) ≥ (1− δ)ψr(−a, y) ≥ (1 + δ)ψ(−a, y) ≥ ψ

n
(−a, y)

• This idea of using the parabolic maximum principle to treat a degenerate
elliptic equation motivates the following section where we answer the ques-
tion : can the solution of (2.4) be recovered by a direct method, without
seeing it as the limit of the more regular solutions of (2.5) ?
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2.5 Direct study of the limiting problem
We investigate the following elliptic-parabolic non-linear system in

[0,M ]× ([0,M ]× [−L, 0]) = [0,M ]×ΩL,M

v = 0

d∂yv+ v = µu

−u′′ + cu′ + µu− v = 0u = 0 u = 1/µ

c∂xv− d∂2
yyv = f(v)

−∂yv = 0

v =?

(2.12)

with c,u(x), v(x, y) as unknowns. We call a supersolution of (2.12) a solution
of (2.12) where the = signs are replaced by ≥. The plan of this section is the
following :

• First, we study the linear background of (2.12) in order to use Perron’s
method.

• Then we prove the well posedness of (2.12) and study monotonicity and
uniqueness properties of the solution.

• In a third subsection, we study the influence of c.

• Finally, under a suitable normalisation condition on cM obtained thanks to
the previous step, we study the limit M → +∞ of (2.12) and recover the
solution of (2.4).

2.5.1 Linear background
In this subsection, we recreate the standard tools behind Perron’s method. Even
though these are quite standard, we give the proofs in our precise case because of
the specificity of mixing parabolic and elliptic theory. Let k > 0 be a constant.
We look at the following linear system of inequations

c∂xv− d∂2
yyv+ kv = h in ΩL,M

d∂yv(·, 0) + v(·, 0) ≥ µu on (0,M)

−∂yv ≤ 0 on y = −L{
−∂2

xxu+ c∂xu+ (µ+ k)u− v(·, 0) = g in (0,M)

along with the parabolic and elliptic limiting conditions

v ≥ 0 on x = 0

u(0) ≥ 0,u(M) ≥ 0
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represented from now on as the following diagram

v ≥ 0

d∂yv+ v ≥ µu

−u′′ + cu′ + (µ+ k)u− v = gu ≥ 0 u ≥ 0

c∂xv− d∂2
yyv+ kv = h

−∂yv ≥ 0

v =?

(2.13)

Proposition 2.5.1. (Maximum principle.) If (u, v) are C2 functions up to the
boundary of resp. (0,M) and ΩL,M that solve inequation (2.13) with g,h ≥ 0 then

u, v ≥ 0

Moreover, u, v > 0 in resp. (0,M) and ΩL,M or u ≡ 0, v ≡ 0.

Proof. We simply mix parabolic and elliptic strong maximum principles. Suppose
that min v < 0. By the parabolic strong maximum principle and Hopf’s lemma,
min v is necessarily reached on y = 0 and at this point, µu < min v. This is a
contradiction with

−∂2
xxu+ c∂xu+ (µ+ k)u ≥ v

with its endpoints conditions that ensure

u ≥ min v
µ+ k

Thus we have v ≥ 0 and the elliptic maximum principle gives also u ≥ 0. Finally,
if v(x0, y0) = 0 with x0 > 0 then by the strong parabolic maximum principle,
v ≡ 0 on x < x0, thus u ≡ 0 on x < x0 which by the elliptic strong maximum
principle gives u ≡ 0, so that v = g = u ≡ 0 and ∂yv ≥ 0 on y = 0, and by
parabolic Hopf’s lemma, v ≡ 0.

Corollary 2.5.1. (Comparison principle.) Let k > Lip(f). Then we have the
following comparison principle : if g1 ≤ g2 and h1 ≤ h2, then if (u1, v1) and
(u2, v2) are solutions C2 up to the boundary of

vi = 0

d∂yvi + vi = µui

−u′′i + cu′i + (µ+ k)ui − vi = kgiui = 0 ui = 1/µ

c∂xvi − d∂2
yyvi + kvi = f(hi) + khi

−∂yvi = 0

vi =?

(2.14)

then
u1 ≤ u2, v1 ≤ v2
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Proof. Just observe that (u2 − u1, v2 − v1) solve (2.13) with g = k(g2 − g1) ≥ 0
and h = f(h2)− f(h1) + k(h2 − h1) ≥ (−Lip(f) + k)(h2 − h1) ≥ 0.

Corollary 2.5.2. (Supersolution principle.) Let (ū, v̄) be a supersolution of (2.12).
If (u, v) is a solution of (2.14) with data (ū, v̄) then

u ≤ ū, v ≤ v̄

Proof. Observe that (ū− u, v̄− v) solves an inequation (2.13) with g,h ≥ 0.

Proposition 2.5.2. (Unique solvability of the linear system.) Let c > 0, (g,h) ∈
Cα([0,M ]) × Cα/2,α(ΩL,M ) and k > Lipf . Then there exists a unique solution
(u, v) ∈ C2,α([0,M ])×C1+α/2,2+α(ΩL,M ) of

v = 0

d∂yv+ v = µui

−u′′ + cu′ + (µ+ k)u− v = gu = 0 u = 1/µ

c∂xv− d∂2
yyv+ kv = h

−∂yv = 0

v =?

(2.15)

Proof. The classical parabolic theory allows us to set

S : C1+α/2 → C1+α/2, U 7→ v(·, 0)

where v solves the last four equations in (2.15) with u replaced by U . S is affine
and thanks to parabolic Hopf’s lemma, uniformly continuous for the L∞ norm :

|SU1 − SU2|∞ ≤ µ|U1 −U2|∞

Since C1+α/2([0,M ]) is dense in BUC([0,M ]), we can extend S to a uniformly
continuous affine function S̃ on X = BUC([0,M ]).

On the other hand thanks to classical ODE theory we can set

T : L∞ → W 2,∞, V 7→ u

where u is solution of the first equation in (2.13) with v(·, 0) replaced by V .
Observe also thanks to elliptic regularity that T sends Cα to C2,α.

By the strong elliptic maximum principle, observe that T ◦ S̃ : X → X is a
contraction mapping :

|T S̃U1 − T S̃U2|∞ ≤
µ

µ+ k
|U1 −U2|∞

By use of Banach fixed point theorem, it has a unique fixed point u ∈ X. Observe
now that u = T (S̃(u)) and since S̃(u) ∈ L∞, u = T (S̃(u)) ∈ W 2,∞ ⊂ C1+α/2

and in the end S̃(u) = S(u) ∈ C1+α/2 so that u = T (S(u)) ∈ C2+α. Finally,
parabolic regularity gives v ∈ C1+α/2,2+α and (u, v) solves (2.13) in the classical
sense.



2.5. DIRECT STUDY OF THE LIMITING PROBLEM 83

2.5.2 The non-linear system
Combining all the results from the previous section we get :

Theorem 2.5.1. There exists a smooth solution 0 ≤ µu, v ≤ 1 of (2.12).

Proof. Use (0, 0) and (1/µ, 1) as sub and supersolutions and start an iteration
scheme from (1/µ, 1). We get a decreasing sequence bounded from below by (0, 0).
It converges point wise but the L∞ bound on un, vn gives a C1+α/2 bound on un
which then gives a C1+α/2,2+α bound on vn, which then gives a C2+α bound on un.
By Ascoli’s theorem we can extract from (un, vn) a subsequence that converges
to (u, v) ∈ C2+β × C1+β/2,2+β. The point wise limit then gives the uniqueness of
this limit point and thus that (un, vn) converges to it. Finally, (u, v) has to be a
solution of the equation.

Observe also that the only possible loss of regularity comes from the non-
linearity f . Actually, if f is of class C∞, by elliptic and parabolic regularity
described above, u and v are C∞ too. More precisely, f ∈ W k+1,∞ implies (u, v) ∈
C2+k,α([0,M ])×Ck+1+α/2,k+2+α(ΩL,M ).

We are now interested in sending M → +∞ to recover the travelling wave
observed in the last section. For this, we need to normalise the solution in ΩL,M
in such a way that we do not end up with the equilibrium (0, 0) or (1/µ, 1). We
trade this with the freedom to chose c : this motivates the investigation of the
influence of c on (u, v) as well as a priori properties of (u, v). To this end, we use
a sliding method in finite cylinders. Because we apply the parabolic maximum
principle on v, we will not have to deal with the corners of the rectangle.

Proposition 2.5.3. If c > 0 and 0 ≤ µu, v ≤ 1 is a classical solutions of (2.12)
then

u′, ∂xv > 0

Proof. First observe that m0 := min[−L,0] v(M , y) > 0 for the same reasons as in
Prop. 2.5.1. Observe also that

lim
ε→0

max
[0,ε]×[−L,0]

v = 0

thanks to the uniform continuity of v. Denote

vr(x, y) = v(x+ r, y)

and
Ωr
L,M = [−r,M − r]× [−L, 0]

The previous observation asserts that vr − v > 0 on Ωr
L,M ∩ΩL,M if r is close

enough to M . Call (r0,M) a maximal interval such that for all r in this interval,
vr− v > 0 on Ωr

L,M ∩ΩL,M . We know that such an interval exists by the previous
observation. Let us show that r0 = 0 by contradiction. Suppose r0 > 0. By
continuity, vr0 − v ≥ 0. But (vr0 − v)(0, y) > 0 and V := vr0 − v,U := ur0 − u
satisfy on [0,M − r0], [0,M − r0]× [−L, 0] :
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V > 0

d∂yV + V = µU

−U ′′ + cU ′ + µU = VU > 0 U(M − r0) > 0

c∂xV − d∂2
yyV +

f(vr0 )−f(v)
vr0−v

V ≥ 0

−∂yV = 0

By the mixed elliptic-parabolic strong maximum principle and Hopf’s lemma for
comparison with 0 as in prop. 2.5.1 we know that vr0 − v > 0 (we cannot have
vr0 ≡ v because then u(M − r0) = 1/µ and that is impossible thanks to strong
elliptic maximum principle since r0 > 0). Then we may translate a little bit more,
since vr0−ε − v is continuous in ε, so that vr0−ε − v > 0, which is a contradiction
with the definition of r0.

As a result, u and v are non-decreasing in x, that is u′, ∂xu ≥ 0. Now differ-
entiating the equation with respect to x and applying the same mixed maximum
principle as above for comparison with 0 yields u′, ∂xv > 0.

Proposition 2.5.4. For fixed c > 0, there is a unique solution (u, v) of (2.12)
such that 0 ≤ µu, v ≤ 1.

Proof. The proof is essentially the same as monotonicity. Suppose (u1, v1) and
(u2, v2) are solutions. The same observations as above allow us to translate v2 to
the left above v1. Now translate it back until this is not the case any more. We
show by contradiction that this never happens : suppose vr0

2 − v ≥ 0 with r0 > 0.
Then vr0

2 − v > 0 or ≡ 0, but the latter case is not possible since it would give
u(M − r0) = 1

µ . Thus vr0
2 − v > 0 and we can still translate a bit more, that is

a contradiction with the definition of r0 so r0 = 0 and v2 ≥ v. By symmetry,
v2 ≡ v1, and then u2 ≡ u1.

Proposition 2.5.5. The function c 7→ (u, v) is decreasing in the sense that if
0 < c < c̄ and (c,u, v) and (c̄,u, v) solve (2.12) then

u < u, v < v

Proof. The proof is again the same, just observe that (u, v) is a subsolution of the
equation with c, thanks to monotonicity since (c− c̄)∂xv < 0.

2.5.3 Limits with respect to c

For now, we assert the following properties, which will be enough to conclude this
section. Nonetheless, note that the study of solutions of (2.12) with c = 0 shows
interesting properties. Namely, the solutions are necessarily discontinuous, which
implies that the regularisation comes also from the c∂x term. This has to be seen
in the light of hypoelliptic regularisation in kinetic equations (see [25, 50]).
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Proposition 2.5.6. Let (uc, vc) denote the solution in Prop. 2.5.4. Then for
every α ∈ (0, 1)

lim
c→0

uc(αM) ≥ α

Proof. By monotonicity we already know that (uc, vc) converges point wise as
c → 0 to some (u, v). Since 0 ≤ vc ≤ 1, by uniqueness of the limit and Ascoli’s
theorem we know that u is in W 2,∞ ↪→ C1,1/2.

Multiplying the equation satisfied by vc by a test function φ(y) ∈ C∞c (−L, 0),
integrating, and then multiplying by ψ(x) ∈ C∞c (0,M) and integrating again,
yields after passing to the limit c → 0 thanks to dominated convergence : for all
x ∈ (0,M)

−d
∫ 0

−L
vφ′′(y)dy =

∫ 0

−L
f(v(x, y))φ(y)dy

i.e. v(x, ·) satisfies −v(x, ·)′′ = f(v) ∈ L∞ in the sense of distributions, so that
v(x, ·) ∈ W 2,∞ ↪→ C1,1/2, so that actually f(v) ∈ C1 and these equations are
satisfied in the classical sense. Moreover v(x, ·)′ is bounded and by concavity,
vy(−L) exists and is seen to be necessarily 0 by using a test function φ whose
support intersects y = −L and integrating by parts.

At this point, v(x, ·) ∈ C2(−L, 0) ∩ C1([−L, 0]) and satisfies −d∂2
yyv(x, y) =

f(v(x, y)) and ∂yv(−L) = 0. Using now a test function φ whose support intersects
y = 0 and integrating by parts we obtain d∂yv(x, 0) = µu(x)− v(x, 0).

Moreover, u(0) = v(0, y) = 0, u(M) = 1/µ, v is non-decreasing with respect
to the x variable so differentiable a.e. and continuous up to a countable set (which
in fact is of cardinal 1, 2 or 3).

Finally, passing to the limit in the equation for u yields that u ∈ C1 satisfies
−u′′ = µu− v in the sense of distributions, so that we have the following picture :

v = 0

d∂yv = µu− v
−u′′ = v− µuu = 0 u = 1/µ

−d∂2
yyv = f(v)

−∂yv = 0

v =?

(2.16)

Notice that since f ≥ 0, v(x, ·) is concave, so that d∂yv(x, 0) ≤ 0, i.e. v− µu ≥ 0
so that u is concave. As a consequence, it is over the chord between (0, 0) and
(M , 1/µ) which is the desired conclusion.

Proposition 2.5.7.

lim
c→+∞

uc = 0 pointwise on [0,M [
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Proof. Applying the exact same method as above we obtain as c→ +∞, (u, v) a
classical solution of

v = 0

d∂yv = µu− v
u′ = 0u = 0 u = 1/µ

∂xv = 0

−∂yv = 0

v =?

(2.17)

Now just observe that u′c(0) is decreasing with respect to c and non-negative, so
that u can be extended in a C1 way on [0,M) by the Cauchy criterion : we end-up
with u ≡ 0 on [0,M). We observe that u is thus necessarily discontinuous at
x = M , which is consistent with the limit c → ∞ in the integration by parts of
the equation on (uc, vc) :

c

(
1
µ
+
∫ 0

−L
vc(M , y)dy

)
=
∫

ΩL,M
f(vc) + u′c(M)− u′c(0)

since the left-hand side goes to +∞ and everything except u′c(M) is bounded by
above in the right-hand side.

2.5.4 Limit as M →∞
We now call θ′ = 1+θ

2 , θ′′ = 2+θ
3 and chose c = cM such that uM (θ′′M) = θ′. We

are now interested in compactness on cM to pass to the limit M → +∞ in the
equations. From now on we change the coordinate x by x− θ′M so that uM , vM
are resp. defined on

ΩM := [−θ′′M , (1− θ′′)M ]

ΩL,M := [−θ′′M , (1− θ′′)M ]× [−L, 0]
and

uM (0) = θ′

Proposition 2.5.8. For M large enough, cM <
√
Lipf

Proof. Since we do not know how the level lines {vM = θ} behave, we cannot
apply the argument of Proposition 2.2.2. Nonetheless, this is counterbalanced by
taking advantage of being in a rectangle. We look for

ū(x) = erx, v̄(x, y) = µerx

to solve (2.12) with the = signs replaced by ≥. A direct computation yields

−r2 + cMr ≥ 0, cMr ≥ Lipf
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so the best choice is
r = cM , cM ≥

√
Lipf

So now suppose
cM ≥

√
Lipf

and set

t0 = inf{t ∈ R | ū(t+ ·)− uM ) > 0 on ΩM and v̄(t+ ·, y)− vM > 0 on ΩL,M}

This infimum exists as it is taken over a set that is non-void and bounded by below
(using the limits of erx and the bounds on u, v). By continuity

ū(t0 + ·)− uM , v̄(t0 + ·, y)− vM ≥ 0

and

There exists x0 ∈ ΩM s.t. ū(t0 + x0)− u(x0) = 0
or

There exists (x′0, y′0) ∈ ΩL,M s.t. v̄(t0 + x′0, y′0)− v(x′0, y′0) = 0

Since u = v = 0 at the left boundaries, x0,x′0 > −θ′′M . Thanks to the normalisa-
tion condition, the first case is impossible, since ū(t0 + ·)− uM satisfies the strong
elliptic maximum principle with non-negative boundary values and data. Indeed,
the only thing to check is that

µ̄u(t0 + (1− θ′′)M) ≥ µuM ((1− θ′′)M) = 1

This is obtained providedM ≥ 2√
Lipf ln

(
1
µ

)
: the level lines θ′ should touch before

the level lines 1 since

|µu−1
M (θ′)− µū−1(θ′)| = 1

c
ln
(
θ′

µ

)

<
1
c

ln
(

1
µ

)

< M − 1
c

ln
(

1
µ

)
= |µu−1

M (1)− µū−1(1)|

The second case is impossible also, by using the strong parabolic maximum
principle and Hopf’s lemma as usual. In every case, there is a contradiction so
that in the end

cM ≤
√
Lipf



88 CHAPTER 2. THE LARGE DIFFUSION LIMIT

Proposition 2.5.9. There exists c− > 0 that does not depend on M s.t. cM > c−

Proof. We argue by contradiction by supposing inf c(M) = 0. Then there exists
Mn → ∞ (by continuity of c(M)) such that cMn =: cn → 0. Denote un, vn
the associated normalised sequence of solutions. Since un is uniformly in C1,β we
extract from it a subsequence that converges in C1,α. We now assert the following :

For every A > 0, (vn(y)(x))n is equicontinuous and bounded in
C((−L, 0),L1(−A,A))

The boundedness comes directly from the fact that vn(x, y) ∈ [0, 1] is increas-
ing, thus it is bounded uniformly in n and y in BV (−A,A) which is compactly
embedded in L1(−A,A). For the equicontinuity, we have

∫ A

−A
|vn(y,x)− vn(y+ ε,x)|dx ≤

∫ A

−A

(∫ y+ε

y
|∂yvn(x, s)| ds

)
dx

so that a uniform bound on ∂yvn will suffice. This bound is classical and comes
from parabolic regularity after rescaling, but let us give it here for the sake of
completeness. Consider un(x) = u(cnx) and vn(x, y) = v(cnx, y) so that with the
new variables, x ∈ (−θ

′Mn
cn

, (1−θ
′)Mn

cn
) and u, v satisfy

v = 0

d∂yv = µu− v

−u′′ = v− µuu = 0 u = 1/µ

∂xv− d∂2
yyv = f(v)

−∂yv = 0

v =?

(2.18)

Now we reduce to a local estimate :

|µun|C1,α(−A,A) = |µun|L∞(−A,A) + |µu′n|L∞(−A,A) + sup
x 6=y

|µu′n(x)− µu′n(y)|
|x− y|α

≤ |µun|L∞(−A,A) + 3|µu′n|L∞(−A,A) + sup
|x−y|<1

|µu′n(x)− µu′n(y)|
|x− y|α

≤ |µun|L∞(−A,A) + 4 sup
x0∈(−A,A)

|µun|C1,α(B1(x0))

And finally, |µun|L∞(−A,A) ≤ 1 as well as

|µun|C1,α(B1(x0)) ≤ C0|µun|W 2,p(B1(x0))

≤ C0C1
(
|µun|Lp(B1(x0)) + |vn|Lp(B1(x0))

)
≤ 2C0C1
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thanks to the Sobolev inequality, the standardW 2,p estimates with p = 1/(1−α),
and 0 ≤ µu ≤ 1, so that in the end

|µun|C1,α(−A,A) ≤ 1 + 8C0C1

Finally, we plug this in the classical Schauder parabolic estimate up to the bound-
ary to get

|vn|C1+α/2,2+α(−A,A) ≤ C3
(
|vn|L∞(−A,A) + |un|C1+α/2(−A,A)

)
≤ C3(2 + 8C0C1)

even independently from A. So that in the end

|∂yvn|L∞((−A,A)×(−L,0)) = |∂yvn|L∞((−A/cn,A/cn)×(−L,0)) ≤ C3(2 + 8C0C1)

The fact is now proved, and thanks to Ascoli’s theorem and a diagonal extrac-
tion, we can extract from un, vn some u, v that converges in C((−L, 0),L1(−n,n))
for every n ∈ N. Just as in the previous computations by integrating by parts,
we get that u, v ends up to be a classical solution of (since Mn/cn →∞)

d∂yv = µu− v(x, 0)

−u′′ = v(x, 0)− µu

−d∂2
yyv = f(v)

∂yv = 0 (2.19)

along with µu(0) = (1 + θ)/2. But this is impossible : indeed, u is bounded
and thanks to f ≥ 0, v is concave on each y-slice, which gives that u is also
concave, on the whole R so it is constant. Thanks to the normalisation condition,
µu ≡ (1+ θ)/2, so that v(x, 0) ≡ µu ≡ (1+ θ)/2, so that ∂yv(x, 0) ≡ 0, but then
by concavity and the Neumann condition, v ≡ (1 + θ)/2 which is a contradiction
with f((1 + θ)/2) > 0.

We can now pass to the limit M →∞ in the equations and prove Theorem 3.

Proof. Taking Mn → +∞, thanks to the bounds on cMn we can extract from it
a subsequence converging to some c > 0. We can also use the elliptic-parabolic
regularity discussed in the beginning to extract from (uMn , vMn) some subsequence
that converges in C1+α/2,2+α

loc to some (u, v) that solve the equations in (2.4).
Bounds and monotonicity are inherited from the C1 limit. The last thing to check
are the uniform limits as x → ∓∞, which are obtained thanks to the following
lemmas.
Lemma 2.5.1. ∫∫

[0,+∞]×[−L,0]

f(v) < +∞,
∫∫

[0,+∞]×[−L,0]

|∂yv|2 < +∞

and the same is true with [−∞, 0].
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Proof. Integrate on [0,M ]× [−L, 0] the equation for v in (2.4) to get

∫∫
[0,M ]×[−L,0]

f(v) = c

(∫ 0

−L
v(M , y)−

∫ 0

−L
v(0, y)

)
+u′(M)−u′(0)+ c (u(M)− u(0))

Everything in the left-hand side is bounded, apart from u′(M). Thus, for the
integral to diverge as M → +∞, u′(M) → +∞, which is impossible since u is
bounded.

For the second integral, multiply the equation by v and integrate by parts to
get

∫∫
[0,M ]×[−L,0]

d|∂yv|2 =
∫∫

[0,M ]×[−L,0]

f(v)v− c
∫ 0

−L

1
2(v(M , y)2−v(0, y)2)+

∫ M

0
(u′′− cu′)v

The first two integrals in the right-hand side are bounded. For the last one, we
see that

c
∫ M

0
u′v ≤ c(u(M)− u(0)) ≤ c(1− θ′)

µ

so that for the integral to diverge as M → +∞,
∫M
0 u′′v → +∞. But

∫ M

0
u′′v = u′(M)v(M)− u′(0)v(0)−

∫ M

0
u′v′ ≤ u′(M)v(M) ≤ u′(M)

so that this is again impossible. The case of [−∞, 0] is similar.

Proposition 2.5.10. µu(x), v(x, y)→ 1 uniformly in y as x→ +∞ and to some
constant v− ≤ θ as x→ −∞.

Proof. By bounds and monotonicity, v(x, y) converges point wise to some v+(y)
as x → +∞. Let us define the functions vj(x, y) = v(x+ j, y) in [0, 1]× [−L, 0]
for every integer j. Standard parabolic estimates and Ascoli’s theorem tell us that
up to extraction, vj → δ in the C1 sense for a C1 function δ. By uniqueness of the
simple limit, β = v+ ∈ C1. So vj lies in a compact set of C1([0, 1]× [−L, 0]) and
has a unique limit point β ∈ C1 : then it converges to it in the C1 topology. The
y-uniform limits follow.

Now using the finiteness of the second integral above, we have that v+(y) is
constant, moreover, f(v+) = 0 thanks to the finiteness of the first integral. By
the exchange condition, µu converges to v+ as x → +∞ so necessarily v+ ≥ θ′ :
the only possibility is v+ = 1.

The exact same arguments apply to −∞, but all of [0, θ] are admissible con-
stants. Let us finish with the following.

Proposition 2.5.11.
v− = 0
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Proof. Here we use that v comes from vMn . As in the proof of the upper bound on
cM , we do not know what happens to the level lines {vMn = θ}, which prevents us
to use the usual comparison with positive exponential solutions as v ≤ θ : indeed,
the sets {vMn = θ} could be sent to −∞. We use a sliding method with a less
sharp supersolution by looking at a level line {vMn = α} with α > θ close to θ to
prove that this is not the case. We give below a picture of the argument before
writing it completely.

α

x−
0

α

x−
0

α

x−
0

First, observe that thanks to the y-uniform convergence of µu, v to v− ≤ θ
resp. 1 as x→ ∓∞ :

∃ x− ≤ x+ ∈ R s.t. {µuMn = α} ⊂ [x−,x+] and {vMn = α} ⊂ [x−,x+]× [−L, 0]

Indeed, there exists x−,x+ s.t. for all x ≤ x−, y ∈ [−L, 0], µu, v(x, y) ≤ θ+α
2

and for all x ≥ x+, y ∈ [−L, 0], µu, v(x, y) ≥ α+1
2 . Thanks to the uniform local

convergence of uMn , vMn to u, v we can say that there exists N ∈ N s.t. for all
n ≥ N , on [x−,x+]× [−L, 0] we have 2θ+α

3 ≤ µuMn , vMn ≤ α+2
3 , and we conclude

thanks to the monotonicity of uMn , vMn .
We now work on x ≤ x− so that µuMn , vMn ≤ α and use the fact that Lipf|[0,α]

is as small as we want by taking α close enough to θ. The same computations as
in Prop. 2.5.8 as well as c > c− and the monotonicity of ec−x give that if α is
chosen so that

Lipf|[0,α] ≤ c2−

then (ec−x,µec−x) is a supersolution of (2.12) as long as µec−x ≤ α : so look
at the graph of µec−x and cut it after it reaches α. Now translate this half-
graph to the left until it is disconnected with the graph of uMn , vMn and bring
it back until it touches µuMn or vMn before x−, which necessarily happens since
µu(x−), v(x−, y) ≤ α. The arguments given in Prop. 2.5.8 assert here that the
contact necessarily happens at x− with µuMn , i.e. the graphs of µuMn , vMn are
below some translation of the cut graph of µec−x that touches it at x−, where
µuMn ≤ α so that they are below the graph of αec−(x−x−), i.e.

µuMn , vMn ≤ ec−(x−x−) on x ≤ x−

By making n→∞ we get that µu, v decays as x→ −∞ at least as ec−x, which is
consistent with the computations of the exponential solutions in Section 2.2.

As a conclusion, I would like to mention that this study motivates the question
of convergence towards travelling waves. This work suggests that the travelling
wave of (??) is globally stable among initial data that are over θ on a set large
enough (whose measure would scale as

√
D). I also conjecture that this convergence

happens uniformly in D. This will be the purpose of a future work.
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Chapter 3

Transition between a low speed
and the travelling waves speed

“ Do you feel like a remnant
Of something that’s past?

Do you find things are moving
Just a little too fast?

Do you hope to find new ways
Of quenching your thirst?

Do you hope to find new ways of doing
Better than your worst?

Hey slow, Jane, let me prove
Slow, slow, Jane, we’re on the move. ”

—Nick Drake (1948-1974), Hazey Jane I
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3.1 Introduction

The question
This chapter investigates the dynamics of the travelling fronts exhibited in the
previous chapters. We shed light on what kind of initial data are attracted by the
travelling waves and on the precise mechanism of attraction, which ends up to be
more sophisticated than we thought at first glance. We recall the system

d∂yv = µu− v

∂tu−D∂2
xxu = v− µu

∂tv− d∆v = f(v)

∂yv = 0 (3.1)

and its renormalisation (x← x
√
D) for the study of the limit D → +∞

d∂yv = µu− v

∂tu− ∂2
xxu = v− µu

∂tv− d
D∂

2
xxv− d∂2

yyv = f(v)

∂yv = 0 (3.2)

Some results will be stated for equation (3.1) and some for (3.2) and the proofs
will juggle between the two. Also, we will try to be as clear as possible.

It is well known since the pioneering works of Kolmogorov, Petrovskii and
Piskunov [56] that "front like" initial data are attracted by associated travelling
waves. This result was later refined and generalised in Aronson-Weinberger [1]
and again in Fife-McLeod [42] to bistable non-linearities. Unlike the KPP case
where even a Dirac measure as initial datum will converge to a pair of travelling
waves, in the case of a non-linearity with a threshold, one has to assume largeness
conditions on the initial data. In our case for instance it is clear that for initial
data everywhere below θ the equation will be linear and the solution will decay
to zero. Moreover, ignition type non-linearities present an additional technical
difficulty compared to the case of [42] because of their degeneracy (f ′(0) = 0) in
the regime v ≤ θ.

Since the results of the afore mentioned authors, these phenomena have received
much attention, see for instance Roquejoffre [75, 76] where the author studies
the case of heterogeneous cylinders, or Zlatoš and Du-Matano [40, 80] where the
authors provide sharp conditions on the initial data for extinction or invasion
to occur. See the subsection "bibliographical study and discussion" below for a
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more precise description of all the above works. We also mention Mellet-Nolen-
Ryzhik-Roquejoffre [65] where the ideas of [1, 76] were generalised and simplified
to the context of generalised transition fronts. Our first theorem stated below is
an adaptation of their work to our heterogeneous context.

First results
Theorem 3.1.1. Let (u0, v0) be a front-like initial datum for equation (3.2), that
is (u0, v0) ∈ Pα0 defined in the next section. There exists an exponent ω > 0 that
depends on the initial data only through α0 and for all ε > 0 small enough there
exists two shifts ξ±1 such that

φ(x+ cξ−1 + ct)−Cεe−ωt ≤ µu(t,x) ≤ µφ(x+ cξ+1 + ct) +Cεe−ωt

ψ(x+ cξ−1 + ct)−Cεe−ωt ≤ v(t,x, y) ≤ ψ(x+ cξ+1 + ct) +Cεe−ωt

where C is a constant that depends only on d and L. Moreover, ω does not depend
on D > d.

Remark 3.1.1.

• The previous theorem does not give the convergence towards travelling waves
strictly speaking. It only says that the solution stays strapped (up to an
exponentially small error in time) between two translates of the wave. In
[65], this is the starting point of an iterative argument showing a geometric
decrease of the distance separating the two shifts with respect to a fixed time
step. One can repeat the argument of [65] by adapting it to the system and
replacing the Harnack inequality by the strong maximum principle. However
this would not be uniform in D > d. A different mechanism is at work here
and we prefer to focus on this different issue.

• As we will see later, the initial data can be trapped between two translates
cξ±0 of a wave also. We wish to mention that the distance between the above
shifts ξ±1 and the shifts ξ±0 can be controlled in terms of ε. For a more precise
statement of the Theorem in terms of shifting sub and supersolutions, see
Theorem 3.2.1 below.

The associated theorem for compactly supported initial data asserts the fol-
lowing (see Theorem 3.3.1 for a precise statement) :

Theorem 3.1.2. Let (u0, v0) be non-negative smooth compactly supported data for
equation (3.1). There exists δ > 0 and M = O(

√
D) such that if µu0, v0 > 1− δ

for x ∈ (−M ,M) then µu, v stays trapped (up to an exponentially decaying error)
between two shifts of a pair of travelling waves evolving in both directions.

This theorem is a natural consequence of the stability of front-like initial data
using an argument initiated by [42] and was pretty much expected. Nonetheless,
numerical simulations indicated a more subtle mechanism of attraction when the
initial data is smaller. We provide them below for the case µu0, v0 = 1(−a,a) with
a > 0 small compared to

√
D.
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Numerical simulations
These simulations were produced using FreeFem++ : we used P2 finite elements
using a mesh consisting in 400 points horizontally and 50 vertically. The time-
scheme used is explicit Euler, which seems quite sufficient in terms of accuracy and
speed for our context. We imposed Neumann boundary conditions on the vertical
ends of a box of size A×L with A� L, which gives a good approximation of our
setting as long as u and v are very close to 0 near the edges. Finally, we represented
u as a function over the box so that it is visible. The following parameters were
used :

a 3
d 0.1
D 100
µ 1.4
θ 0.3

f(v) 10× 1v>θ(v− θ)2(1− v)
A 500
L 50
∆t 0.1

We comment the figures below by the scenario which, we think, is the most plau-
sible :

Figure 3.1: t = 0

Figure 3.2: t = 10∆t : due to the large diffusivity D, u is quickly spread on all R

and decays rapidly
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Figure 3.3: t = 75∆t : in the meanwhile, v grows slowly and transmits mass to u

Figure 3.4: t = 100∆t

Figure 3.5: t = 150∆t : at some point, u has recovered enough mass and starts to
lead the propagation

Figure 3.6: t = 300∆t
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Figure 3.7: t = 750∆t : acceleration of the propagation is then transmitted down-
wards from the road to the bottom of the field, reaching the regime described in
Theorem 3.3.1.

Figure 3.8: t = 1000∆t

Data with small support and additional effects
In this section we describe the result behind the above numerical simulations.

Theorem 3.1.3. Let L be large enough (independently of D). There existsM ′, δ′ >
0 independent of D > d such that if the initial datum of (3.1) satisfies

v0 > 1− δ′ for x ∈ (−M ′,M ′)

then after a finite time tD = D1/2 lnD + O(1) one has µu and v satisfying the
assumptions of Theorem 3.3.1, i.e. µu, v ≥ 1− δ for x ∈ (−M

√
D,M

√
D). As

a consequence, starting from the time t = tD, propagation occurs as described in
Theorem 3.1.2.

Remark 3.1.2. • Observe that we assume a size condition on L : indeed, it is
closely related to the existence of a large steady state to a Robin boundary
value problem (the equation satsified by v in (3.1) when one sets u = 0). It
happens that this problem admits a large enough solution only for L large
enough, as we will see below.

• We also believe that tD ≥ kDα for some α ∈]0, 1/2] so that there is an
incompressible time tending to +∞ as D → +∞ while the propagation is
slow (that is, independent of D).
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Finally, we investigate the symmetrical situation of an initial data supported
only on the road. Unlike the case of initial data supported on the field, if µu0 ≤ 1
has a support of size ≤ C

√
D (in the model (3.1)) there will be extinction. On the

other hand, we provide conditions on µ for invasion to happen in the case µu0 ≡ 1.
We sum up these results in the following theorem, stated for (3.2) this time :

Theorem 3.1.4. Let v0 ≡ 0 and µu0 = 1(−a,a) be initial data for (3.2) and u, v
the associated solutions. We have the following :

• There exists a0 > 0 independent of D such that if a < a0, µu and v decay to
0 uniformly as t→ +∞.

• If a = +∞ there are thresholds µ± independent of D such that for µ < µ−

invasion occurs and for µ > µ+, µu and v converge uniformly to 1/(µ(L+
1/µ)) ≤ θ.

• More generally, provided µ < µ−, there exists a1 > 0 independent of D such
that if a > a1, invasion occurs.

Remark 3.1.3. It is quite natural that µ too large leads to extinction : indeed, we
normalised u so that u ≤ 1/µ and moreover µ acts as a death rate in the equation
on u. In the meanwhile, v sees the same initial boundary Robin condition ≡ 1
independantly from µ.

This raises the question of the normalisation of u, which never arose before
because µ was fixed until now. Even though 1/µ is a natural threshold for u
in light of the comparison principle, it is another interesting viewpoint to study
Theorem 3.1.4 with u0 ≡ 1 (and not µu0).

Bibliographical study and discussion
Before getting into the substance, let us put our results in their context and men-
tion some classical results about the stability of reaction-diffusion fronts. The first
works concerning the behaviour of compactly supported initial data in reaction-
diffusion equation of combustion (or bistable) type can be found in Kanel′ [53].
For the one dimensional equation

∂tv− ∂2
xxv = f(v)

the author shows the existence of two thresholds L0,L1 > 0 such that if v0 = 1(−l,l)
with l < L0, v ends up below θ in finite time (and as a consequence, decays to 0
uniformly) : we call this situation quenching. On the other hand, if l > L1 it is
shown that v →t→+∞ 1 uniformly on compact sets. Zlatoš [80] showed that in this
context L0 = L1, and more generally Du and Matano [40] showed the existence of
such sharp thresholds for more general one-parameter families of solutions of such
equations.

The result of Kanel′ is refined by Aronson-Weinberger [1] in higher dimensions
where the authors give the existence of a speed c∗ at which the level sets of v(t,x)
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move. This result was in turn refined by Fife-McLeod [42], where the authors show
a precise mechanism of convergence towards travelling waves.

Since then, a considerable amount of research has been devoted to proving such
results in heterogeneous contexts, shedding light on some interesting properties.
Roquejoffre [75, 76] generalised the result in cylinders and in the presence of a
velocity field (α(y), 0, · · · , 0). An important issue in this context is to understand
whether propagation or quenching will occur in terms of the size of the support of
the initial datum. One important instance is the influence of the amplitude of the
flow, which has been studied in various papers starting from [3]. In the KPP case
and for shear flows, Berestycki [6] showed a linear speed-up

c∗(A) ∼
A→+∞

kA

of the travelling wave speed, as the amplitude of the flow satisfies A→ +∞. The
result was also obtained and generalised by Constantin-Kiselev-Oberman-Ryzhik
[33] by introducing the notion of bulk burning rate. For ignition type nonlinearities,
the same result holds as proved by Hamel and Zlatoš [49] (see the introduction of
Chapter 2 for a precise description of their result which is closely related to the
contents of the chapter). On the other hand, Constantin-Kiselev-Ryzhik [34] and
Kiselev-Zlatoš [55] show that the price to pay for this speed-up is also a linear
scaling in A for the thresholds introduced before :

L0 ∼
A→+∞

k0A, L1 ∼
A→+∞

k1A

provided that the flow is not constant on too large intervals. In other words, one
trades a linear speed up of propagation for a linear growth in the critical size of
initial data that leads to quenching.

In the case of cellular flows, the same phenomenon happens but with a scaling
in A1/4 (up to a logarithmic factor) : the speed-up property was proved by Novikov
and Ryzhik [68] for the KPP case and more recently by Zlatoš [81] for combustion
type nonlinearities. On the other hand, Fannjiang-Kiselev-Ryzhik [41] proved (for
flows with small enough cells) that if L4 ln(L) < kA – where L represents the
size of the square supporting the initial datum – quenching happens. See also the
numerical simulations of [79].

Another interesting mechanism is studied in Constantin-Roquejoffre-Ryzhik-
Vladimora [35] where the authors investigate a system coupling a reaction-diffusion
equation and a Burgers equation. They show different quenching results with re-
spect to a gravity parameter, one of them being that quenching happens indepen-
dently on l when the gravity is large enough.

From this point of view, Theorem 3.1.3 may come up as a surprise since it
shows a speed-up of the propagation (c = c∞

√
D) for free : D does not appear

in the threshold size of the initial data v0. The trade-off is the presence of what
we call "two-speed" dynamics : propagation first happens at a small speed that
does not depend on D, but accelerates towards the full speed c(D). On the other
hand, if one tries to initiate the invasion only thanks to µu0 = 1(−l,l), Theorem
3.1.4 shows that quenching happens if l < a0D1/2 (from the point of view of the
initial model (3.1)).
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Organisation of the paper
The organisation of the chapter is as follows :
• Section 3.2 is devoted to proving Theorem 3.1.1. Its subsections introduce the

material needed : an initial trapping of the initial data between two translates
of the wave and the construction of wave-like sub and supersolutions.

• Section 3.3 provides the details for the proof of Theorem 3.1.2 by using a
classical argument.

• In section 3.4 we prove Theorem 3.1.3 and describe more precisely the mech-
anism we introduced above.

• Finally the last section investigates the case of initial data supported on the
road only.

3.2 Front-like initial data

3.2.1 Trapping the initial data
We study initial data that are a perturbation of the front. Set ΩL = R× (−L, 0)
and
Pα = {(ρ1, ρ2) ∈ UC0(R)×UC0(ΩL) | ∃C > 0 s.t. ρi(x) ≤ Ceαx} (3.3)

Then we assume
0 ≤ µu0, v0 ≤ 1 (3.4)
(u0, v0) = (φ(x+ ξ),ψ(x+ ξ)) + (ρ1, ρ2) (3.5)

for some (ρ1, ρ2) in Pα0 for some α0 > 0 and ξ ∈ R. In this subsection, we prove
that such initial data can be trapped between two translates of the travelling front,
which is conceptually simple but necessary.

Due to the degeneracy of f(v) as v ≤ θ, we will have to use the following
function in our stability results. Let L0 > 3 and

0 < α < min(α0, c)
and define Γ(x) to be a smooth non-decreasing function as pictured in Figure 3.9
such that

Γ(x) =

1 if x > L0

eα(x+L0) if x < −L0 − 1
(3.6)

We also recall the exponential convergence towards 0 or 1 as x→ ±∞ proved
in the previous chapters : there exists λ, λ̃ > 0 (bounded from below uniformly in
D > d) and one can enlarge L0 > 0 such that

∀x < −L0/2 µφ,ψ ≤ θ

2e
λ(x+L0/2) ≤ θ

2
∀x > L0/2 1− µφ, 1− ψ ≤ 1− θ1

2 e−λ̃(x−L0/2) ≤ 1− θ1
2 (3.7)
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x0−L0 − 1 L0

Γ(x)

Figure 3.9: Shape of Γ(x)

where θ < θ1 < 1 is chosen so that −f ′(s) ≥ −f ′(1)/2 =: β when s > θ1 as
pictured in Figure 3.10. That way, ahead of the front the system becomes linear
and behind the front one controls the monotonicity of f .

sθ1θ

f(s)

Figure 3.10: Example of f and definition of θ1

We now have the setting to assert the following :

Proposition 3.2.1. Assume (3.4),(3.5). Then for any ε > 0, there exists ξ−0 < 0
and ξ+0 > 0 large enough such that

µφ(x+ ξ−0 )− εΓ(x+ ξ−0 ) ≤ µu0(x) ≤ µφ(x+ ξ+0 ) + εΓ(x+ ξ+0 ) (3.8)
ψ(x+ ξ−0 , y)− εΓ(x+ ξ−0 ) ≤v0(x, y) ≤ ψ(x+ ξ+0 , y) + εΓ(x+ ξ+0 ) (3.9)

Proof. We only prove (3.8). (3.9) is obtained simultaneously with the same argu-
ments (y-uniform limits, y-uniform exponential decay) by taking |ξ±0 | large enough.
We start with the right inequality. Let ε > 0. Thanks to the uniform limit of φ as
x→ +∞, there exists Bε independent of ξ+0 such that for x ≥ −ξ+0 + L0 +Bε,

µφ(x+ ξ+0 ) + εΓ(x+ ξ+0 ) ≥ 1− ε+ ε = 1 ≥ µu0(x)

On the other hand, when x ≤ −ξ+0 − L0 − 1, µu0(x) ≤ Ceα0x so here for the
inequality to be true, one just needs

εeα(x+ξ
+
0 +L0) ≥ Ceα0x
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But since x+ ξ+0 + L0 < 0 and 0 < α < α0, one just needs

εeα0(x+ξ
+
0 +L0) ≥ Ceα0x

which is ensured as soon as ξ+0 > ln(C/ε)−L0.
Now only the compact region x ∈ (−ξ+0 − L0 − 1,−ξ+0 + L0 + Bε) remains.

Observe that on this interval, µu0(x) goes uniformly to 0 as ξ+0 → ∞, whereas
the right-hand side in (3.8) has a fixed positive infimum, so that the desired order
becomes true by enlarging ξ+0 enough.

For the existence of ξ−0 : observe that on x ≥ −ξ−0 + L0 + 1

µφ(x+ ξ−0 )− εΓ(x+ ξ−0 ) ≤ 1− ε ≤ µu0(x)

provided ξ−0 is negative enough, thanks to the uniform limit of u0 as x → +∞.
Now for the rest of the proof, we need on x ≤ −ξ−0 + L0 + 1

εeα(x+ξ
−
0 +L0) ≥ µφ(x+ ξ−0 )− (µφ(x) + ρ(x))

Because the exponential decay λ of φ and ψ satisfies λ > c ≥ α (see [38]) this is
true on x ≤ −ξ−0 − L0 −Bε with Bε > 0 large enough independent of ξ−0 so that
here

εeα(x+ξ
−
0 +L0) ≥ θeλ(x+ξ

−
0 ) ≥ µφ(x+ ξ−0 )

Again, we cover the compact region left around the interface by enlarging −ξ−0
enough.

3.2.2 Wave-like sub and supersolution
We adapt the original result of Fife-McLeod [42] using the simplified notations
and generalisation of Mellet-Nolen-Ryzhik-Roquejoffre [65]. The adaptation is non
trivial from a computational point of view, so let us first explain the changes that
we expect to happen. Our objective is to build a supersolution u, v to (3.2) that
is close to the front (in the frame moving at speed c). In the homogeneous case
and for generalized transitions fronts the authors of [65] proposed

v̄ = ψ(x+ cξ(t)) + q(t)Γ(x+ cξ(t))

using the idea of Roquejoffre [76], where ψ is the front, q(t) = εe−ωt and Γ
is defined above : this is a necessary correction to take into account the initial
perturbation and the degeneracy of f on v ≤ θ (which is not present in the
bistable case and in the original paper [42]). ξ(t) is a time increasing shift that
starts from ξ+0 and converges to some ξ+∞ > ξ+0 : this shift has to be seen as a
necessary correction because the fronts are only stable modulo translations and
one has to shift suitably the wave over time to preserve a supersolution.

In our case, one has to look forµū = µφ(x+ cξ(t)) + qu(t)Γ(x+ cξ(t))

v̄ = ψ(x+ cξ(t), y) + qv(t, y)Γ(x+ cξ(t))
(3.10)
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and µu = µφ(x− cξ(t))− qu(t)Γ(x− cξ(t))
v = ψ(x− cξ(t), y)− qv(t, y)Γ(x− cξ(t))

(3.11)

with ξ starting this time from ξ−0 .
Indeed, the heterogeneity induced by the line of fast diffusion breaks the pre-

vious homogeneous supersolution (qu = qv = q) since the first component of
N [u, v] ≥ 0 would yield cξ̇φx + q̇ ≥ 0, which is too restrictive for q if one wants
exponential decay. The same problem happens if one assumes that qv depends
only on t, since the boundary inequation would give qv ≥ qu but the previous
inequation would give q̇u + qu − qv ≥ 0. As a consequence, one has to assume a
y dependence in qv : this has to be seen in the light of the observed dynamics,
indeed, the solution v(t,x, y) will stretch rapidly for y near 0 and only later for
smaller values of y, so the correction has to take this into account. We now adapt
the computations of [65] with this in mind.

The stability of this kind of travelling waves owes much to the fact that the x-
derivatives of the fronts are uniformly positive on any compact set, more precisely
one has

∀M > 0,∃δM > 0 | ∂xφ, ∂xψ > δM when x ∈ (−M ,M) (3.12)

Now we reduce α a bit more and set

α = min(α0, c/5) (3.13)

just so that the quantities

αc− d/Dα2 ≥ αc− α2 > αc/4− α2 > 0 (3.14)

cannot be zero. These quantities will play an important role in the following
computations. Observe that this condition on α means that the decay correction
obtained through Γ is limited : solutions starting from large perturbations (i.e.
small α0) will be stabilized thanks to a correction with an α0 decay also, but
solutions from very small perturbations (i.e. very large α0) will still need a c/5
correction in the decay at −∞ to be stabilized.

Since we still want an exponential decay of qv(t) we look forqu(t) = εCe−ωt

qv(t, y) = εh(y)e−ωt
(3.15)

with separate variables. The boundary conditions yield h′(−L) = 0 and h′(0) +
h(0) = C so that we have a large choice for h. Nonetheless, it will become clear
in the following computations that a good candidate is

C = cosh
(√

κ/dL
)
+ sinh

(√
κ/dL

)
(3.16)

h(y) = cosh
(√

κ/d (y+ L)
)

(3.17)
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with

κ = min(β/2, (αc− d/Dα2)/2) > 0 (3.18)

ω = min(G(
√
κ/dL), β/2,Lipf ,αc/4− α2) > 0 (3.19)

and G(x) = µ tanh(x)
1+tanh(x) . All of these conditions seem barbaric for the moment, but

their role will appear clearly in the computations.
Observe that since G′(0) > 0, the decay exponent ω is then linearly small as

β or α0 or µ is small, but it should be noticed that it does not depend on D ≥ d,
and that it depends on the initial data only through α0. We can now state the
following :

Theorem 3.2.1. Assume (3.4),(3.5) and let u, v denote the associated solutions
of (3.2). Let ε0 = min(θ/4, (1− θ1)/4, γ0) where

γ0 =
1

4B ,B =

(
3Lipf + |Γ|C2

cδL0+2

)
C max(1, 1/µ)

There exists a constant K0 that depends on the initial data only through α0 and
such that if ε ∈ (0, ε0), there exists ξ±1 with

ξ+1 ≤ ξ+0 + εK0, ξ−1 ≥ ξ−0 − εK0 (3.20)

and for all t ≥ 0,

φ(x+ cξ−1 )− qu(t)Γ(x+ cξ−1 ) ≤ µu(t,x− ct) ≤ µφ(x+ cξ+1 ) + qu(t)Γ(x+ cξ+1 )
(3.21)

ψ(x+ cξ−1 )− qv(t, y)Γ(x+ cξ−1 ) ≤ v(t,x− ct, y) ≤ ψ(x+ cξ+1 ) + qv(t, y)Γ(x+ cξ+1 )
(3.22)

ū

u

u

c(1 + ξ̇) c(1− ξ̇)

Figure 3.11: Trapping of the front-like data drawn at initial time

Proof. Inequations (3.21),(3.22) are set in the moving frame with variables (t,x+
ct). As a consequence, in the computations one has to replace ∂t by ∂t+ c∂x. We
now want to show that ū, v̄ as defined in (3.10) yields indeed a supersolution :

N
(
u
v

)
≥
(

0
0

)
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where
N
(
u
v

)
=

(
ut − uxx + cux + µu− v(·, 0)
vt − d

Dvxx − dvyy + cvx − f(v)

)
and that u, v as defined in (3.11) yields a subsolution. Then (3.21),(3.22) will follow
by an application of the comparison principle, Prop. 3.2.1, and the monotonicity
of ξ. Indeed, this will show that in the original frame u, v stays trapped between
the fronts shifted initially by ξ±0 and moving at speed resp. c(1± ξ̇) (or speed
±ξ̇ in the moving frame) as pictured on Figure 3.11. A similar figure holds for
v if one imagines it with a bounded continuous deformation along the y-axis due
to the h(y) factor in qv. This deformation becomes of course exponentially small
over time due to the e−ωt factor. Observe also that ξ̇ ≤ 1/4 and is exponentially
decaying over time, so u, v will propagate at least and at most with speed c+ o(1).

We divide this computation in three zones concerning x+ ξ(t). In the following,
φ and ψ will always mean φ(x+ cξ(t)) and ψ(x+ cξ(t), y), qu will always mean
qu(t), qv will either mean qv(t, 0) or qv(t, y) and Γ will always mean Γ(x+ cξ(t)),
all of these functions being defined as above in (3.6) and (3.15)-(3.17).

Behind the front : x+ ξ(t) > L0 + 1

Here Γ ≡ 1 and ψ, v ≥ (1 + θ1)/2 so that

N
(
u
v

)
1
= cξ̇φx + q̇u/µ− φxx + cφx + µφ+ qu − ψ− qv(t, 0)

= cξ̇φx + q̇u/µ+ qu − qv
≥ q̇u/µ+ qu − qv

= εe−ωt
(
−Cw/µ+C − cosh

(√
κ/dL

))
= εe−ωt

(
−
(

cosh
(√

κ/dL
)
+ sinh

(√
κ/dL

))
w/µ+ sinh

(√
κ/dL

))
≥ 0

The first inequality holds because we look for ξ̇ ≥ 0 and the last because ω ≤
G(
√
κL).

N
(
u
v

)
2
= cξ̇ψx + q̇v − d/Dψxx + cψx − dψyy − d∂2

yyqv − f(ψ) + f(ψ)− f(v)

= cξ̇ψx + q̇v + f(ψ)− f(v)− d∂2
yyqv

≥ q̇v − d∂2
yyqv + βqv

= εe−ωth(y)(−ω− κ+ β)

≥ εe−ωth(y)(−ω+ β/2) ≥ 0

The last inequality holds because w ≤ β/2 and the next to last because κ ≤ β/2.

Ahead of the front : x+ ξ(t) < −L0 − 1

Heres Γ(x+ ξ(t)) = eα(x+ξ(t)+L0), ψ ≤ θ/2 and v̄ ≤ ψ + ε ≤ 3θ/4 ≤ θ so there
are no reaction terms.
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N
(
u
v

)
1
= cξ̇φx +

(
q̇u
µ

+
qu
µ
αcξ̇ − qu

µ
α2 + c

qu
µ
α+ qu − qv(·, 0)

)
eα(x+ξ+L0)

≥ 1
µ

(
q̇u + quαcξ̇ − quα2 + cαqu

)
eα(x+ξ+L0)

≥ 1
µ

(
−ω+ αc− α2

)
eα(x+ξ+L0)qu ≥ 0

The last inequality holds because ω ≤ (αc− α2)/2, and the first because qu(t) ≥
qv(t, 0).

N
(
u
v

)
2
= cξ̇ψx + eα(x+ξ+L0)

(
q̇v + qv

(
α(cξ̇ + c)− d/Dα2

)
− d∂2

yyqv
)

≥ eα(x+ξ+L0)qv
(
−ω+ αcξ̇ + αc− d/Dα2 − κ

)
≥ eα(x+ξ+L0)qv

(
−ω+ (αc− d/Dα2)/2

)
≥ 0

The last inequality holds because of the condition on ω, and the next to last
because of the condition on κ and because ξ̇ ≥ 0.

The middle region : |x+ ξ(t)| < L0 + 2

N
(
u
v

)
1
= cξ̇φx +

q̇u
µ

Γ + cξ̇
qu
µ

Γx −
qu
µ

Γxx + c
qu
µ

Γx + (qu − qv)Γ

≥ cξ̇φx +
q̇u
µ

Γ− qu
µ

Γxx

≥ cξ̇δL0+2 − (ω+ |Γ|C2)
qu
µ
≥ 0

Provided
ξ̇ ≥ ω+ |Γ|C2

cδL0+2
qu (3.23)

N
(
u
v

)
2
≥ cξ̇ψx − qvLipf + q̇vΓ + cξ̇qvΓx − d/DqvΓxx + cqvΓx − d∂2

yyqvΓ

≥ cξ̇δL0+2 − qvLipf − ωqv − d/D|Γ|C2qv − κqv ≥ 0

Provided
ξ̇ ≥ Lipf + ω+ d/D|Γ|C2 + κ

cδL0+2
qv (3.24)

We obtain conditions (3.23), (3.24) by remarking that κ ≤ β < Lip(f), ω <
Lip(f) and d/D < 1 and then we take

ξ̇(t) = Bεe−ωt
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so that

ξ(t) = ξ+0 +
Bε(1− e−ωt)

ω
(3.25)

and
K0 = B/ω (3.26)

answer our queries.
One should observe that the condition Bε ≤ 1/4 has not been used yet as well

as ω ≤ cα/4− α2 rather than just 1/2(cα− α2). Observe that the computations
concerning the subsolution (3.11) with this time

ξ(t) = −ξ−0 +
Bε(1− e−ωt)

ω
(3.27)

are exactly symmetric, except for a cα(1− ξ̇) term (instead of cα(1 + ξ̇)) that
appears ahead of the front and in the middle region, which is treated thanks to
the above still unused assumptions :

−ω+ cα(1− ξ̇)− d/Dα2 − κ ≥ −ω+
3cα
4 − d/Dα2 − κ

≥ −ω+
3cα
4 − α

2 − κ

≥ −ω+
cα

4 −
α2

2
≥ −ω+

cα

4 − α
2 ≥ 0.

−ω+ cα(1− ξ̇)− α2 ≥ −ω+
3cα
4 − α

2

≥ −ω+
cα

4 − α
2 ≥ 0.

3.3 Compactly supported initial data
In this section, we go back in the fixed original frame. Seeing the problem in the
light of [42] and [76] it is natural to test :(

u
v

)
=

(
φ(x+ ct+ cξ(t)) + φ(−x+ ct+ cξ(t))− 1/µ
ψ(x+ ct+ cξ(t)) + ψ(−x+ ct+ cξ(t))− 1

)

as a subsolution to (3.2), i.e. a pair of waves evolving in opposite directions. Of
course, in light of the previous section, for this to be a subsolution one needs a
well chosen correction in time and in space (in the degeneracy regime of f). Let
us define the symmetrized fronts

φ̃(·) = φ(−·)
ψ̃(·) = ψ(−·) (3.28)



3.3. COMPACTLY SUPPORTED INITIAL DATA 109

In the sequel we will always use the following notations :

φ = φ(x+ ct+ ξ0 − cξ(t))
φ̃ = φ̃(x− ct− ξ0 + cξ(t)) (3.29)

and the same will hold for ψ, ψ̃, Γ, Γ̃. Here ξ0 will be a large initial shift and ξ(t)
a time-increasing shift with ξ(0) = 0 and

cξ(+∞) ≤ 1 (3.30)

which will be realised as a smallness condition on ε0. In this section

α = min(λ, λ̃, c/5) (3.31)

where λ and λ̃ are already defined in (3.7) so that α yields the same inequations
as above and moreover α < λ, λ̃. Γ is defined as above, only with a little more
margin. Precisely let us set this time :

Γ(x) =

1 if x > L0 − 1
eα(x+L0) if x < −L0 + 1

(3.32)

We will set the following :u = max
(
0,φ+ φ̃− 1/µ− qu(t)/µmin(Γ, Γ̃)

)
v = max

(
0,ψ+ ψ̃− 1− qv(t, y)min(Γ, Γ̃)

) (3.33)

The proof will consist in adapting the previous computations. We shall see that
(u, v) yields a subsolution provided only a size condition on the initial shift ξ0
(independently of D > d). This condition is important, because then for the
initial data to lie above (u(0), v(0)) it has to be large enough on a large enough
interval. Moreover, we wish to insist on the fact that to retrieve the original model
(3.1) one has to change the variable x ← x/

√
D. As a consequence, when stated

for (3.1), our result assumes that u0, v0 are large enough on an interval with length
of order

√
D. Theorem 3.1.2 will be proved as soon as we have proved the

Theorem 3.3.1. 1. There exists ε0 > 0 small enough and two constants B, ξ0 >
0 large enough such that for all 0 < ε < ε0, there exists a small δ > 0 and
M > 0 such that if 0 ≤ µu0, v0 ≤ 1 satisfy µu0, v0 > 1− δ on x ∈ (−M ,M),
then

u = max(0,φ+ φ̃− 1/µ− qu/µmin(Γ, Γ̃))

v = max(0,ψ+ ψ̃− 1− qv min(Γ, Γ̃))

where qu = εCe−ωt and qv = εh(y)e−ωt are defined as above and this time

ξ(t) =
Bε(1− e−ωt)

ω
(3.34)
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defines a subsolution to (3.2) with initial data u0, v0 for all times. By the
comparison principle, we then have at all times

u ≤ u, v ≤ v

As a consequence, (3.2) propagates the initial data u0, v0 along the x-axis
with speed at least as ct+ o(1) in both directions.

2. Using the notations of Section 2 we have the following : let ũ, ṽ denote
the same functions as in (3.10) with φ,ψ and Γ replaced by φ̃, ψ̃, Γ̃. As a
consequence, ũ, ṽ will be a supersolution for decreasing front-like initial data.
Up to enlarging the initial shifts, we assert that

(min(ū, ũ), min(v̄, ṽ))

is a supersolution to (3.2) with initial data u0, v0 for all times. Again, this
implies that

u ≤ min(ū, ũ), v ≤ min(v̄, ṽ)

and so that the level lines of u, v propagate at most as c(t+ ξ(t)) = ct+ o(1)
in both directions along the x-axis.

Remark 3.3.1. • The previous theorem says simply that the compactly sup-
ported initial data which are large enough on a large enough interval will
stay trapped – up to an exponentially small correction in time – between
two translates of a pair of fronts evolving in both directions, as pictured in
Figure 3.12

• As noticed above, observe that one needs to replace M ← M
√
D when

Theorem 3.3.1 is stated for the original system (3.1).

• The size condition on u0, v0 is far from optimal and ensures only that u0 ≥
u(0), v0 ≥ v(0) as pictured on Figure 3.12. It could be sharpened by re-
placing 1− δ with θ and by waiting long enough for the reaction to put u, v
above 1− δ.

M

u

min(ū, ũ)

u

1− δ

c(1 + ξ̇) c(1 + ξ̇)c(1− ξ̇) c(1− ξ̇)

Figure 3.12: Trapping of the c.c. data drawn at initial time
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Proof. The second part of Theorem 3.3.1 is easy because the minimum of two
supersolutions is a supersolution and any front like initial data can be translated
above any compactly supported initial data.

The first part is more intricate. Observe that u(0), v(0) are zero except on a
set of length (−M ,M) (with M proportional to ξ0) and that on (−M ,M) they
are less than some 1− δ : this directly gives the largeness condition asked so that
u0 ≥ u(0), v0 ≥ v(0). We now detail the computation of N (u, v) in the following
subsections by splitting the computations in three zones concerning x+ ct+ ξ0.

3.3.1 x+ ct+ cξ0 < −L0

In this zone, one has necessarily x + ct + ξ0 − ξ(t) < −L0 and also x − ct −
ξ0 + ξ(t) < −L0 (by asking 2ξ0 ≥ 1). As a consequence, in this zone we have
µφ,ψ, v ≤ θ/2 and µφ̃, ψ̃ ≥ (1 + θ1)/2. Also min(Γ, Γ̃) ≡ Γ ≡ eα(x+ct+ξ0−ξ(t)+L0)

will be denoted eα(··· ) from now on. Then

N
(
u
v

)
1
= −cξ̇φx + cξ̇φ̃x −

q̇u
µ
φ̃xe

α(··· ) − qu
µ
cαeα(··· ) +

qu
µ
cαξ̇eα(··· )

+
qu
µ
α2eα(··· )

− queα(··· ) + qve
α(··· )

≤ −qu
µ
eα(··· )

(
−ω+ cα(1− ξ̇)− α2

)
+ (qv − qu)eα(··· )

Both terms are already negative thanks to the conditions stated in Section 2. Then
a computation similar to the preceding section – thus not detailed here – leads to

N
(
u
v

)
2
≤ −qveα(··· )

(
−ω+ cα(1− ξ̇)− d/Dα2 − κ

)
+ f(ψ̃)

This quantity can be made negative provided ω ≤ 2αc (which is already the case) :
indeed, using the exponential decay of f(ψ̃) in this zone, the above expression can
be factorized as

−qveα(··· ) × (·)
with (·) having the sign of −ω + cα(1− ξ̇)− d/Dα2 − κ ≥ 0 provided only that
ξ0 is large enough (but depending on the initial data only through α0).

3.3.2 x+ ct+ ξ0 ∈ (−L0,L0)

First, we ensure cξ ≤ 1 by asking that cBε
ω
≤ 1 so by taking

ε0 ≤
ω

cB
(3.35)

As a consequence, x+ ct+ ξ0 − cξ(t) ∈ (−L0 − 1,L0) and x− ct− ξ0 + cξ(t) <
−L0. Since ω < 2αc, the computations of section 3.2.2 still hold by enlarging the
constant B enough.
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3.3.3 x+ ct+ ξ0 > L0

Here three subcases can appear concerning x− ct− ξ0. By exchanging φ,ψ and
φ̃, ψ̃ and since α < λ, the cases x− ct− ξ0 ∈ (−L0,L0) and x− ct− ξ0 > L0
are already covered by the computations above. Only the case x− ct− ξ0 < −L0
remains. In this zone, x− ct− ξ0 + cξ(t) < −L0 + 1, so here min(Γ, Γ̃) ≡ 1 and
both ψ and ψ̃ are close to 1.

Observe that the computations of section 2 still hold by splitting this zone in
two subzones : x < 0 and x > 0. In the first one, one will bound f(ψ) + f(ψ̃)−
f(v) by Lipf(1− ψ) − β(1− ψ̃ + qv) and in the second one by Lipf(1− ψ̃) −
β(1− ψ+ qv). Then, since ω < min(λ, λ̃)c there holds

N
(
u
v

)
2
≤ −qv × (·)

with (·) being positive provided ξ0 is large enough. This proves Theorem 3.3.1.

3.4 Initial data with small compact support
We now go back to the original equation (3.1) and state the following.

Theorem 3.4.1. Let L be large enough (independently of D). There existsM ′, δ′ >
0 independent of D > d such that if the initial data of (3.1) satisfies

v0 > 1− δ′ for x ∈ (−M ′,M ′)

then after a finite time tD = D1/2 lnD + O(1) one has µu and v satisfying the
assumptions of Theorem 3.3.1, i.e. µu, v ≥ 1− δ for x ∈ (−M

√
D,M

√
D). As

a consequence, starting from the time t = tD, propagation occurs as described in
Theorem 3.3.1.

We will divide the proof in several steps :

• First, sinceD > d is ought to be large, u should be very small for small times.
Thus we first investigate the equation for v in (3.1) where u is replaced by
0, and we not only expect to use its solution as a subsolution but we really
expect that it will reflect the dynamics of the full solution for some time.
By the maximum principle and Hopf’s lemma and since u > 0, the solution
(0, v) to this problem will serve as a subsolution for (3.1) :

d∂yv+ v = 0

∂tv− d∆v = f(v)

∂yv = 0 (3.36)
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• Then we investigate the largest steady solution p(y) of (3.36) (observe that
1 is not a steady state). This is where the assumption on L plays a crucial
role : it is needed for this steady state to be large enough. This will be the
purpose of Lemma 3.4.1 below.

• Then the existence of a travelling wave for (3.36) connecting 0 and p(y) will
serve to build a subsolution for (3.36) propagating just as in Theorem 3.3.1
but here at speed cp = O(1). This will give a lower bound on the boundary
data v(x,−L) ≥ v(x,−L) ≥ · · · . This will be the purpose of Lemma 3.4.2.

• Using this lower bound, we then go back to (3.2) : we show that even with-
out the reaction term, this lower bound suffices to have µu, v ≥ 1− δ on
(−M ,M) within a finite time tD. As a consequence, this is the case also for
the nonlinear problem. This will be proved in a final step.

We start with the following lemma : it is standard but we prove it for com-
pleteness.

Lemma 3.4.1. There exists L0 > 0 such that if L > L0, there exists a solution
p(y) to 

−dp′′ = f(p) (3.37a)
p′(−L) = 0 (3.37b)
dp′(0) + p(0) = 0 (3.37c)

with p > 0 concave decreasing and p(−L) = 1− δ′′ > 1− δ. Moreover δ′′ → 0 as
L→ +∞.

Proof. Since f ≥ 0, every solution of (3.37a)-(3.37c) is concave decreasing. Mul-
tiplying (3.37a) by p′(y), integrating and using (3.37b) yields

− dp
′(y)2

2 = F (p(y))− F (p(−L)) (3.38)

where
F (v) =

∫ v

0
f(s)ds (3.39)

Now (3.37c) becomes

dp′(0) =
√

2d
√
F (p(−L))− F (p(y))

Since F is increasing on (θ, 1) from 0 to
∫ 1

0
f we define F−1 to be its inverse

function in this range and we now impose p(0) to satisfy

0 < p(0)2

2d + F (p(0)) <
∫ 1

0
f

which in turn imposes a maximum value for p(0) :

p(0) < pmax
0 (3.40)
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And under condition (3.40) one can solve (3.37c) by taking :

p(−L) = F−1
(
p(0)2

2d + F (p(0))
)

(3.41)

Going back to (3.38) one now has√
d

2
p′(y)√

F (p(−L))− F (p(y))
= 1

so that integration on (−L, 0) and the change of variables v = ψ(y) yields√
d

2

∫ p(−L)

p(0)

dv√
F (p(−L))− F (v)

= L

And finally the changes of variables v = F−1(u) and an affine one yield

N(p0) :=
p(0)

2

∫ 1

0

dw

f
(
F−1

(
p(0)2

2d w+ F (p(0))
))√

1−w
= L (3.42)

Since F ′(θ) = F ′(1) = 0 observe that one has limp→θN(p) = limp→pmax
0

N(p) =
+∞. Moreover, N is positive, starts to be decreasing and then becomes increasing.
As a consequence it has a positive minimum L0 which plays the role of a threshold
value : if L < L0, there is no solution of (3.42). If L = L0 there is only one, and
if L > L0 there are two. See Figure 3.13 :

pmax
0

L

L0

N(p)

θ

Figure 3.13: Behaviour of N

We now choose p(0) to be the largest solution of the two and we call it p+0 .
One has clearly p+0 → pmax

0 as L → +∞ so by (3.41), p(−L) → 1 as L → +∞.
We now just enlarge L enough for p(−L) > 1− δ and we conclude by solving the
Cauchy problem 

−p′′ = f(p)

p(−L) = F−1
(
p+0

2

2d + F
(
p+0
))

p′(−L) = 0
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Figure 3.14 represents the qualitative behaviour of p :

y
−L 0

p(y)
1− δ′′

p+0

Figure 3.14: Behaviour of p

Lemma 3.4.2. Let v be a solution of (3.36). There exists δ′,M ′ > 0 independent
of D such that if v0 > 1− δ′ for x ∈ (−M ′,M ′), there holds

v(t,x,−L) ≥ (1− δ′′)ϕt(x)−Ce−bt

where C > 0 and b > 0 are constants that do not depend on D and ϕt(x) defines
a family of smooth functions bounded in C3 such that ϕt(x) = 1 for |x| ≤ cp

2 t and
ϕt(x) = 0 for |x| ≥ cpt for some speed cp > 0 independent of D.

Proof. First, that there exists a travelling wave solution with speed cp > 0 inde-
pendent of D of (3.36) connecting 0 and p(y) has to be established : for this we
refer to Berestycki-Nirenberg [20] which gives the existence of an increasing (in
x) travelling front ψ(x, y) with exponential convergence towards 0 and p(y) as
x→ ±∞.

Now we notice that the subsolution argument in Theorem 3.3.1 can be used but
in a simpler fashion for the Robin homogeneous boundary value problem (3.36) :
one the one hand, the structure of the problem is simpler than the one studied in
Theorem 3.3.1 since here we deal with a single equation : the original construction
of [42] with qv = εe−ωt will suffice. On the other hand, 1 is not a steady state for
the problem so one has to replace 1 by p(y) in the computations. Nonetheless, one
can check that the above computations still hold with the adequate subsolution

ψ+ ψ̃− p− qv min(Γ, Γ̃)

As a consequence, just as in Theorem 3.3.1, provided v0 is above an initial shift of
a pair of waves – hence the existence of δ′ and M ′ – its level lines will be pushed
by below by the pair of waves travelling as ±cpt∓O(1). This implies the desired
bound.

End of the proof of Theorem 3.4.1. Let (uD, vD) be the solution of (3.2) starting
from compactly supported 0 ≤ µu0, v0 ≤ 1 and let v0 satisfy the rescaled assump-
tions of Theorem 3.4.1. First, let TD = D1/2 lnD. We now show the following
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lim inf
t→+∞

inf
D>d

min
(x,y)∈ΩL,M

{µuD(TD + t,x), vD(TD + t,x, y)} ≥ 1− δ′′ > 1− δ (3.43)

where ΩL,M = (−M ,M)× (−L, 0). First, it is an easy but tedious exercise to
see that the left hand-side of (3.43) can be characterised as the limit as n→ +∞
of some µuDn(TDn + tn,xn) or vDn(TDn + tn,xn, yn) where tn → +∞, Dn > d,
(xn, yn) ∈ ΩL,M . We then extract from (tn,Dn,xn, yn) a subsequence so that
xn → x∞ and yn → y∞. Our objective is to extract from (u, v) a subsequence
converging to some limiting (u∞, v∞) to which the maximum principle will apply
and force the above limit to be ≥ 1− δ′′. The difficulty comes from the fact that
(Dn) might be unbounded and so that standard parabolic estimates and the usual
maximum principle might fall at the limit. Two cases can appear :

i) (Dn) is unbounded. Then we extract again so that Dn → +∞. Let

un(t,x) := uDn(tDn + tn + t,x∞ + x)

vn(t,x, y) := vDn(tDn + tn + t,x∞ + x, y)

Since f ≥ 0 and by Lemma 3.4.2 above, by the comparison principle we have
(un, vn) ≥ (un, vn) the solution of

d∂yvn = µun − vn

∂tun − ∂2
xxun = vn − µun

∂tvn − d
Dn
∂2
xxvn − d∂2

yyvn = 0

vn = (1− δ′′)ϕTDn+tn(x∞ + x)−Ce−b(tn+t) (3.44)

Since d/Dn → 0, the standard parabolic estimates applied on vn will fall
concerning the x-derivatives. We overcome this difficulty since equation (3.44)
is linear and the boundary data vn(t,x,−L) is bounded in C3 : the maximum
principle applied on x-derivatives of (un, vn) up to order 3 gives that they are
all bounded independantly of n :

|∂2
xxun|∞, |∂3

xxxun|∞, |∂2
xxvn|∞, |∂3

xxxvn|∞ ≤ C1

Now concerning the y-derivatives, even though d/Dn → 0 the standard esti-
mates hold : indeed since vn ≤ 1, standard Lp parabolic estimates with p large
enough applied on un give that un is bounded in Cα,1+α by some C2. Now
rescale by x← x

√
Dn so that |un(t, x√

Dn
)|Cα,1+α ≤ C3 (the semi-norms of the

derivatives even go to zero since 1/Dn → 0). Moreover, under this rescaling
−d/Dn∂

2
xx − d∂2

yy becomes −d∆ so that standard parabolic estimates up to
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the Robin boundary apply and give that |vn(t, x√
Dn

, y)|C1+α/2,2+α ≤ C4. Since
this rescaling does not impact ∂y or ∂t, this gives

|∂tvn|α/2, |∂yvn|α, |∂2
yyvn|α ≤ C4

The bound on ∂2
xyvn follows also by combining the two arguments above, and

finally by plugging the estimate on v in the equation for u, standard Schauder
estimates yield that un is bounded in C1+α/2,2+α. In the end one can extract
from (un, vn) some subsequence converging in C1,2

loc to some (u∞, v∞) global
in time (since tn → +∞) solving

d∂yv∞ = µu∞ − v∞

∂tu∞ − ∂2
xxu∞ = v∞ − µu∞

∂tv∞ − d∂2
yyv∞ = 0

v∞ = (1− δ′′) (3.45)

Indeed, v∞(t,x,−L) ≡ 1− δ′′ since

1− δ′′ ≥ vn(t,x,−L) ≥ 1− δ′′ −Ce−b(tDn+tn+t)

for x ∈ (−cp2 lnDn, cp2 lnDn) by Lemma 3.4.2 above and by use of TDn .
Since (u∞, v∞) are global in time, there is no initial data anymore and the
maximum principle applies to give

µu∞, v∞ ≡ 1− δ′′

Indeed, no value different than 1− δ′′ can be reached, because then (u, v)
would have an infimum smaller or a supremum larger than 1− δ′′. By trans-
lating over time (which is possible since the solution is global) this infimum
or supremum would become a minimum or maximum, that cannot be reached
by u because of the strong parabolic maximum principle, and neither by v
by the strong parabolic maximum principle and Hopf’s lemma applied on the
suitable y-slice.

ii) (Dn) is bounded. Then one extracts so that Dn → D∞ > d and the above
proof is much simpler since standard regularity and maximum principle apply.
Moreover TD is not necessary.

In any case, the lim inf above is ≥ u∞(0, 0) = 1− δ′′ or ≥ v∞(0, 0, y∞) = 1− δ′′,
thus (3.43) holds. Theorem 3.4.1 follows easily : indeed, there exists t1 independant
of D such that after tD = TD + t1, µu, v > 1− δ on (−M ,M).

Remark 3.4.1. Observe that TD = D1/2 lnD could be replaced by any D1/2h(D)
with h(D)→ +∞ as D → +∞.
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3.5 Initial data supported on the road only
In this section we investigate the behaviour of solutions starting from (u0, v0) =
(1(−a,a), 0). From now on, in order to alleviate the notations let ε := 1/

√
D.

3.5.1 a is small
Theorem 3.5.1. There exists a0 > 0 such that for a < a0, the solution of (3.2)
starting from (1(−a,a), 0) decays to 0 uniformly.

The proof relies on a suitable reformulation of equation (3.1) and a crude linear
bound on f .

Lemma 3.5.1. Replace v by its even extension on R × [−L,L]. Then (u, v)
satisfies ∂tv− dε2∂2

xxv− d∂2
yyv = f(v) + 2d(µu− v)(x, 0)dλy=0

∂tu− ∂2
xxu+ µu = v(x, 0)

(3.46)

where dλy=0 denotes the Lebesgue measure on the line {y = 0}.

Proof. Outside {y = 0} it is trivial. Along {y = 0} just use that ∂yv has a jump
discontinuity 2d(µu− v)(x, 0).

Lemma 3.5.2. Let C = max(Lipf , 2d). Then

v(t,x, y) ≤ C(t+ 2C ′
√
t)

where C ′ is a constant that depends only on d and L.

Proof. The proof relies on a Aronson type inequality (see [2]) that we compute
explicitly here. By Duhamel’s formula,

v(t,x, y) =
∫ t

0
es∆d,εN [f(v(t− s,x, y)) + 2d(µu− v)(t− s,x, 0)dλy=0]ds (3.47)

where ∆Nd,ε = dε2∂2
xx + d∂2

yy endowed with Neumann boundary conditions on y =
±L. Since R× (−L,L) is a product domain and since ∂2

xx and ∂2
yy commute, we

can compute this heat kernel as follows.
Denote λk = d(kπ/(2L))2 the eigenvalues of d∂2

yy on (−L,L) with Neumann
conditions and φk the associated eigenfunctions. Then the associated heat Kernel
is

K2(t, y, y′) =
∑
k≥0

e−λktφk(y)φk(y
′)

For dε2∂2
xx on R the heat Kernel is trivially

K1(t,x,x′) = 1√
4πdε2t

e−(x−x
′)2/(4dε2t)
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As a consequence,

es∆d,εNdλy=0 =
∫

R
K1(s,x,x′)K2(s, y, 0)dx′

=
∑
k≥0

e−λksφk(y)φk(0)

which of course depends only on y and is even in y (the φk being even or odd).
Observe that this is nothing more than the fundamental solution of the diffusion
equation in y on (−L,L). Now using that the φk are uniformly bounded by a C ′
depending only on d and L one gets

es∆d,εNdλy=0 ≤ C ′
∑
k≥0

e−λks ≤ C ′/
√
s

for another constant C ′. The last inequality comes from the growth of λk as Ck2.
Going back to (3.47) and using f(v) ≤ Lipf as well as µu− v ≤ 1 and the

positivity of the integral, one gets

v(t,x, y) ≤ C
∫ t

0
(1 +C ′/

√
s)ds ≤ C(t+ 2C ′

√
t)

Lemma 3.5.3.
u(t,x) ≤ 2e−µt√

4πt
a+

Ct2

2 +
4CC ′

3 t3/2

Proof. We inject the previous estimate on v(t,x, 0) in the equation satisfied by u
and solve it using Duhamel’s formula. By the maximum principle, this gives the
following upper bound :

u(t,x) ≤ e−µtet∂
2
xxu0 +C

∫ t

0
e−µ(t−s)e(t−s)∂

2
xx(s+ 2C ′

√
s)ds

= e−µt
∫ a

−a

1√
4πt

e−
(x−x′)2

4t dx′ +C

(
t2

2 +
4
3C
′t3/2

)

which gives the desired result.

Proof of Theorem 3.5.1. Chose t′1 such that C(t′21 + 2C ′t′3/2
1 ) = θ

2 and set t1 =

max(1, t′1). As a consequence, at time t = t1 one has v ≤ θ
2 and

µu(t,x) ≤ 2e−µt1 1√
4πt1

a+
θ

2 ≤
2θ
3

if a < a0 for some a0. Then the maximum principle yields that from this time
µu, v will always stay below the constant solution 2θ/3 of (3.1). As a consequence,
the equation is then linear, L1 mass is preserved, and µu and v will decay to 0.



120 CHAPTER 3. TRANSITION LOW SPEED → T.W. SPEED

3.5.2 Best case scenario : a = +∞
In this subsection we take µu0 ≡ 1. Since both the initial data and equation (3.2)
enjoy here a translation invariance in the x direction, u and v do not depend on
x. We prove the following

Theorem 3.5.2. There exists µ± > 0 such that :

a) If µ > µ+, µu and v converge uniformly to 1/(µ(L+ 1/µ)) as t→ +∞.

b) If µ < µ−, µu and v converge uniformly to 1 as t→ +∞.

Proof of point a). Using Lemma 3.5.2 one gets that for t ≤ 1

v(t,x, y) ≤ C
√
t

(for some constant C different than the C in the afore mentioned Lemma). Using
this in the equation for u, one gets

µu(t,x) ≤ e−µt +Cµ
∫ t

0
e−µ(t−s)

√
s ds ≤ e−µt +Cµt3/2

So that at

tµ =

(
θ/(2C)

µ

)2/3

provided µ is large enough so that e−µtµ ≤ θ/2 and v ≤ θ, i.e.

µ ≥ max
((2C

θ

)2
| ln(θ/2)|3, 1

2

(
C

θ

)2)
=: µ+

one has µu, v ≤ θ. By the comparison principle, this will hold for all t > tµ and v
never gets above θ anywhere.

As a consequence, L1 mass is preserved∫ 0

−L
v(t, y)dy+ u(t) = 1/µ

and µu(t), v(t, y) converge to a common limit l ≤ θ satisfying (L + 1/µ)l =
1/µ

Remark 3.5.1. Making l = θ yields the existence of a threshold value

µθ =
1− θ
θL

that could give interesting properties. For instance, due to l ≤ θ above we know
that our threshold µ+ satisfies µ+ > µθ. Following the philosophy of Du and
Matano [40] we think that µθ might play the role of a sharp threshold since when
µ = µθ the solution converges to θ. It would be interesting to see if Theorem 1.3
of [40] applies to our system.
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Proof of point b). The idea of the proof is simple : we investigate whether the sole
diffusion is able to transfer enough mass from u to v so that in finite time v is
above θ on a large enough interval (−L0, 0). The quantity L0 is linked to Kanel′
and Aronson-Weinberger [1, 53].

Using v ≥ 0 and the strong parabolic maximum principle one gets

µu ≥ e−µt

So that setting θ′ = (1 + θ)/2 and tM = 1
µ ln

(
1
θ′

)
one has µu ≥ θ′ while t ≤ tM

so that, by the maximum principle, Hopf’s lemma and the positivity of f , up to
time tM we have v ≥ v the solution of

d∂yv+ v = θ′

∂tv− d∂2
yyv− dε2∂2

xxv = 0

∂yv = 0 (3.48)

starting from v0 = 0. Observe that this equation and its data do not depend on x
so actually v is independent of x and we will call it v(t, y) from now on. Setting
w = θ′ − v one sees that w(t, y) satisfies

∂tw− d∂2
yyw = 0

∂yw = 0 on y = −L
∂yw+w = 0 on y = 0
w(0, y) = θ′

(3.49)

By decomposing w(t, ·) on a basis of L2(−L, 0) of eigenvectors for d∂2
yy endowed

with the boundary conditions from (3.49) one gets

w(t, y) =
∑
k≥0

e−λktw̃k(0) cos
√λk

d
(y+ L)


where the λk

d > 0 are the solutions of
√
x = cotan(

√
xL) and

∑
w̃k(0) cos

√λk
d
(y+ L)

 = θ′

Since the first eigenfunction does not change sign, we also know by the maximum
principle that, when y ∈ (−L0, 0) :

w ≤ θ′e−λ1t
cos

(√
λ1/d (L−L0)

)
cos

(√
λ1/d L

) =: Ke−λ1t
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so that for y ∈ (−L0, 0), v(tM , y) ≥ θ′ −Ke−λ1tM ≥ 1+3θ
4 provided

µ ≤ λ1
ln(1/θ′)

ln
(

4K
1−θ

) =: µ− (3.50)

Chose L0 large enough in the beginning so that an initial condition

µu(tM ), v(tM , y) ≥ (1 + 3θ)/4

for all y ∈ (−L0, 0) leads to invasion : µu, v → 1 as t → ∞. The existence of
such an L0 can be adapted from Kanel′, Aronson-Weinberger [1, 53] on R. In our
context (we rewrite equation (3.2) without the dependance in x) :

ut = v(t, 0)− µu(t)
vt − dvyy = f(v)

vy(t, 0) = µu(t)− v(t, 0)
vy(t,−L) = 0

it is even simpler since total mass is confined in (−L, 0) and a single point whereas
in [1, 53] it can be spread on all R.

Observe that estimate (3.50) is rather crude : since λ1(L) decays as L−2 for
large L (and K(L) might be large too) this leads to the fact that our threshold is
at least in µ− ≤ C/L2 for large values of L. This might be due to several effects :
• The estimate v ≥ 0 used for u

• The estimate e−µt ≥ θ′ while t ≤ tM

• The non-sharpness of the first eigenmode as a supersolution and its nonlocal
character (we are only interested in y ∈ (−L0, 0) but we have to put the first
eigenfunction everywhere above θ′).

Nonetheless, numerical simulations of

max
t∈(0,+∞)

min
y∈[−L0,0]

v(t, y)

with µu = e−µt and solving the associated (3.48) on the first 5 eigenmodes (which
gives a pretty decent approximation) let us think that this is not so far from reality.

3.5.3 Large a < +∞
We use the best case scenario described above to prove the existence of large
but finite a that will lead to invasion. Our proof relies on the fact that 1(−a,a)
and 1(−∞,∞) are close in L∞ weighted by some ρ(x) with tails e−|x| and that
such a weight preserves the semi-linear parabolic and monotone structure of the
system (3.2). In particular, the "weighted equation" will have a locally (in time)
Lipschitz continuous flow. Going back to the original solutions, this Lipschitz
continuity becomes a uniform continuity on every compact subset. Let us describe
this argument precisely.
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Lemma 3.5.4. There exists a C2 positive weight ρ(x) such that ρ(x) = e−|x| for
|x| > 1 and such that the following holds:

Let ‖ · ‖X denote the product weighted L∞ norm

‖(f , g)‖X = max
(
‖ρf‖L∞(R), ‖ρg‖L∞(ΩL)

)
For every T > 0 and M > 0 there exists a constant CT ,M > 0 that does not depend
on D and such that

sup
0≤t≤T ,x∈(−M ,M)

(|u− ũ|+ |v− ṽ|) ≤ CT ,M‖(u0 − ũ0, v0 − ṽ0)‖X

for every (u, v) and (ũ, ṽ) solutions of (3.2) starting from respectively (u0, v0) and
(ũ0, ṽ0).

Remark 3.5.2. In other words, Lemma 3.5.4 asserts that on every space-time com-
pact, one can control the uniform distance between two solutions of (3.2) by the
weighted distance ‖e−|x| · ‖∞ between their initial data. As a consequence, initial
data that differ only very far away give very close solutions for small times and
small x.

Observe also that the above Lemma could be stated for any ρα(x) = e−α|x|

(with α > 0) by changing the constants : this is due to the scaling invariance
(t,x, y) → (Λt,

√
Λx,
√

Λy) of equation (3.2) ; indeed, ρα becomes ρ1 in the
rescaling by Λ = α2.

End of the proof of Theorem 3.1.4. Once Lemma 3.5.4 is proved, the end of The-
orem 3.1.4 follows easily. Indeed, let u0 = 1(−a,a) and v0 = 0 as well as ũ0 =
1(−∞,+∞) and ṽ0 = 0. Observe that if a > 1,

‖(u0 − ũ0, v0 − ṽ0)‖X = e−a

Moreover since µ < µ−, by Theorem 3.5.2 above there exists T > 0 such that

µũ(T ,x), ṽ(T ,x, y) ≥ 1− δ/2

with δ as in Theorem 3.3.1. By choosing

a > max{1,− ln(δ/(2CT ,M ))} =: a1

(which does not depend on D) and applying Lemma 3.5.4 on [0,T ] × [−M ,M ]
(with M as in Theorem 3.3.1) one has

|µu(T ,x)− µũ(T ,x)|+ |v(T ,x, y)− ṽ(T ,x, y)| ≤ δ/2 for all −M < x < M

And as a consequence,

µu(T ,x), v(T ,x, y) ≥ 1− δ for all −M < x < M

so that (u, v) satisfies Theorem 3.1.3 at time T and invasion follows.
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Proof of Lemma 3.5.4. The proof relies only on the parabolic maximum principle
applied to a weighted equation. Let ρ(x) define a positive C2 function such that
ρ(x) = e−|x| for |x| ≥ 1. Let (u, v) solve system (3.2). Observe that

(u, v) := (ρu, ρv)

satisfies

d∂yv = µu− v

∂tu+ 2ρ
′

ρ ∂xu− ∂
2
xxu = v−

(
µ+ ρ′′

ρ − 2
(
ρ′

ρ

)2)
u

∂tv+ 2dρ
′

Dρ∂xv−
d
D∂

2
xxv− d∂2

yyv = ρf
(
v
ρ

)
− d

D

(
ρ′′

ρ − 2
(
ρ′

ρ

)2)
v

∂yv = 0 (3.51)

Equation (3.51) is a semilinear parabolic system, and thanks to the definition of ρ,
has bounded coefficients. Moreover, the non-linearity g(v) := ρf

(
v
ρ

)
is Lipschitz

with Lipschitz constant Lipf . Let

C := Lipf − inf
R

ρ′′
ρ
− 2

(
ρ′

ρ

)2 > Lipf − d

D
inf
R

ρ′′
ρ
− 2

(
ρ′

ρ

)2
Now define (ũ, ṽ) in a similar way and let U := e−Ct (u− ũ) ,V := e−Ct (v− ṽ).

Observe that (U,V) satisfies

d∂yV = µU−V

∂tU+ 2ρ
′

ρ ∂xU− ∂
2
xxU = V− µU−

(
ρ′′

ρ − 2
(
ρ′

ρ

)2
+C

)
U

∂tV+ 2dρ
′

Dρ∂xV−
d
D∂

2
xxV− d∂2

yyV+

(
d
D

(
ρ′′

ρ − 2
(
ρ′

ρ

)2)
+ g(v)−g(ṽ)

v−ṽ +C

)
V = 0

∂yV = 0

(3.52)
By choice of C, the 0-order terms in parentheses in equation (3.52) are positive,
thus equation (3.52) enjoys the maximum principle and the maximum and mini-
mum values of (µU,V) are reached at initial time. Indeed, as usual if the maximum
is reached by V, then either it is reached at initial time or it has to be reached on
y = 0 but there the Hopf’s lemma gives the contradiction µU > V. It U reaches
it, a contradiction is obtained at this point by seeing that the left-hand side in the
equation satisfied by U is non-negative : thus V > µU. In the end we have for all
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0 ≤ t < T :|(u− ũ)(t)|L∞(R) ≤ eCT max
(
|(u− ũ)(0)|L∞(R), |(v− ṽ)(0)|L∞(ΩL)

)
|(v− ṽ)(t)|L∞(ΩL) ≤ eCT max

(
|(u− ũ)(0)|L∞(R), |(v− ṽ)(0)|L∞(ΩL)

)
(3.53)

i.e.for all t < T , x ∈ R, y ∈ [−L, 0] :

ρ(x) (|u− ũ|(t,x) + |v− ṽ|(t,x, y)) ≤ 2eCT‖(u0 − ũ0, v0 − ṽ0)‖X

and Lemma 3.5.4 follows by taking CT ,M = 2eCT supx∈(−M ,M)
1

ρ(x) , which is
2eCT eM whenM is large. Observe that CT ,M depends only on T ,M and Lipf .
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Chapter 4

Perspectives

“ I refuse to answer that question on the grounds that I don’t
know the answer ”
—Douglas Adams

To finish this manuscript, we present some natural continuations of the above
works and some longer term projects.

Q1 Precise study of the finite time t1 of Theorem 3.1.3
We already mentioned that that tD = D1/2 lnD + O(1). Nonetheless, we
believe that t1 might be smaller. We believe that a lower bound tD ≥ cD1/6

or t1 ≥ cD1/4 might be found, but the precise behaviour of tD seems to be a
complicated and interesting question. We plan to carry a quantitative study
of the heat kernel of (3.1) in order to get precise estimates.

Q2 Including transport and reaction on the road.

d∂yv = µu− v

∂tu−D∂xxu+ q∂xu = v− µu+ g(u)

∂tv− d∆v = f(v)

∂yv = 0 (4.1)

As in [21] it would be interesting to check the influence of these new parameters
on the travelling waves and their speed, and to see how would the system (2.4)
be modified. Here there is a natural scaling q ∼ q∞

√
D which seems to open

the way to interesting properties.

Q3 Sharpness of the thresholds a and M ′

Is it possible to find a sharp M ′ as in Theorem 3.1.3 ? And a sharp a playing
the role of a0 and a1 in Theorem 3.1.4 ? One possible track is to adapt the
ideas of Du and Matano [40].
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Q4 Transition fronts.
Can we use the previous results and the theory of transition fronts (see [10])
to describe solutions as D → +∞ when D = D(x),µ = µ(x), q = q(x) ?
Non-trivial transition fronts were already exhibited by Berestycki-Hamel-Matano
[12] to describe propagation around an obstacle or Mellet-Roquejoffre-Sire [64]
and Nolen-Roquejoffre-Ryzhik-Zlatoš [67] to study

∂tu− ∂xxu = f(x,u)
in various situations.

Q5 Including integral dispersion on the road.
Do the travelling wave persist in presence of a fractional laplacian on the road,
and if yes, do transition fronts persist ?
NB : existence of transition fronts for the following simple equation is still
open

∂tu+ (−∂xx)αu = a(x)f(u)

with f of ignition type. This is an occasion to review the case a constant :
especially when α ≤ 1/2 there is no travelling wave (see [51]). How does the
spreading look like in this case ?

Q6 A Harnack inequality for systems of the type (3.2) or (2.4).
As stated in Remark 3.1.1, we did not give a full proof of convergence towards
travelling waves but only that the solutions are trapped between translates of
the waves. The technical reason of this is the lack of a Harnack inequality up
to the boundary concerning (3.2).
Indeed, the Harnack inequality is quite convenient in the study of stability of
travelling waves : one starts with the stability among front-like initial data
than can be trapped between two translates of the front, separated by a dis-
tance d0. Then, a comparison principle and a Harnack inequality can be used
to show that one time step later, the solution can be trapped between two
translates of the front separated by a distance qd0 where 0 < q < 1 is a con-
stant (maybe very close to 1). This argument is very much in the same spirit
as “Harnack inequality implies Hölder regularity”. See [65].
In the case of (3.2), no such Harnack inequality has been given yet. The above
argument can be replaced by a maximum principle and compactness argument,
but finding a full Harnack inequality near the boundary for the system (3.2)
would be both interesting and have surely many applications in the study of
the system. Arguments supporting the existence of such a Harnack inequality
can be found in Luo [62] for Wentzell boundary value problems, which are, in
some sense, a reduced version of the travelling waves problem associated to
(3.2) (see [39]).
Moreover, in the case of non-flat boundaries and in presence of a degeneracy
as in (2.4), the study of transmission of regularity to the interior of the domain
seems interesting and non-trivial.
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Résumé : l’objet de cette thèse est l’étude de l’accélération de la propagation dans les équa-
tions de réaction-diffusion par un nouveau mécanisme d’échange avec une ligne de diffusion
rapide. On répondra à la question de l’influence de ce couplage avec forte diffusivité sur la
propagation en généralisant un résultat de Berestycki, Roquejoffre et Rossi de 2013. Le sys-
tème d’équations étudié a été proposé pour donner une explication mathématique de l’influence
des réseaux de transports sur les invasions biologiques. Dans un premier chapitre, on étudiera
l’existence et l’unicité de solutions de type ondes progressives via une méthode de continuation.
La transition se fait par l’intermédiaire d’une perturbation singulière qui paraît nouvelle dans
ce contexte, connectant le système initial à un problème au bord de type Wentzell. Le second
chapitre s’intéresse à la vitesse des ondes sus-mentionnées. On y démontre qu’elle croît comme
la racine carrée de la diffusivité de l’espèce sur la route, ce qui généralise et démontre la ro-
bustesse du résultat de Berestycki, Roquejoffre et Rossi. De plus, on caractérise précisément le
ratio de croissance comme unique vitesse admissible pour les ondes d’un système hypoelliptique
a priori dégénéré. Enfin dans une dernière partie on s’intéresse à la dynamique. On y montre
que ces ondes attirent une large classe de données initiales. En particulier on met en lumière un
nouveau mécanisme d’attraction qui permet aux ondes d’attirer des données dont la taille est
indépendante de la diffusivité sur la route ; c’est un résultat nouveau au sens où usuellement,
l’accélération de fronts de réaction-diffusion se paie en renforçant les hypothèses nécessaires sur
la taille des données initiales attirées.

Mots-clés : réaction-diffusion, ondes progressives, fronts, propagation, vitesse.

Abstract : the aim of the thesis is the study of enhancement of propagation in reaction-
diffusion equations, through a new mechanism involving a line with fast diffusion. We answer
the question of the influence of such a coupling with strong diffusion on propagation by gen-
eralizing a result of Berestycki, Roquejoffre and Rossi (2013). The model under study was
proposed to give a mathematical understanding of the influence of transportation networks on
biological invasions. The first chapter shows existence and uniqueness of travelling waves solu-
tions with a continuation method. The transition occurs through a singular perturbation – new
in this context – connecting the system with a Wentzell boundary value problem. The second
chapter is concerned with the speed of the waves : we show that it grows as the square root of
the diffusivity on the line, generalizing and showing the robustness of the result by Berestycki,
Roquejoffre and Rossi. Moreover, the growth ratio is characterized as the unique admissible
velocity for the waves of an hypoelliptic a priori degenerate system. The last part is about the
dynamics : we show that the waves attract a large class of initial data. In particular, we shed
light on a new mechanism of attraction which enables the waves to attract initial data with
size independent of the diffusivity on the line : this is a new result, in the sense than usually,
enhancement of propagation has to be paid by strengthening the assumptions on the initial
data for invasion to happen.

Keywords : reaction-diffusion, travelling waves, fronts, propagation, speed.
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