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Chapter 1

Introduction

1.1 Lecture 1. Introduction to Differential Equa-

tions

1.1.1 What is a differential equation?

Simply put, a differential equation is an equation involving the derivative of
a function. For example

dy

dt
= 2y (1.1.1)

and
d2y

dt2
− 2

dy

dt
+ 2y = 0 (1.1.2)

are examples of differential equations.
In each case y represents a function of the variable t. Since the value of

y depends on the value of t, y is called the dependent variable, even though
it is a function. The variable t is called the independent variable.

1.1.2 What is a solution to a differential equation?

A solution to a differential equation is a function that, when substituted into
the equation, produces a true statement. For example, if y1(t) = e2t, then

dy1

dt
(t) = 2e2t (1.1.3)

and
2y1(t) = 2e2t. (1.1.4)

Thus, y1 is a solution to the differential equation 1.1.1, because

dy1

dt
= 2y1. (1.1.5)
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4 CHAPTER 1. INTRODUCTION

Similarly, if y2(t) = et cos(t), then

dy2

dt
(t) = et(cos(t) − sin(t)), (1.1.6)

and
d2y2

dt2
(t) = et(−2 sin(t)). (1.1.7)

So
d2y2

dt2
− 2dy2

dt + 2y
= et(−2 sin(t)) − 2et(cos(t) − sin(t)) + 2et cos(t)
= 0.

(1.1.8)

We see, then, that y2 is a solution to equation 1.1.2.

1.1.3 What types of differential equations are there?

Because any particular technique used in the study of differential equations
tends to apply only in restricted cases, there are many ways of categorizing
differential equations.

Order

The order of a differential equation is the degree of the highest derivative
found in the equation. Of the examples listed above, 1.1.1 is a first order
equation, while 1.1.2 is a second order equation.

In general an n-th order differential equation is an expression of the form

F (t, y,
dy

dt
, . . . ,

dny

dtn
) = 0. (1.1.9)

For the examples above, the expressions are

F1(t, y,
dy

dt
) =

dy

dt
− 2y, (1.1.10)

and

F2(t, y,
dy

dt
,
d2y

dt2
) =

d2y

dt2
− 2

dy

dt
+ 2y (1.1.11)

respectively.

Linear vs. non-linear

A differential equation

(t, y,
dy

dt
, . . . ,

dny

dtn
) = 0. (1.1.12)
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is said to be linear if F is a linear function of the dependent variable y and all
of its derivatives. The equations 1.1.1 and 1.1.2 are both linear for example.

Note that a linear differential equation need not be linear in the inde-
pendent variable.

t2
d2y

dt2
− et2 dy

dt
+ sin(et2)y = 0 (1.1.13)

is a linear equation. On the other hand

dy

dt
+ 2 sin(y) = 0 (1.1.14)

is not a linear differential equation, since 2 sin(y) is not a linear function of
y. Similarly

y
dy

dt
= 0 (1.1.15)

is not a linear differential equation, since y dy
dt is not a linear expression.

Ordinary Differential Equations and Partial Differential Equations

If a quantity depends on two or more variables that are each independent,
its behavior can be described by an equation involving partial derivatives.
The result is then a partial differential equation (PDE). For example the
temperature along a thin rod may depend on both the position along the
rod and the time that has elapsed since the beginning of the experiment. In
fact

∂u

∂t
= α2 ∂2u

∂x2
(1.1.16)

describes just such a situation. Here u(x, t) represents the temperature at
a position x along the rod at time t. The parameter α describes how easily
heat energy travels along the rod (i.e. its thermal conductivity).

Differential equations that involve only ordinary derivatives (rather than
partial derivatives) are referred to as ordinary differential equations (ODE’s).

1.1.4 Systems of differential equations

All of the examples we have considered involve a single dependent variable.
It is possible for there to be several quantities that all depend on a single
independent variable, and possibly on each other, too. The pair of differential
equations

dx
dt = y
dy
dt = −x

(1.1.17)

Must be treated in unison. It is not possible to solve for x without some
knowledge of the behavior of y, but y cannot be determined without knowing
something about x.
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The pair of equations 1.1.17 is called a system of differential equations.
Systems of differential equations frequently arise in modeling problems. For
instance the system

dR
dt = αR − βRF
dF
dt = −γF + δRF

(1.1.18)

represents the interaction between two animal populations, a predator F
(foxes?) and a prey R (rabbits?).

1.1.5 Initial Value Problems

As a general rule, a differential equation

dy

dx
= f(x, y) (1.1.19)

will have many different solutions. In many instances, we are not interested
in all the possible solutions. We only wish to consider solutions that meet
some particular conditions. Frequently, we are interested in a solution that
satisfies a given initial condition. An initial condition y(x0) = y0 determines
the value y0 the dependent variable must take for the specified value x0 of
the dependent variable.



Chapter 2

First Order Differential

Equations

2.1 Lecture 2. Analytic Technique: Separable Equa-

tions

2.1.1 Definition

We say that the differential equation

dy

dx
= f(x, y) (2.1.1)

is a separable equation if the the function f can be factored as f(x, y) =
g(x)h(y).

2.1.2 Integration

Taking a cue from elementary algebra, we may try to work toward a solution
by moving all the y’s to the left hand side of the equation, to get

1

h(y)

dy

dx
= g(x). (2.1.2)

There are some problems with this if h(y) is ever zero, but for now we’ll ignore
this. Remembering that the dependent variable y is actually a function y(x),
we see that both sides of equation 2.1.2 are actually functions of x. We can
integrate both sides with respect to x:

∫

1

h(y(x))

dy

dx
dx =

∫

g(x)dx. (2.1.3)
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8 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

The integral on the left can be simplified with the u-substitution u =
y(x). Then du = dy

dxdx, and

∫

1

h(u)
du =

∫

g(x)dx. (2.1.4)

Of course, the choice of the letter u doesn’t have any real significance. We
can choose any letter we like, y for instance, to get

∫

1

h(y)
dy =

∫

g(x)dx. (2.1.5)

If we can compute both of these integrals, we are in good shape.
Now, it may seem that this u-substitution is a big waste of time. Why

not just cancel the dx’s? Well, in practice, that is fine. This is the reason
that the dy

dx notation has become popular. But it should be kept in mind

that dy
dx is not really a fraction, and dx is not really a number.

Example 1. Find a solution to the differential equation

dy

dx
= x(y − 3). (2.1.6)

Since the right hand side can be factored with g(x) = x and h(y) = y−3,
we can rewrite it as

1

y − 3

dy

dx
= x (2.1.7)

then integrate
∫

1

y − 3

dy

dx
dx =

∫

1

y − 3
dy =

∫

xdx (2.1.8)

Integrating, we see

ln |y − 3| = 1
2x2 + C

|y − 3| = e
1

2
x2+C = eCe

1

2
x2

y − 3 = ±eCe
1

2
x2

(2.1.9)

Since eC is always a positive constant, we can solve for y to get

y(x) = ke
1

2
x2

+ 3, (2.1.10)

where k is a non-zero constant. So we see that we have a whole family of
solutions.

Example 2. Find solutions to the initial value problem

dy

dx
= x(y − 3), y(0) = 7. (2.1.11)
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To solve for the initial condition, note that we require

y(0) = ke
1

2
(0)2 + 3 = k(1) + 3 = 7 (2.1.12)

and so we must take k = 4. The solution to this initial value problem is

y(x) = 4e
1

2
x2

+ 3, (2.1.13)

Example 3. Find solutions to the initial value problem

dy

dx
= x(y − 3), y(2) = 3. (2.1.14)

To solve for the initial condition, note that we require

y(2) = ke
1

2
(2)2 + 3 = ke2 + 3 = 3 (2.1.15)

and so we must take k = 0. This is troubling, since k was to be a non-zero
constant. But, ignoring that for the moment, we get

y(x) = (0)e
1

2
x2

+ 3 = 3. (2.1.16)

There are two important things to note here. First, if y = 3, then h(y) =
0, and we could not have divided by h(y) in the first place. That having been
said, notice that

d

dx
[3] = 0 (2.1.17)

and

x(3 − 3) = 0 (2.1.18)

so y(x) = 3 is, in fact, a solution.

When dealing with a separable equation

dy

dx
= g(x)h(y), (2.1.19)

any value y0 for which h(y0) = 0 corresponds to a constant solution y(x) =
y0. These solutions may not correspond to any choice of the arbitrary con-
stant that appears in the integration.

Example 4. Solve the initial value problem

dy

dx
= −2xy2, y(0) = 0. (2.1.20)
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Following the procedure above

1
y2

dy
dx = −2x

∫

1
y2 dy =

∫

−2xdx

− 1
y = −x2 + C

y(x) = 1
x2+C

(2.1.21)

Note that in the last line the constant C seems to have changed sign.
It’s an arbitrary constant, though, so this doesn’t really matter. Throughout
these notes, we’ll treat arbitrary constants with a similarly cavalier attitude.

Solving for the initial condition, we try

y(0) =
1

(0)2 + C
=

1

C
= 0. (2.1.22)

Unfortunately, no value of C will work. Looking back, we see that for y = 0,
the right hand side of 2.1.20 becomes

−2x(0)2 = 0. (2.1.23)

In fact, y(x) = 0 is a constant solution to 2.1.20.

2.1.3 Implicit Solutions

Unfortunately, it is not always possible, after integrating, to solve the result-
ing expression for y.

Example 5. Solve the differential equation

dy

dx
=

3x2 + 2

5y4 + 4y3 + 2y
. (2.1.24)

The equation is separable, with h(y) = 1
5y4+4y3+2y

. So

∫

(5y4 + 4y3 + 2y)dy =
∫

(3x2 + 2)dx
y5 + y4 + y2 = x3 + 2x + C

(2.1.25)

Since there is no general solution for a fifth degree polynomial, there is no
way to get an explicit expression for y(x).

The relationship

y5 + y4 + y2 = x3 + 2x + C (2.1.26)

implicitly describes a relationship between x and y. This is referred to as an
implicit solution.

To summarize: In order to solve the separable equation

dy

dx
= g(x)h(y), (2.1.27)
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1. divide by h(y) and integrate to get a family of solutions (which may
or may not include all constant solutions).

2. Each value y0 such that h(y0) = 0 represents a constant solution

y(x) = y0. (2.1.28)

It should be remembered that

• You may not be able to perform the integrations.

• You may not be able to solve for y explicitly in terms of x.

2.1.4 General Solutions and Particular Solutions

Definition 1. A general solution to a differential equation

dy

dx
= f(x, y) (2.1.29)

is a family of solutions that provides a solution for every initial value problem.

For separable equations, the general solution consists of the solutions
found in 1 above, together with the constant solutions from 2.

Example 6. The general solution to the differential equation dy
dx = −2xy2

is
y(x) = 1

x2+C

ory(x) = 0.
(2.1.30)

Definition 2. A particular solution is a single function that satisfies an
initial value problem. i.e. a single member of the family in the general
solution.

2.1.5 Mixing Problems

Example 7. In this example we will investigate a polluted pond. The as-
sumptions we will make are:

• The pond holds 1000 m3 of water.

• The pond is initially (at t = 0) unpolluted.

• A stream containing mercury (Hg) flows into the pond. The rate of
flow of the stream is 3 m3/hour. The concentration of mercury in the
stream is e−t/100 g/m3.

• Another stream flows out of the pond, at a rate of 3 m3/hour.
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• Currents within the pond keep the water well mixed, ensuring that the
concentration of mercury is uniform throughout the pond.

We can let H(t) denote the amount (in grams) of mercury at time t
(measured in hours). There is only one way mercury can enter the pond:
from the polluted stream. Similarly, it can leave only from the other stream.

The rate at which mercury is added is

[flow rate]× [concentration] = [3 m3/hour]× [e−t/100 g/m3] = 3e−t/100g/hour
(2.1.31)

This gives a rate of 3e−t/100g/hour.

The rate at which mercury is removed from the pond is

[flow rate] × [concentration] = [3 m3/hour] ×
[H(t) g]

[1000 m3]
(2.1.32)

This gives a rate of 3H(t)
1000 g/hour.

Combining these, we see

dH

dt
= 3e−t/100 −

H(t)

1000
, (2.1.33)

where the units on both sides are g/hour. This is a linear equation. It can
be rewritten as

dH

dt
+

3

1000
H = 3e−t/100. (2.1.34)

With p(t) = 3
1000 , we compute

µ(t) = e
R

3

1000
dt = e

3

1000
t. (2.1.35)

So
d

dt

(

e
3

1000
ty

)

= 3e−t/100e
3

1000
t = 3e−

7

1000
t. (2.1.36)

Integrating

e
3

1000
ty = −

3000

7
e−

7

1000
t + C. (2.1.37)

Multiplying thorough by µ(t) finally yields

y(t) = Ce−
3

1000
t −

3000

7
e−t/100 (2.1.38)

Now, solving for the initial condition H(0) = 0, we get C = 3000
7 , and

y(t) =
3000

7

(

e−
3

1000
t − e−t/100

)

(2.1.39)
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2.2 Lecture 3. Qualitative Method: Direction Fields,

and a Few Mathematical Models.

2.2.1 Direction Fields

It is possible to sketch curves without computing solutions. Suppose we wish
to sketch solutions for the differential equation

dy

dt
= f(t, y) (2.2.1)

If some function y(t) is a solution to 2.2.1, then

dy

dt
(t) (2.2.2)

is the slope of the solution curve y = y(t)

Since y is a solution to 2.2.1 it must satisfy

dy

dt
(t) = f(t, y(t)). (2.2.3)

So the slope of a solution curve passing through the point t, y in the ty-plane
is completely determined by the values of t and y. The value f(t0, y0) is the
slope of any solution passing through the point (t0, y0).

We can use this fact to get an idea how solutions behave without com-
puting them analytically.

Example 8. We can get an idea how solutions to the differential equation

dy

dx
=

1

2
y (2.2.4)

by choosing an array of points in the ty-plane and making a short line seg-
ment for each point. The line segment at (t0, y0) will have slope f(t0, y0).
The results of this are shown in Figure 8

Using the direction field, it is possible to sketch solutions, by simply fol-
lowing the direction field lines, moving parallel to the nearest lines as shown
in Figure 8.

Example 9. In this example, we will see how qualitative and analytic tech-
niques may be used together to gain a greater understanding of the behavior
of solutions. Consider the direction field for y′ = t+2y, as shown in Figure 9.

Some of the solutions are increasing as they leave the rectangle, others
are decreasing. We might like to find a solution curve that separates the
solutions that eventually increase from those that eventually decrease.
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Figure 2.1: Direction field for y′ = 1
2y.

Figure 2.2: Direction field and some solution curves for y′ = 1
2y.
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Figure 2.3: Direction field and some solution curves for y′ = t + 2y.

First note that the direction field lines are constant along lines with slope
−1

2 . Why is this so? Recall that the slope of solution curves, and hence the
direction field lines, is given by

f(t, y) = t + 2y. (2.2.5)

Where will the direction field lines have a given slope, say m? Wherever

t + 2y = m, (2.2.6)

i.e. along the line

y = −
1

2
t +

1

2
m (2.2.7)

If we can find a line in the plane such that the direction field along that
line is parallel to that line, we might expect a solution curve to follow that
line. We can find such a line by setting m = −1

2 to get

y(t) = −
1

2
t −

1

4
(2.2.8)

We can verify that this line is a solution by checking

dy

dt
=

d

dt

[

−
1

2
t −

1

4

]

= −
1

2
, (2.2.9)

and

f(t, y(t)) = t + 2y(t) = t + 2

(

−
1

2
t −

1

4

)

= t − t −
1

2
= −

1

2
. (2.2.10)

Figure 9 shows this straight line solution separating the decreasing solutions
from those that eventually increase.
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Figure 2.4: A straight line solution separates (eventually) increasing and
decreasing soltuions of y′ = t + 2y.

2.2.2 Newton’s Law of Cooling

2.2.3 Toricceli’s Law

2.3 Lecture 4. Analytic Method: First Order Lin-

ear Equations

The differential equation

dy

dt
+ p(t)y = g(t) (2.3.1)

is linear in both y and dy
dt . It is a first order linear differential equations. We

would like to be able to find an explicit solution for differential equations of
this form. We shall do this by putting the equation into a form that allows
us to integrate.

2.3.1 Integrating Factors

First consider the left hand side (LHS):

dy

dt
+ p(t)y. (2.3.2)

After staring at this for a sufficiently long time, with sufficient motivation,
you might start to think that it looks a little like the result of using the
product rule – there are two term, one involves y and the other involves dy

dt .
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Lets think about what we get when we apply the product rule to a
product:

d

dt
(µ(t)y(t)) = µ(t)

dy

dt
+

(

dµ

dt

)

y. (2.3.3)

Comparing

µ(t)
dy

dt
+

(

dµ

dt

)

y (2.3.4)

to the LHS of our equation
dy

dt
+ p(t)y, (2.3.5)

we see that the dy
dt terms have different coefficients. We can remedy this by

multiplying the LHS by µ(t) (whatever that might be) to get

µ(t)
dy

dt
+ µ(t)p(t)y. (2.3.6)

This will make the two expressions identical, provided we can chose a µ(t)
such that

dµ

dt
= µ(t)p(t). (2.3.7)

This is a separable equation, and so we can solve it using the techniques in
Section 2.1. Separating and integrating

∫

µ

d
µ =

∫

p(t)dt (2.3.8)

we get

µ(t) = e
R

p(t)dt. (2.3.9)

2.3.2 General Solutions

So multiplying the linear differential equation by µ(t) allows us to rewrite
the equation as

µ(t)dy
dt + µ(t)p(t)y = µ(t)g(t)

d
dt (µ(t)y(t)) = µ(t)g(t).

(2.3.10)

Integrating
∫

d

dt
(µ(t)y(t))dt =

∫

µ(t)g(t)dt (2.3.11)

we get

µ(t)y(t) =

∫

µ(t)g(t)dt (2.3.12)

If the integral on the right can be solved, then dividing by µ(t) produces an
explicit expression for y(t).
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Example 10. Solve the initial value problem

dy
dt + ty = t
y(t0) = y0

(2.3.13)

This is a linear first order differential equation with

p(t) = t, and g(t) = t, (2.3.14)

so
µ(t) = e

R

p(t)dt = e
R

tdt = e
1

2
t2+C (2.3.15)

Since we need only one such function, we can take (for convenience) C = 0,

and use µ(t) = e
1

2
t2.

Multiplying by µ(t) we get

e
1

2
t2 dy

dt
+ te

1

2
t2y = te

1

2
t2 , (2.3.16)

or, because of the way we chose µ

d

dt
(µ(t)y(t)) = te

1

2
t2 . (2.3.17)

Integrating, we get

µ(t)y(t) =

∫

te
1

2
t2dt = e

1

2
t2 + C. (2.3.18)

Solving for y, we find

y(t) = 1 + Ce−
1

2
t2 (2.3.19)

We can use this to solve for the initial condition y(t0) = y0:

y(t0) = 1 + Ce−
1

2
t2
0 = y0. (2.3.20)

Solving for C gives

C = (y0 − 1)e
1

2
t2
0 , (2.3.21)

and
y(t) = 1 + (y0 − 1)e

1

2
t2
0e−

1

2
t2

= 1 + (y0 − 1)e
1

2
(t2

0
−t2)

(2.3.22)

Since the solution y(t) = 1 + Ce−
1

2
t2 found in Example 10 can be used

to solve any initial value problem, it is, in fact, the general solution for the
differential equation.

In fact, this method, when it works, will always lead to a general solution
for the differential equation. There is no need to worry about “disappearing
solutions” as there is in the case of separable equations.
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Not every linear first order equation is of the form

y′ + p(t)y = g(t). (2.3.23)

You may, from time to time encounter equations of the form

P (t)y′ + Q(t)y = R(t). (2.3.24)

These can be handled by simply dividing though by P (t), to get

y′ +
Q(t)

P (t)
y =

R(t)

P (t)
. (2.3.25)

This is of the desired form with

p(t) =
Q(t)

P (t)
(2.3.26)

and

g(t) =
R(t)

P (t)
. (2.3.27)

Example 11. Find the general solution to

ty′ − y = t2e−t. (2.3.28)

Since the coefficient of y′ is P (t) = t, we must divide through to get

y′ −
1

t
y = te−t, (2.3.29)

which is of the desired from, with p(t) = −1
t and g(t) = te−t.

Since

e
R

− 1

t
dt = e− ln |t| = eln | 1

t
| = |

1

t
| (2.3.30)

(we’ve assumed the constant of integration is C = 0.) We may want to try

µ(t) =
1

t
(2.3.31)

This is not exactly what we computed above (no absolute value) but it must
work when t > 0. Maybe it will work for all t. Let’s check:

1
t

(

y′ − 1
t y

)

= 1
t y

′ − 1
t2

y

= d
dt

(

1
t y

) (2.3.32)

So this µ is an integrating factor. Using it, we can rewrite 2.3.28 as

d

dt

(

1

t
y

)

=
1

t
te−t = e−t. (2.3.33)
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So
1

t
y =

∫

e−tdt = −e−t + C (2.3.34)

Multiplying by t gives

y(t) = −te−t + Ct (2.3.35)

A quick look at the solution y(t) = −te−t + Ct reveals some interesting
behavior. No matter what choice is made for the constant C, we always
find that y(0) = 0. Moreover, attempting to solve for an initial condition
y(0) = y0 leads to

y0 = y(0) = −(0)e0 + C(0) = 0 (2.3.36)

The only initial condition we can ever satisfy when t0 = 0 is y0 = 0. Looking
back at the equation 2.3.28, this should not be surprising. (Why not?)

We’ll have more to say about this differential equation and it’s solutions
a few lectures hence.

2.3.3 More Mixing Problems

2.4 Lecture 5. Autonomous Differential Equations

and Population Modeling

Differential equations describe the behavior of quantities that are changing.
In order to model a particular quantity with a differential equations, one
must do several things. First, the various effects that cause the quantity
must be identified. Then the particular way in which they affect the quantity
must be determined. Finally, these ideas must be described mathematically.

The construction of a mathematical model can be divided into three main
steps:

1. Science. Determine the assumptions on which the model will be
based. Describe the relationships among the various quantities in-
volved.

2. Notation. Determine the important quantities from the assumptions
in Step 1. Assign variable names, choose units and determine which
variables will be independent, and which will be dependent.

3. Mathematics. Translate the assumptions of Step 1 into a mathemat-
ical expression involving the variables chosen in Step 2.
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For us, the primary interest will be in Steps 2 and 3. The assumptions
from Step 1 will usually be given in the statement of a problem, though
we will at times be interested in modifying the assumptions to reflect some
change to the situation being modeled.

Of course, since this is a course in differential equations, we will be
primarily interested in situations where the mathematical statement from
Step 3 is a differential equation.

Example 12 (Rabbit Island). A population of rabbits lives on an island
with. The island provides nutritious food for the rabbits. The rabbits eat,
and do whatever else rabbits do. The population tends to increase. The rate
of increase is proportional to the number of female rabbits which is in turn
proportional to the size of the population.

1. Science.

• The rate of growth is proportional to the size of the population

2. Notation. Let t represent the amount of time that has passed since
the discovery of Rabbit Island, measured in years. Let R(t) denote the
size of the rabbit population at time t. Let k represent the constant
of proportionality between the size of the population and the rate of
growth.

3. Mathematics.

dR

dt
= kR (2.4.1)

We’ve seen this differential equation before, and we know the solutions
are of the form

R(t) = Cekt. (2.4.2)

(The equation is both linear and separable, so either of the two analytic
methods we’ve studied can be applied.)

If the initial population consists of 50 rabbits, then

50 = R(0) = Ce0 = C (2.4.3)

So the appropriate solution is R(t) = 50ekt.

In order to determine the constant k, we can either make a detailed
investigation of the reproductive biology of rabbits, or we can wait and
gather empirical evidence. If, after one year, the population has grown to
120 rabbits, then

120 = R(1) = 50ek (2.4.4)
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and solving for k produces k = ln
(

12
5

)

, and so

R(t) = 50eln( 12

5
)t. (2.4.5)

If another rabbit island is discovered, with similar climate, etc., we would
expect the growth rate k to be the same. If the initial population of the
hypothetical other rabbit island were 35 rabbits, we would expect the size
of the population to be

R(t) = 35eln( 12

5
)t. (2.4.6)

After one year, there would be R(1) = 35eln( 12

5
) = 3512

5 = 84 rabbits.

We can also study this differential equation using qualitative methods.
One interesting thing about this differential equation, is that the RHS does
not depend on the independent variable. Consequently, if we draw the di-
rection field, the direction field elements will have constant slope along hor-
izontal lines. This can be seen in Figure 2.4.

Figure 2.5: Direction field for R′ = ln
(

12
5

)

R.

Because of this property, any vertical slice of the tR-plane contains all
the information of the whole plane. We can imagine squishing the direction
field in Figure 2.4 onto the R-axis. Doing so produces what is called the
phase line.

[PICTURE OF PHASE LINE HERE]

Any differential equation of the form

dy

dx
= f(y) (2.4.7)
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has the property that direction field elements will have constant slope along
horizontal lines. Consequently, a phase line can be drawn for any such
equation. Such differential equations are autonomous.

The model developed for our study of Rabbit Island predicts that, given
enough time, the population will grow to any given size, no matter how large.
This seems unreasonable. We may want to modify our assumptions.

Example 13 (Rabbit Island II). 1. Science.

• The rate of growth is proportional to the size of the population.

• Scarcity of resources tends to limit this growth as the size of the
population increases.

2. Notation. Let t, R(t) and k be as they were before. Let h be a constant
that represents the strength of the environmental effects limiting the
growth.

3. Mathematics. We wish, as before, to get a differential equation whose
LHS is dR

dt . On the RHS, we may expect to get a term for each assump-
tion.

The first assumption, as before, leads to kR. For the second assump-
tion, we would like a term that is negligible when the population is
small, but becomes a large (negative) number when the population is
bigger. There are many possible choices, so lets try to choose a simple
one: hR2. This has the advantage of being a polynomial, just like the
first term. Thus we get

dR

dt
= kR − hR2. (2.4.8)

This equation can be rewritten in the form

dR

dt
= kR(1 −

hR

k
) = kR(1 −

R

M
), (2.4.9)

where M = k/r. This model is commonly referred to as the logistic
model. M represents the largest sustainable population, or carrying
capacity, for the system. This can be seen by constructing the phase
line.

[PHASE LINE PICTURES HERE]

Compare these to the [DIRECTION FIELD] and the [SOLUTION
CURVES].
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2.4.1 Summary of Autonomous Equations and the Phase

Line

For a differential equation
dy

dt
= f(y) (2.4.10)

1. Sketch the graph of f(y) vs. y. Note where the graph is positive,
negative and equal to 0.

2. Draw the phase line: Equilibrium points occur wherever f(y) = 0,
solutions are increasing wherever f(y) > 0, and decreasing wherever
f(y) < 0.

3. If desired, the phase line may now be used to sketch soltuions.

2.5 Population Models

We have looked at two different population models, the exponential model

dP

dt
= kP, (2.5.1)

and the logistic model

dP

dt
= kP − hP 2 = kP (1 −

P

M
). (2.5.2)

These models are both autonomous equations. Not all populations must be
so, however. The differential equation

dy

dt
= r(t)y − k (2.5.3)

might also be used to model the growth of a population.

When k = 0, 2.5.3 looks similar to the exponential model, with the
growth constant k replaced by the function r(t). This could be interpreted
as a growth constant the varies with time. Perhaps r(t) is larger in the
summer and smaller in the winter, for instance.

Positive values of k could be interpreted as hunting or harvesting of
resources at a constant rate.

Let’s take r(t) = 1
5(1+sin(t)) and k = 1

5 . Some solution curves are shown
in figure 2.5. Note that while the size of the population fluctuates, initial
populations that are sufficiently large (larger than 0.83 or so) show a net
increase in population. Smaller populations show a net decrease, eventually
falling to 0, indicating that the population has been wiped out.
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Figure 2.6: Direction field for y′ = 1
5(1 + sin(t))y − 1

5 .

We could modify this “seasonal model” to create a “seasonal logistic
model”, by replacing the harvesting term with a term that represents envi-
ronmental constraints on the population. For example

dy

dt
=

(1 + sin(t))

5
y − hy2 (2.5.4)

Figure 2.5 shows the result when h = 0.1. Notice that as with the standard
logistic model, solutions with small initial conditions tend to increase toward
some stable solution, while solutions with a large initial condition decrease
toward that stable solution.

2.6 Lecture 6. Existence and Uniqueness

[Examples]
It is important to know, when using qualitative or numerical techniques,

whether the solutions you are attempting to study actually exist. It is also
important, when using any technique, to know if initial value problems have
unique solutions.

The theory of existence and uniqueness is a bit simpler in the case of
Linear equations, so that is where we will begin.
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Figure 2.7: Direction field for y′ = 1
5(1 + sin(t))y − .1y2.

2.6.1 Existence and Uniqueness for Linear Differential Equa-

tions

Theorem 1 (Existence and Uniqueness for Linear Differential Equations).
If the functions p(t) and q(t) are continuous on an open interval I = (α, β)
containing the point t = t0 and t0 is any real number, then there exists a
unique solution y = φ(t) to the initial value problem

y′ + p(t)y = g(t), y(t0) = y0 (2.6.1)

The The solution may be defined on all of the interval I = (α, β).

Example 14. Consider

y′ −
1

t
y = te−t (2.6.2)

In this case p(t) = −1
t and g(t) = te−t. The function g is continuous

for all values of t, but p is discontinuous at t = 0. Taking the interval
I = (α, β) = (0,∞), we see that both p and g are continuous on all of I.
The theorem tells us that for any t0 ∈ (0,∞) and any y0 ∈ R, there is a
solution to the differential equation satisfying

y(to) = y0 (2.6.3)



2.6. LECTURE 6. EXISTENCE AND UNIQUENESS 27

and that this solution is defined for all values 0 < t < ∞. Moreover, on this
interval, there is no other solution satisfying that initial condition.

We found the general solution in a previous lecture:

y(t) = −te−t + ct. (2.6.4)

So if

y0 = y(t0) = −t)0e−t0 + ct0, (2.6.5)

then

c =
y0 + t0e

−t0

t0
, (2.6.6)

and

y(t) = −te−t +

(

y0 + t0e
−t0

t0

)

t (2.6.7)

is the only solution to equation 2.6.2.

Example 15. In example 14, the same reasoning holds if t0 ∈ (−∞, 0). But
what if t0 = 0?

Since p(t) = −1
t is not continuous at t = 0, we cannot apply Theorem 1

to conclude that unique solutions exist. Can we conclude that solutions do
not exist? Or that solutions exist, but are not unique? In general, no. We
can’t reach either of these conclusions without investigating the situation
more deeply.

in the case of equation 2.6.2, the initial value problem

y′ −
1

t
y = te−t, y(0) = y0 (2.6.8)

has no solution if y0 6= 0. This can be see by substituting in to the differential
equation (we can multiply by t first to get ty′ − y = t2e−t) to get

0y′ − y0 = 02e0. (2.6.9)

The only way this can be true is if y0 = 0. On the other hand, when y0 = 0
the equation has many solutions. This can be seen by simply looking at the
solutions we’ve already found:

y(t) = −te−t + ct = t(c − e−t). (2.6.10)

This satisfies y(0) = 0 for any choice of c.



28 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

2.6.2 Existence and Uniqueness for Nonlinear Differential

Equations

In order to discuss existence and uniqueness in the case of non-linear differ-
ential equations, is is necessary to introduce the idea of partial derivatives.
While there is a great deal that can be said about partial derivatives, this
is all we need to know: it is possible to differentiate a function f of several
variables x1, . . . , xn with respect to one of the variables xi by treating all the
other variables as constants. The result is the partial derivative of f with
respect to xi, written

∂f

∂xi
(2.6.11)

Example 16. If f(x, y) = 2x + 3xy − 4y2 + 5ex2y, then

∂f

∂x
= 2 + 3y − 0 + 10xyex2y (2.6.12)

and
∂f

∂y
= 0 + 3x − 8y + 5x2ex2y. (2.6.13)

Now we can state

Theorem 2 (Existence and Uniqueness for Nonlinear Differential Equa-
tions). Suppose that f(t, y) and ∂f

∂t are continuous in a rectangle R is the
ty-plane defined by α < t < β and γ < y < δ, and that the point (t0, y0) is
in R. Then there is a unique solution y = φ(t) to the initial value problem

y′ = f(t, y), y(t0) = y0 (2.6.14)

defined on some interval (t0 − h, t0 + h), contained in (α, β).

Note that the solution may only be defined on a very small interval. This
is a notable change from the case of linear differential equations. (In fact
the solution will be defined for as long as it remains in the rectangle R. The
problem is that it may leave through the top or bottom very quickly.)

Example 17. Consider the equation

dy

dt
=

1

ty
. (2.6.15)

In this case f(t, y) = 1
ty is discontinuous only along the lines t = 0 and

y = 0. Similarly, ∂f
∂y = − 1

ty2 fails to be continuous only along the lines t = 0
and y = 0.

In this case, if (t0, y0) = (3, 3) for instance, we could choose the rectangle
R to consist of all (t, y) such that 1 < t < 4 and 2 < y < 5. (There are,
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of course, many other possible choices.) Equation 2.6.15 will have a unique
solution satisfying y(3) = 3, and that solution will be defined for at least as
long as it remains in the rectangle R.

Since equation 2.6.15 is separable, we can find solutions by integrating

∫

ydy =

∫

dt

t
(2.6.16)

to get
y2 = ln|t| + c, (2.6.17)

or
y(t) = ±

√

ln|t| + c (2.6.18)

Notice that the solution is not defined at any point along the line t = 0,
and behave strangely (has a vertical asymptote, and two possible solutions
(±)) along the line y = 0.

2.6.3 Implications for Graphs of Solutions

2.7 Lecture 7. Numerical Technique: Euler’s Method


