## 21-124 MODELING WITH DIFFERENTIAL EQUATIONS

## HOMEWORK 4: DUE IN CLASS ON MARCH 12

1. Consider the system

$$rac{dP}{dt} = lpha P \left( 1 - rac{P}{eta} 
ight) - \gamma PQ \ rac{dQ}{dt} = \delta Q \left( 1 - rac{Q}{\epsilon} 
ight) - \zeta PQ$$

where  $\alpha = 2$ ,  $\beta = 7$ ,  $\gamma = 1$ ,  $\delta = 6$ ,  $\epsilon = 9$ ,  $\zeta = 2$ . which represents the growth of two populations of animals (Pigeons and Quails, perhaps).

- (a) What are the assumptions on which this model is based?
- (b) Describe the roll played by each of the parameters. (The six greek letters.)
- (c) How would you describe the interaction of these two populations? Are they competing or cooperating? Is it a predator/prey relationship? Is there some other type of interaction?
- (d) What are the equilibrium points of the system? (Compute them by hand.)
- (e) Use pplane to produce the phase plane for the system. Experiment by plotting a bunch of solutions. How many non-equilibrium solutions can you find? Turn in a printout showing one or two of each type. (Enough to give an idea what is going on, but not so many that it looks crowded and confusing.)
- (f) What does this model predict for the future of these two populations? Does it depend on the initial conditions? If so, How?

2. Consider the system

$$rac{dP}{dt} = lpha P \left( 1 - rac{P}{eta} 
ight) + \gamma PQ \ rac{dQ}{dt} = \delta Q \left( 1 - rac{Q}{\epsilon} 
ight) + \zeta PQ$$

where  $\alpha = 2$ ,  $\beta = 2$ ,  $\gamma = 0.1$ ,  $\delta = 6$ ,  $\epsilon = 3$ ,  $\zeta = 0.2$ . which represents the growth of two populations of animals (Pelicans and Q...?).

- (a) What are the assumptions on which this model is based?
- (b) Describe the roll played by each of the parameters. (The six greek letters.)
- (c) How would you describe the interaction of these two populations? Are they competing or cooperating? Is it a predator/prey relationship? Is there some other type of interaction?
- (d) What are the equilibrium points of the system? (Compute them by hand.)
- (e) Use pplane to produce the phase plane for the system. Experiment by plotting a bunch of solutions. How many non-equilibrium solutions can you find? Turn in a printout showing one or two of each type. (Enough to give an idea what is going on, but not so many that it looks crowded and confusing.)

- (f) What does this model predict for the future of these two populations? Does it depend on the initial conditions? If so, How?
- 3. Consider the system

$$rac{dP}{dt} = 5P\left(1 - rac{P}{2}
ight) - PQ - h \ rac{dF}{dt} = -Q + 2PQ$$

which represents the growth of two populations of animals, one of which preys upon the other. The parameter h represents hunting at a constant rate.

- (a) What are the assumptions on which this model is based? Which is the predator, and which is the prey?
- (b) What are the equilibrium points of the system? (Compute them by hand. Do they depend on h? If so, how?)
- (c) Use pplane to produce the phase plane for the system. Experiment by plotting a bunch of solutions. How many non-equilibrium solutions can you find? Try this for several different values of h between 0 and 0.5. How does changing h affect the equilibrium points?
- (d) Choose two values of h, and turn in a printout for each. The printouts should show several different types of solution.
- (e) What does this model predict for the future of these two populations? Does it depend on the initial conditions? If so, How?
- (f) How can you use this model to explain the increase in the shark population in the Mediteranean Sea during World War II? (Hint: Sharks eat the same fish people do, and naval warfare tends to decrease the size of fishing fleets.)