
Automated reasoning under the theory H∗

(thesis abstract)

Fritz Obermeyer

February 23, 2009

In this thesis I study four extensions of untyped λ-calculi all under the maximally coarse semantics of
the theory H∗ (observable equality), and implement a system for reasoning about and storing abstract
knowledge expressible in languages with these extensions. The extensions are:

(1) a semilattice operation J, the join w.r.t the Scott ordering;
(2) a random mixture R for stochastic λ-calculus;
(3) a computational comonad 〈code, apply, eval, quote, {−}〉 for Gödel codesmodulo provable equality; and
(4) a Π

1

1
-complete oracle O.

I develop three languages from combinations of these extensions. The syntax of these languages is always
simple: each is a finitely generated combinatory algebra. The semantics of these languages are various
fragments of Dana Scott’s Dinfty models. Although the languages use ideas from the theory of computer
programming languages, they have no operational semantics and do not describe programs.

The first language, SKJ , extends combinatory algebra with a join operation, with respect to the information
ordering on terms. I show that an interpretation of types-as-closures reflects from D∞ down to this defin-
able fragment. The main theorem for SKJ is that simple types are definable as closures. The resulting type
theory is very rich (ω-order polymorphism, dependent types, a type-of-types, power-types, quotient types)
but logically unsound (every type is inhabited). However I demonstrate that this type system provides an
expressive interpretation of type-as-symmetry and join-as-ambiguity.

The second language, SKRJ , extends combinatory algebra with a random bit, then with join. I show that
SKRJ provides semantics for a monadic λ-calculus for convex sets of probability distributions (CSPDs).
This follows from our choice of join distributing over randomness –the opposite of what one would expect
from the usual interpretation of join-as-concurrency. I conjecture that a weakened definable-types theorem
also holds in SKRJ , and provide some evidence to this effect. I also show that, in case simple types are
definable, the monadic CSPD types are polymorphic in the simple definable types.

The third language, SKJO , extends combinatory algebra with join, a comonadic type of codes, and a care-
fully defined Π

1

1
-complete oracle, so that exactly the ∆

1

1
-predicates about SKJ -terms are realized as total

terms of type code→ bool. This language is sufficient to represent all of predicative mathematics, and can
thus serve to represent virtually any kind of abstract knowledge. As an example, I formulate the statement
and proof of termination in Gödel’s ⊤ in the language SKJO (and am working towards getting the proof to
formally verify).

The final component of this thesis is a system, Johann, for automated reasoning about equality and order
in the above languages. Johann was used to formally verify many of the theorems in this thesis (and even
conjecture some simple theorems).

1



The general design focus is on efficient knowledge representation, rather than proof search strategies. Jo-
hann maintains a database of all facts about a set of (say 10k) objects, or terms-modulo-equivalence. The
database evolves in time by randomly adding or removing objects. Each time an object is added, the
database is saturated with facts using a forward chaining algorithm.

A specific design goal is to be able to run Johann for long periods of time (weeks) and accumulate useful
knowledge, subject to limitedmemory. This requires statistical analysis of a corpus of interest (e.g. the set of
problems to be verified in this thesis), statistical search for missing equations (from our Σ

0

1
approximation

to a Π
0

2
-complete theory), and careful choice of sampling distributions fromwhich to draw objects to add-to

and remove-from the database. The (add,remove) pair of distributions is chosen to achieve a detailed balance
theorem, so that, at steady state, Johann (provably) remembers simple facts relevant to the corpus.

2


