
Models of Randomness
Part II: random types-as-closures

Fritz Obermeyer

Department of Mathematics
Carnegie-Mellon University

2008:04:15

Notation and concepts

SK = combinatory algebra
SKR = random extension (R = λx, y.x + y)

(note (x + y) + z 6= x + (y + z); really x+y
2

)
SKJ = parallel/ambiguous extension (J = λx, y.x | y)

(some authors write join x | y instead x t y)
SKJR = random+ambiguous extension

All four assume HP-complete observational equivalence:
M v M′ iff ∀N. M N conv =⇒ M′ N conv

where N ranges over traces N1, . . . ,Nk of arguments.

Definable types-as-closures builds on 2007 talk,
http://www.math.cmu.edu/~fho/notes/

http://www.math.cmu.edu/~fho/notes/

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi’s computational monad

Rand : type → type
always : ∀α. α → Rand α
sample : ∀α, β. Rand α → (α → Rand β) → Rand β

In which applied λ-calculus should we look?
extend SK to randomized SKR.

Is Rand compatible with types-as-closures?
extend SK to random lattice SKJR.
look for “small” definable subspaces.

Abstract probability algebras
Start with a dcpo with ⊥.
Consider initial “R-algebra” with binary mixing x + y
subject to monotonicity and

x + x = x idempotence
x + y = y + x commutativity
(w + x) + (y + z) = (w + z) + (y + x) associativity

I equivalent to arbitrary real mixing (in dcpo)
I equivalent to valuations

Compare with initial join-semilattice (“J-algebra”)

x | x = x
x | y = y | x
x | (y | x) = (x | y) | z

Extending SK to SKR

Start with untyped combinatory algebra SK.
Extend to R-algebra with right-distributivity

(f + g)x = (f x) + (g x)

SKR is randomized Turing-complete.

Consider the curry type system

x :α ` M :β

λx.M :α→β

M :α→β N :α

M N :β

M,N :Rand α

M + N :Rand α

and embed SK into SKR via always = λx.x :∀α.α→Rand α.
How to sample, raising α→Rand β to Rand α→Rand β?

Sampling booleans
Introduce K = λx, y.x, F = λx, y.y with typing

K :bool F :bool

M :bool N,N′ :α

M N N′ :α

We can sample with

samplebool = λp, f. p (f K) (f F)

Letting, e.g.,

amb := λx. x (x K F) (x F K) ambiguity
R := K + F, even coin toss

note the difference between

amb R = K + F random
samplebool x from R in amb x ...sugar for

= samplebool R λx. amb x
= K deterministic

Sampling natural numbers

Let zero = λ , x.x, succ = λn, f, x. f(n f x) with typing

zero :nat succ :nat→nat

n :nat s :α→α z :α

n s z :α

and sample with

samplenat = λp, f. p (f◦succ) (f zero)

then lift succ :nat→nat to succ′ :Rand nat→Rand nat

succ′ = λp. samplenat p succ

Moral Church terms are already monadic

Sampling partial terms

General method for defining sampleα p f:

I enumerate domain α
I apply f to each x :α
I case-branch on x based on p

Method doesn’t yet work for partial terms,
e.g. infinite domains, functions.

Method works if directed joins are definable,
e.g. in lattice models with randomness...

...but first look at typing in lattice models.

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join “SKJ”,

I v α = α◦α extensive, idempotent

and the fixedpoint property x :α iff x = α x.
Typechecking becomes an equational problem.
Typing can be enforced at the term level:

e.g. (bool x) will be “boolean” for any x.
But we get extra “garbage” inhabitants, e.g.

inhab(bool) = {⊥,K,F,>}

To minimize garbage, look for closures with small ranges.

Defining closures

How can we define closures?

General idea: join represents ambiguity.
When expecting a bool x, squint

(join over all ways of looking at x).
Only booleans remain unblurred,

all else blurs to >=complete ambiguity.

Specifically: argue about action on Bohm trees.

What types are definable?
unit, bool, nat, Prod, Sum, Exp, recursive,
polymorphic, dependent, subtypes, type-of-types

(see 2007 talk on definable closures for details)

A lattice with randomness

Seeking a random monad in a lattice model,
consider the free JR-algebra over SK, where

application right-distributes over both

(f | g)x = f x | g x
(f + g)x = f x + g x

Call R-terms mixtures, J-terms joins,
RJ-terms slurries, e.g. w | (x + (y | z))

Application right-distributes over slurries,
but RJ distributivity fails,
so slurries can be infinitely deep.

JR-Bohm-trees

JR-Bohm trees are defined by

x var M1, . . . ,Mk BT

x M1 . . . Mk BT

x var M BT

λx.M BT

M Set(BT)⊔
M BT

M Prob(BT)∫
M BT

Theorem

Every SKJR-term is equivalent to a slurry of BTs.

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

(x + y) | z = (x | z) + (y | z)

but distributivity fails in SKJR, e.g.

(I | ⊥+>) (⊥+>)
= ⊥+> | ⊥+> = ⊥+>

((I | ⊥) + (I | >)) (⊥+>)
= I(⊥+>) +>(⊥+>) = (⊥+>) +>

We can still sample, but never in parallel, inside joins.
So we’ll require R-normal forms for “nice” inhabitants.
For example...

Random convergence/divergence
The smallest nontrivial closure is

div := λx. x | x > | x > > | x > > > | . . .
Theorem

In SKJ, inhab(div) = {⊥,>}.

Since {⊥,>} is the two-point lattice,
we get R-normal forms for div, and thus

Theorem

In SKJR, inhab(div) = {⊥@t +>@(1−t) | t ∈ [0, 1]}.

Convergence in SKJR is probabilistic;
observational information ordering is defined by

M v M′ iff ∀trace N. conv(M N) ≤ conv(M′ N).

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.

In SKJ, some nontrivial ranges are finite,
e.g., | rng(>) |= 1, | rng(div) |= 2

| rng(semi) |= 3, . . . ΛPAUSE In

SKJR, all nontrivial ranges are infinite,
but some are finite dimensional,
e.g., dim(rng(>)) = 0, dim(rng(div)) = 1.

Question What is the spectrum of dimensions?

Known At least {0, 1, 2ℵ0}.

Are there less trivial types?
In SKJ we can define types boool and semi with

inhab(boool) = {⊥,K,F,J,>}
inhab(semi) = {⊥, I,>}

and disambiguate λx.x(x K >)(x > F) :boool→bool,

inhab(bool) = {⊥,K,F,>}

Similarly in SKJR we can define semi, bool with inhabitants
slurries of {⊥, I,>} and {⊥,K,F,>}.

The Slurryα, sampleα, alwaysα monad exists for many types:
bool, nat, Prod, Sum, Exp, recursive. (not obvious)

But slurries aren’t “nice”:
no R-normal forms, no sampling semantics.

Can we disambiguate to finite dimensional mixtures,
without determinizing? (unknown)

Mixtures of semibooleans
The space of ⊥, I,>-mixtures is 2-dimensional:

I

T

above

below

incomp. incomp.

T

Slurries of semibooleans

Theorem

⊥, I,>-slurries are completely characterized
by their action on the unit interval [⊥,>].

We thus have JR-isomorphism with the
monotone convex functions : [0, 1]→ [0, 1].

This space has dimension 2ℵ0.
Can we raise to a finite-dimensional subspace?

A 1-dimensional subspace
Try raising with Vλx.x x and then Vλx.x | I:

I

T

V\x.x x\x.x|I

T

A 1-dimensional subspace
Try raising with Vλx.x x and then Vλx.x | I:

Range is 1-dimensional,
almost has R-n.f. (binary join of mixtures)
but arguably useless...

The closure Vλx.x x is more useful
but has infinite dimensional range.

Mixtures of booleans

In SKJ, inhab(boool) = {⊥, K, F, J = K | F, >};
a “disambiguation” trick then raises J to >
yielding inhab(bool) = {⊥,K,F,>}.

In SKJR, disambiguation interferes with randomness,
and we’re stuck with ⊥,K,F,J,>-mixtures.

⊥,K,F,J,>-mixtures are 5-dimensional.
Cumulative distribution functions yield a model:

{ (b, k, f, j, t) ∈ [0, 1]5

| k ≥ b, f ≥ b, j + b ≥ k + f, t ≥ j }

partially ordered componentwise.

Slurries of booleans

Theorem

⊥,K,F,>-slurries are completely characterized
by their action on two arguments in unit interval [⊥,>].

We thus have JR-isomorphism with the
monotone convex functions : [0, 1]2→ [0, 1].

Can we raise to a finite-dimensional subspace?
Want to raise to a linear upper bound.

We can raise ⊥,K,F,>-slurries with λx.x x x.
and partially disambiguate with λx.x(x K >)(x > F).
???

Problems with SKJR

Problem Disambiguation fails:
even if we can raise slurries to mixtures,
random samples may be ambiguous.

Unambiguity can be checked equationally,
but not enforced at the term level.

Problem Lower-bounding fails:
without distributivity, we can’t raise e.g.
⊥+> to I +>.

Adding parallelism allows lower-bounding,
but then requires sequentialization...

	Probabilistic combinatory algebra
	Definable closures with randomness
	Characterizing subspaces
	Other directions

