Models of Randomness

Part II: random types-as-closures

Fritz Obermeyer

Department of Mathematics
Carnegie-Mellon University

2008:04:15

Notation and concepts

SK = combinatory algebra
SKR $=$ random extension $(R=\lambda x, y \cdot x+y)$
(note $(\mathrm{x}+\mathrm{y})+\mathrm{z} \neq \mathrm{x}+(\mathrm{y}+\mathrm{z})$; really $\frac{x+y}{2}$)
SKJ $=$ parallel/ambiguous extension $(\mathbf{J}=\lambda \mathrm{x}, \mathrm{y} \cdot \mathrm{x} \mid \mathrm{y})$
(some authors write join $\mathrm{x} \mid \mathrm{y}$ instead $\mathrm{x} \sqcup \mathrm{y}$)
SKJR $=$ random + ambiguous extension
All four assume HP-complete observational equivalence:
$\mathrm{M} \sqsubseteq \mathrm{M}^{\prime}$ iff $\forall \underline{\mathrm{N}} . \mathrm{M} \underline{\mathrm{N}}$ conv $\Longrightarrow \mathrm{M}^{\prime} \underline{\mathrm{N}}$ conv where $\underline{\mathrm{N}}$ ranges over traces $\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{k}}$ of arguments.

Definable types-as-closures builds on 2007 talk, http://www.math.cmu.edu/~fho/notes/

Goal: a probability monad

In a curry type system in applied λ-calculi

Goal: a probability monad

In a curry type system in applied λ-calculi (where types are properties of untyped terms),

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad
Rand : type \rightarrow type

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad
Rand : type \rightarrow type
always : $\forall \alpha . \alpha \rightarrow$ Rand α

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad

```
Rand : type \(\rightarrow\) type
always: \(\forall \alpha . \alpha \rightarrow\) Rand \(\alpha\)
sample : \(\forall \alpha, \beta\). Rand \(\alpha \rightarrow(\alpha \rightarrow\) Rand \(\beta) \rightarrow\) Rand \(\beta\)
```


Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad

> Rand : type \rightarrow type
> always : $\forall \alpha . \alpha \rightarrow$ Rand α
> sample $: \forall \alpha, \beta$. Rand $\alpha \rightarrow(\alpha \rightarrow$ Rand $\beta) \rightarrow$ Rand β

In which applied λ-calculus should we look?

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad

```
Rand : type \(\rightarrow\) type
always: \(\forall \alpha . \alpha \rightarrow\) Rand \(\alpha\)
sample : \(\forall \alpha, \beta\). Rand \(\alpha \rightarrow(\alpha \rightarrow\) Rand \(\beta) \rightarrow\) Rand \(\beta\)
```

In which applied λ-calculus should we look? extend SK to randomized SKR.

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad

> Rand : type \rightarrow type
> always : $\forall \alpha . \alpha \rightarrow$ Rand α
> sample $: \forall \alpha, \beta$. Rand $\alpha \rightarrow(\alpha \rightarrow$ Rand $\beta) \rightarrow$ Rand β

In which applied λ-calculus should we look?
extend SK to randomized SKR.
Is Rand compatible with types-as-closures?

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad

> Rand : type \rightarrow type
> always : $\forall \alpha . \alpha \rightarrow$ Rand α
> sample $: \forall \alpha, \beta$. Rand $\alpha \rightarrow(\alpha \rightarrow$ Rand $\beta) \rightarrow$ Rand β

In which applied λ-calculus should we look? extend SK to randomized SKR.
Is Rand compatible with types-as-closures?
extend SK to random lattice SKJR.

Goal: a probability monad

In a curry type system in applied λ-calculi
(where types are properties of untyped terms),
we seek an instance of Moggi's computational monad

> Rand : type \rightarrow type
> always : $\forall \alpha \cdot \alpha \rightarrow$ Rand α
> sample $: \forall \alpha, \beta$. Rand $\alpha \rightarrow(\alpha \rightarrow$ Rand $\beta) \rightarrow$ Rand β

In which applied λ-calculus should we look? extend SK to randomized SKR.
Is Rand compatible with types-as-closures?
extend SK to random lattice SKJR. look for "small" definable subspaces.

Abstract probability algebras

Start with a dcpo with \perp.

Abstract probability algebras

Start with a dcpo with \perp.
Consider initial "R-algebra" with binary mixing $x+y$

Abstract probability algebras

Start with a dcpo with \perp.
Consider initial "R-algebra" with binary mixing $x+y$ subject to monotonicity and

$$
\begin{array}{ll}
\mathrm{x}+\mathrm{x}=\mathrm{x} & \text { idempotence } \\
\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x} & \text { commutativity } \\
(\mathrm{w}+\mathrm{x})+(\mathrm{y}+\mathrm{z})=(\mathrm{w}+\mathrm{z})+(\mathrm{y}+\mathrm{x}) & \text { associativity }
\end{array}
$$

Abstract probability algebras

Start with a dcpo with \perp.
Consider initial "R-algebra" with binary mixing $x+y$ subject to monotonicity and

$$
\begin{array}{ll}
\mathrm{x}+\mathrm{x}=\mathrm{x} & \text { idempotence } \\
\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x} & \text { commutativity } \\
(\mathrm{w}+\mathrm{x})+(\mathrm{y}+\mathrm{z})=(\mathrm{w}+\mathrm{z})+(\mathrm{y}+\mathrm{x}) & \text { associativity }
\end{array}
$$

- equivalent to arbitrary real mixing (in dcpo)

Abstract probability algebras

Start with a dcpo with \perp.
Consider initial "R-algebra" with binary mixing $x+y$ subject to monotonicity and

$$
\begin{array}{ll}
x+x=x & \text { idempotence } \\
x+y=y+x & \text { commutativity } \\
(w+x)+(y+z)=(w+z)+(y+x) & \text { associativity }
\end{array}
$$

- equivalent to arbitrary real mixing (in dcpo)
- equivalent to valuations

Abstract probability algebras

Start with a dcpo with \perp.
Consider initial "R-algebra" with binary mixing $x+y$ subject to monotonicity and

$$
\begin{array}{ll}
x+x=x & \text { idempotence } \\
x+y=y+x & \text { commutativity } \\
(w+x)+(y+z)=(w+z)+(y+x) & \text { associativity }
\end{array}
$$

- equivalent to arbitrary real mixing (in dcpo)
- equivalent to valuations

Compare with initial join-semilattice ("J-algebra")

$$
\begin{aligned}
& x \mid x=x \\
& x|y=y| x \\
& x|(y \mid x)=(x \mid y)| z
\end{aligned}
$$

Extending SK to SKR

Start with untyped combinatory algebra SK.

Extending SK to SKR

Start with untyped combinatory algebra SK. Extend to R-algebra with right-distributivity

$$
(f+g) x=(f x)+(g x)
$$

Extending SK to SKR

Start with untyped combinatory algebra SK. Extend to R-algebra with right-distributivity

$$
(\mathrm{f}+\mathrm{g}) \mathrm{x}=(\mathrm{f} x)+(\mathrm{g} \mathrm{x})
$$

SKR is randomized Turing-complete.

Extending SK to SKR

Start with untyped combinatory algebra SK. Extend to R-algebra with right-distributivity

$$
(\mathrm{f}+\mathrm{g}) \mathrm{x}=(\mathrm{f} \mathrm{x})+(\mathrm{g} \mathrm{x})
$$

SKR is randomized Turing-complete.
Consider the curry type system

$$
\frac{\mathrm{x}: \alpha \vdash \mathrm{M}: \beta}{\lambda \mathrm{x} \cdot \mathrm{M}: \alpha \rightarrow \beta} \quad \frac{\mathrm{M}: \alpha \rightarrow \beta}{\mathrm{M} \mathrm{~N}: \beta}
$$

Extending SK to SKR

Start with untyped combinatory algebra SK. Extend to R-algebra with right-distributivity

$$
(f+g) x=(f x)+(g \times)
$$

SKR is randomized Turing-complete.
Consider the curry type system
$\frac{\mathrm{x}: \alpha \vdash \mathrm{M}: \beta}{\lambda \mathrm{x} \cdot \mathrm{M}: \alpha \rightarrow \beta} \quad \frac{\mathrm{M}: \alpha \rightarrow \beta \quad \mathrm{N}: \alpha}{\mathrm{M} \mathrm{N}: \beta} \quad \frac{\mathrm{M}, \mathrm{N}: \operatorname{Rand} \alpha}{\mathrm{M}+\mathrm{N}: \operatorname{Rand} \alpha}$

Extending SK to SKR

Start with untyped combinatory algebra SK.
Extend to R-algebra with right-distributivity

$$
(\mathrm{f}+\mathrm{g}) \mathrm{x}=(\mathrm{f} \mathrm{x})+(\mathrm{g} \mathrm{x})
$$

SKR is randomized Turing-complete.
Consider the curry type system
$\frac{\mathrm{x}: \alpha \vdash \mathrm{M}: \beta}{\lambda \mathrm{x} \cdot \mathrm{M}: \alpha \rightarrow \beta} \quad \frac{\mathrm{M}: \alpha \rightarrow \beta \quad \mathrm{N}: \alpha}{\mathrm{M} \mathrm{N}: \beta} \quad \frac{\mathrm{M}, \mathrm{N}: \text { Rand } \alpha}{\mathrm{M}+\mathrm{N}: \text { Rand } \alpha}$
and embed SK into SKR via always $=\lambda \mathrm{x} . \mathrm{x}: \forall \alpha . \alpha \rightarrow \operatorname{Rand} \alpha$.

Extending SK to SKR

Start with untyped combinatory algebra SK.
Extend to R-algebra with right-distributivity

$$
(\mathrm{f}+\mathrm{g}) \mathrm{x}=(\mathrm{f} x)+(\mathrm{g} \mathrm{x})
$$

SKR is randomized Turing-complete.
Consider the curry type system
$\frac{\mathrm{x}: \alpha \vdash \mathrm{M}: \beta}{\lambda \mathrm{x} \cdot \mathrm{M}: \alpha \rightarrow \beta} \quad \frac{\mathrm{M}: \alpha \rightarrow \beta \quad \mathrm{N}: \alpha}{\mathrm{M} \mathrm{N}: \beta} \quad \frac{\mathrm{M}, \mathrm{N}: \text { Rand } \alpha}{\mathrm{M}+\mathrm{N}: \text { Rand } \alpha}$
and embed SK into SKR via always $=\lambda \mathrm{x} . \mathrm{x}: \forall \alpha . \alpha \rightarrow \operatorname{Rand} \alpha$. How to sample, raising $\alpha \rightarrow$ Rand β to Rand $\alpha \rightarrow \operatorname{Rand} \beta$?

Sampling booleans

Introduce $\mathbf{K}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}, \mathbf{F}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{y}$ with typing
$\overline{\mathbf{K}: \text { bool }} \quad \overline{\mathbf{F}: \text { bool }} \quad \frac{\mathrm{M}: \text { bool } \mathrm{N}, \mathrm{N}^{\prime}: \alpha}{\mathrm{M} \mathrm{N} \mathrm{N}: \alpha}$

Sampling booleans

Introduce $\mathbf{K}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}, \mathbf{F}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{y}$ with typing
$\overline{\mathbf{K}: \text { bool }} \quad \overline{\mathbf{F}: \text { bool }} \quad \frac{\mathrm{M}: \text { bool } \mathrm{N}, \mathrm{N}^{\prime}: \alpha}{\mathrm{M} \mathrm{N} \mathrm{N}}$

We can sample with

$$
\text { sample }_{\text {bool }}=\lambda p, f . p(f \mathbf{K})(f \mathbf{F})
$$

Sampling booleans

Introduce $\mathbf{K}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}, \mathbf{F}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{y}$ with typing
$\overline{\mathbf{K}: \text { bool }} \quad \overline{\mathbf{F}: \text { bool }} \quad \frac{\mathrm{M}: \text { bool } \mathrm{N}, \mathrm{N}^{\prime}: \alpha}{\mathrm{M} \mathrm{N} \mathrm{N}}$

We can sample with

$$
\text { sample }_{\text {bool }}=\lambda \mathrm{p}, \mathrm{f} . \mathrm{p}(\mathrm{f} \mathbf{K})(\mathrm{f} \mathbf{F})
$$

Letting, e.g.,

$$
\begin{array}{ll}
\mathrm{amb}:=\lambda \times \times(\times \mathbf{K} \mathbf{F})(\times \mathbf{F} \mathbf{K}) & \text { ambiguity } \\
\mathrm{R}:=\mathbf{K}+\mathbf{F}, & \text { even coin toss }
\end{array}
$$

note the difference between
amb R

Sampling booleans

Introduce $\mathbf{K}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}, \mathbf{F}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{y}$ with typing
$\overline{\mathbf{K}: \text { bool }} \quad \overline{\mathbf{F}: \text { bool }} \quad \frac{\mathrm{M}: \text { bool } \mathrm{N}, \mathrm{N}^{\prime}: \alpha}{\mathrm{M} \mathrm{N} \mathrm{N}}$

We can sample with

$$
\text { sample }_{\text {bool }}=\lambda p, f . p(f \mathbf{K})(f \mathbf{F})
$$

Letting, e.g.,

$$
\begin{array}{ll}
\mathrm{amb}:=\lambda \times \times(\times \mathbf{K} \mathbf{F})(\times \mathbf{F} \mathbf{K}) & \text { ambiguity } \\
\mathrm{R}:=\mathbf{K}+\mathbf{F}, & \text { even coin toss }
\end{array}
$$

note the difference between
amb $\mathbf{R}=\mathbf{K}+\mathbf{F}$

Sampling booleans

Introduce $\mathbf{K}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}, \mathbf{F}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{y}$ with typing
$\overline{\mathbf{K}: \text { bool }} \quad \overline{\mathbf{F}: \text { bool }} \quad \frac{\mathrm{M}: \text { bool } \mathrm{N}, \mathrm{N}^{\prime}: \alpha}{\mathrm{M} \mathrm{N} \mathrm{N}}$

We can sample with

$$
\text { sample }_{\text {bool }}=\lambda \mathrm{p}, \mathrm{f} . \mathrm{p}(\mathrm{f} \mathbf{K})(\mathrm{f} \mathbf{F})
$$

Letting, e.g.,

$$
\begin{array}{ll}
\mathrm{amb}:=\lambda \times \times(\times \mathbf{K} \mathbf{F})(\times \mathbf{F} \mathbf{K}) & \text { ambiguity } \\
\mathrm{R}:=\mathbf{K}+\mathbf{F}, & \text { even coin toss }
\end{array}
$$

note the difference between
amb $\mathbf{R}=\mathbf{K}+\mathbf{F}$
sample $_{\text {bool }} \times$ from R in $a m b \times$
random
...sugar for

Sampling booleans

Introduce $\mathbf{K}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}, \mathbf{F}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{y}$ with typing
$\overline{\mathbf{K}: \text { bool }} \quad \overline{\mathbf{F}: \text { bool }} \quad \frac{\mathrm{M}: \text { bool } \mathrm{N}, \mathrm{N}^{\prime}: \alpha}{\mathrm{M} \mathrm{N} \mathrm{N}}$

We can sample with

$$
\text { sample }_{\text {bool }}=\lambda \mathrm{p}, \mathrm{f} . \mathrm{p}(\mathrm{f} \mathbf{K})(\mathrm{f} \mathbf{F})
$$

Letting, e.g.,

$$
\begin{array}{ll}
\mathrm{amb}:=\lambda \times \times(\times \mathbf{K} \mathbf{F})(\times \mathbf{F} \mathbf{K}) & \text { ambiguity } \\
\mathrm{R}:=\mathbf{K}+\mathbf{F}, & \text { even coin toss }
\end{array}
$$

note the difference between
amb $\mathbf{R}=\mathbf{K}+\mathbf{F}$
sample $_{\text {bool }} \times$ from R in $a m b x$
$=$ sample $_{\text {bool }} R \lambda x$. amb x
random
...sugar for

Sampling booleans

Introduce $\mathbf{K}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}, \mathbf{F}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{y}$ with typing
$\overline{\mathbf{K}: \text { bool }} \quad \overline{\mathbf{F}: \text { bool }} \quad \frac{\mathrm{M}: \text { bool } \mathrm{N}, \mathrm{N}^{\prime}: \alpha}{\mathrm{M} \mathrm{N} \mathrm{N} \mathrm{N}^{\prime}: \alpha}$

We can sample with

$$
\text { sample }_{\text {bool }}=\lambda p, f . p(f \mathbf{K})(f \mathbf{F})
$$

Letting, e.g.,

$$
\begin{array}{ll}
\mathrm{amb}:=\lambda \times \times(\times \mathbf{K} \mathbf{F})(\times \mathbf{F} \mathbf{K}) & \text { ambiguity } \\
\mathrm{R}:=\mathbf{K}+\mathbf{F}, & \text { even coin toss }
\end{array}
$$

note the difference between
amb $\mathbf{R}=\mathbf{K}+\mathbf{F}$
sample $_{\text {bool }} \times$ from R in $a m b x$
$=$ sample $_{\text {bool }} R \lambda x$. amb x
$=\mathrm{K}$
random
...sugar for
deterministic

Sampling natural numbers

Let zero $=\lambda_{-}, x . x$, succ $=\lambda n, f, x . f(n f x)$ with typing
$\overline{\text { zero: nat }} \quad \overline{\text { succ:nat } \rightarrow \text { nat }} \quad \frac{\mathrm{n}: \text { nat }}{} \quad \mathrm{s}: \alpha \rightarrow \alpha \quad \mathrm{z}: \alpha$

Sampling natural numbers

Let zero $=\lambda_{-}, x . x$, succ $=\lambda n, f, x . f(n f x)$ with typing

$\overline{\text { zero: nat }} \overline{\text { succ: nat } \rightarrow \text { nat }} \quad$| $\mathrm{n}:$ nat $\mathrm{s}: \alpha \rightarrow \alpha \quad \mathrm{z}: \alpha$ |
| :--- | :--- | :--- |
| and sample with |

n s $\mathrm{z}: \alpha$

$$
\text { sample }_{\text {nat }}=\lambda \mathrm{p}, \mathrm{f} . \mathrm{p} \text { (fosucc) }(\mathrm{f} \text { zero })
$$

Sampling natural numbers

Let zero $=\lambda_{-}, x \cdot x$, succ $=\lambda n, f, x . f(n f x)$ with typing
$\overline{\text { zero: nat }} \overline{\text { succ: nat } \rightarrow \text { nat }} \quad \frac{\mathrm{n}: \text { nat }}{} \quad \mathrm{s}: \alpha \rightarrow \alpha \quad \mathrm{z}: \alpha$
and sample with

$$
\text { sample }_{\text {nat }}=\lambda \mathrm{p}, \mathrm{f} . \mathrm{p} \text { (fosucc) }(\mathrm{f} \text { zero })
$$

then lift succ: nat \rightarrow nat to succ' $:$ Rand nat \rightarrow Rand nat

$$
\operatorname{succ}^{\prime}=\lambda \mathrm{p} . \text { sample }_{\text {nat }} \mathrm{p} \text { succ }
$$

Sampling natural numbers

Let zero $=\lambda_{-}, x . x$, succ $=\lambda n, f, x . f(n f x)$ with typing
$\overline{\text { zero: nat }} \overline{\text { succ: nat } \rightarrow \text { nat }} \quad \frac{\mathrm{n}: \text { nat }}{} \quad \mathrm{s}: \alpha \rightarrow \alpha \quad \mathrm{z}: \alpha$
and sample with
sample $_{\text {nat }}=\lambda p, f . p(f o s u c c)(f$ zero $)$
then lift succ: nat \rightarrow nat to succ' $:$ Rand nat \rightarrow Rand nat succ $^{\prime}=\lambda$ p. sample ${ }_{\text {nat }}$ p succ

Moral Church terms are already monadic

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α
- apply f to each $\mathrm{x}: \alpha$

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α
- apply f to each $\mathrm{x}: \alpha$
- case-branch on x based on p

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α
- apply f to each $\mathrm{x}: \alpha$
- case-branch on x based on p

Method doesn't yet work for partial terms,

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α
- apply f to each $\mathrm{x}: \alpha$
- case-branch on x based on p

Method doesn't yet work for partial terms, e.g. infinite domains, functions.

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α
- apply f to each $\mathrm{x}: \alpha$
- case-branch on x based on p

Method doesn't yet work for partial terms, e.g. infinite domains, functions.

Method works if directed joins are definable,

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α
- apply f to each $\mathrm{x}: \alpha$
- case-branch on x based on p

Method doesn't yet work for partial terms, e.g. infinite domains, functions.

Method works if directed joins are definable, e.g. in lattice models with randomness...

Sampling partial terms

General method for defining sample ${ }_{\alpha} \mathrm{p}$ f:

- enumerate domain α
- apply f to each $\mathrm{x}: \alpha$
- case-branch on x based on p

Method doesn't yet work for partial terms, e.g. infinite domains, functions.

Method works if directed joins are definable, e.g. in lattice models with randomness...
...but first look at typing in lattice models.

Types-as-closures

Curry-types are properties of untyped terms.

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join "SKJ",
$\mathbf{I} \sqsubseteq \alpha=\alpha \circ \alpha \quad$ extensive, idempotent

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join "SKJ",
$\mathbf{I} \sqsubseteq \alpha=\alpha \circ \alpha \quad$ extensive, idempotent and the fixedpoint property $\mathrm{x}: \alpha$ iff $\mathrm{x}=\alpha \mathrm{x}$.

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join "SKJ",
$\mathbf{I} \sqsubseteq \alpha=\alpha \circ \alpha \quad$ extensive, idempotent
and the fixedpoint property $\mathrm{x}: \alpha$ iff $\mathrm{x}=\alpha \mathrm{x}$.
Typechecking becomes an equational problem.

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join "SKJ",
$\mathbf{I} \sqsubseteq \alpha=\alpha \circ \alpha \quad$ extensive, idempotent
and the fixedpoint property $\mathrm{x}: \alpha$ iff $\mathrm{x}=\alpha \mathrm{x}$.
Typechecking becomes an equational problem.
Typing can be enforced at the term level:
e.g. (bool x) will be "boolean" for any x.

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join "SKJ",
$\mathbf{I} \sqsubseteq \alpha=\alpha \circ \alpha \quad$ extensive, idempotent
and the fixedpoint property $\mathrm{x}: \alpha$ iff $\mathrm{x}=\alpha \mathrm{x}$.
Typechecking becomes an equational problem.
Typing can be enforced at the term level:
e.g. (bool x) will be "boolean" for any x.

But we get extra "garbage" inhabitants,

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join "SKJ",

$$
\mathbf{I} \sqsubseteq \alpha=\alpha \circ \alpha \quad \text { extensive, idempotent }
$$

and the fixedpoint property $\mathrm{x}: \alpha$ iff $\mathrm{x}=\alpha \mathrm{x}$.
Typechecking becomes an equational problem.
Typing can be enforced at the term level:
e.g. (bool x) will be "boolean" for any x.

But we get extra "garbage" inhabitants, e.g.

$$
\text { inhab }(\text { bool })=\{\perp, \mathbf{K}, \mathbf{F}, \top\}
$$

Types-as-closures

Curry-types are properties of untyped terms.
Consider closures in combinatory algebra with join "SKJ",

$$
\mathbf{I} \sqsubseteq \alpha=\alpha \circ \alpha \quad \text { extensive, idempotent }
$$

and the fixedpoint property $\mathrm{x}: \alpha$ iff $\mathrm{x}=\alpha \mathrm{x}$.
Typechecking becomes an equational problem.
Typing can be enforced at the term level:
e.g. (bool x) will be "boolean" for any x.

But we get extra "garbage" inhabitants, e.g.
inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$
To minimize garbage, look for closures with small ranges.

Defining closures

How can we define closures?

Defining closures

How can we define closures?
General idea: join represents ambiguity.

Defining closures

How can we define closures?
General idea: join represents ambiguity. When expecting a bool x, squint

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.
Specifically: argue about action on Bohm trees.

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $\top=$ complete ambiguity.
Specifically: argue about action on Bohm trees.
What types are definable?

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.
Specifically: argue about action on Bohm trees.
What types are definable?
unit, bool, nat,

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.
Specifically: argue about action on Bohm trees.
What types are definable?
unit, bool, nat, Prod, Sum, Exp,

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.
Specifically: argue about action on Bohm trees.
What types are definable?
unit, bool, nat, Prod, Sum, Exp, recursive,

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.
Specifically: argue about action on Bohm trees.
What types are definable?
unit, bool, nat, Prod, Sum, Exp, recursive, polymorphic, dependent,

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.
Specifically: argue about action on Bohm trees.
What types are definable?
unit, bool, nat, Prod, Sum, Exp, recursive, polymorphic, dependent, subtypes, type-of-types

Defining closures

How can we define closures?
General idea: join represents ambiguity.
When expecting a bool x, squint
(join over all ways of looking at x).
Only booleans remain unblurred,
all else blurs to $T=$ complete ambiguity.
Specifically: argue about action on Bohm trees.
What types are definable?
unit, bool, nat, Prod, Sum, Exp, recursive, polymorphic, dependent, subtypes, type-of-types
(see 2007 talk on definable closures for details)

A lattice with randomness

Seeking a random monad in a lattice model, consider the free JR-algebra over SK, where application right-distributes over both
$(f \mid g) x=f x \mid g x$
$(f+g) x=f x+g x$
Call R-terms mixtures,

A lattice with randomness

Seeking a random monad in a lattice model, consider the free JR-algebra over SK, where application right-distributes over both
(f|g) $\mathrm{x}=\mathrm{f} \times \mathrm{f} \mid \mathrm{g} \mathrm{x}$
$(\mathrm{f}+\mathrm{g}) \mathrm{x}=\mathrm{f} \mathrm{x}+\mathrm{g} \mathrm{x}$
Call R-terms mixtures, J-terms joins,

A lattice with randomness

Seeking a random monad in a lattice model, consider the free JR-algebra over SK, where application right-distributes over both

$$
\begin{aligned}
& (f \mid g) x=f \times \mid g x \\
& (f+g) x=f x+g x
\end{aligned}
$$

Call R-terms mixtures, J-terms joins, RJ-terms slurries, e.g. w| $\mathrm{x}+(\mathrm{y} \mid \mathrm{z})$)

A lattice with randomness

Seeking a random monad in a lattice model, consider the free JR-algebra over SK, where application right-distributes over both
($\mathrm{f} \mid \mathrm{g}$) $\mathrm{x}=\mathrm{f} \times \mathrm{f} \mid \mathrm{g} \mathrm{x}$
$(f+g) x=f x+g x$
Call R-terms mixtures, J-terms joins,
RJ-terms slurries, e.g. w| $\mathrm{x}+(\mathrm{y} \mid \mathrm{z})$)
Application right-distributes over slurries,

A lattice with randomness

Seeking a random monad in a lattice model, consider the free JR-algebra over SK, where application right-distributes over both
($\mathrm{f} \mid \mathrm{g}$) $\mathrm{x}=\mathrm{f} \times \mathrm{f} \mid \mathrm{g} \mathrm{x}$
$(f+g) x=f x+g x$
Call R-terms mixtures, J-terms joins,
RJ-terms slurries, e.g. w| $(x+(y \mid z))$
Application right-distributes over slurries, but RJ distributivity fails,

A lattice with randomness

Seeking a random monad in a lattice model, consider the free JR-algebra over SK, where application right-distributes over both
($\mathrm{f} \mid \mathrm{g}$) $\mathrm{x}=\mathrm{f} \times \mathrm{f} \mid \mathrm{g} \mathrm{x}$
$(f+g) x=f x+g x$
Call R-terms mixtures, J-terms joins,
RJ-terms slurries, e.g. w| $(x+(y \mid z))$
Application right-distributes over slurries, but RJ distributivity fails, so slurries can be infinitely deep.

JR-Bohm-trees

JR-Bohm trees are defined by

$$
\frac{x \operatorname{var} M_{1}, \ldots, M_{k} B T}{x M_{1} \ldots M_{k} B T} \quad \frac{x \operatorname{var} \quad M B T}{\lambda x . M B T}
$$

JR-Bohm-trees

JR-Bohm trees are defined by

$\frac{M \operatorname{Set}(B T)}{\square \underline{M} B T}$
$\frac{M \operatorname{Prob}(B T)}{\int \underline{M} B T}$

JR-Bohm-trees

JR-Bohm trees are defined by

$\frac{M \operatorname{Set}(\mathrm{BT})}{\bigsqcup \underline{M} B T}$

Theorem
Every SKJR-term is equivalent to a slurry of BTs.

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.
$(\mathbf{I} \mid \perp+\top)(\perp+\top)$

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.

$$
\begin{aligned}
& (\mathbf{I} \mid \perp+\top)(\perp+\top) \\
& \quad=\perp+\top \mid \perp+\top
\end{aligned}
$$

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.

$$
\begin{aligned}
& (\mathbf{I} \mid \perp+\top)(\perp+\top) \\
& \quad=\perp+\top \mid \perp+\top=\perp+\top
\end{aligned}
$$

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.
$(\mathbf{I} \mid \perp+\top)(\perp+\top)$

$$
=\perp+\top \mid \perp+\top=\perp+\top
$$

$$
((\mathbf{I} \mid \perp)+(\mathbf{I} \mid \top))(\perp+\top)
$$

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.

$$
\begin{aligned}
& (\mathbf{I} \mid \perp+\top)(\perp+\top) \\
& \quad=\perp+\top \mid \perp+\top=\perp+\top \\
& ((\mathbf{I} \mid \perp)+(\mathbf{I} \mid \top))(\perp+\top) \\
& \quad=\mathbf{I}(\perp+\top)+\top(\perp+\top)
\end{aligned}
$$

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.

$$
\begin{aligned}
& (\mathbf{I} \mid \perp+\top)(\perp+\top) \\
& \quad=\perp+\top \mid \perp+\top=\perp+\top \\
& ((\mathbf{I} \mid \perp)+(\mathbf{I} \mid \top))(\perp+\top) \\
& \quad=\mathbf{I}(\perp+\top)+\top(\perp+\top)=(\perp+\top)+\top
\end{aligned}
$$

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.

$$
\begin{aligned}
& (\mathbf{I} \mid \perp+\top)(\perp+\top) \\
& \quad=\perp+\top \mid \perp+\top=\perp+\top \\
& ((\mathbf{I} \mid \perp)+(\mathbf{I} \mid \top))(\perp+\top) \\
& \quad=\mathbf{I}(\perp+\top)+\top(\perp+\top)=(\perp+\top)+\top
\end{aligned}
$$

We can still sample, but never in parallel, inside joins.

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.

$$
\begin{aligned}
& (\mathbf{I} \mid \perp+\top)(\perp+\top) \\
& \quad=\perp+\top \mid \perp+\top=\perp+\top \\
& ((\mathbf{I} \mid \perp)+(\mathbf{I} \mid \top))(\perp+\top) \\
& \quad=\mathbf{I}(\perp+\top)+\top(\perp+\top)=(\perp+\top)+\top
\end{aligned}
$$

We can still sample, but never in parallel, inside joins. So we'll require R-normal forms for "nice" inhabitants.

Ambiguity vs. parallelism

Historical operational semantics for join is parallelism.
Operational semantics for randomness is sampling.
Combining these requires distributivity

$$
(x+y) \mid z=(x \mid z)+(y \mid z)
$$

but distributivity fails in SKJR, e.g.

$$
\begin{aligned}
& (\mathbf{I} \mid \perp+\top)(\perp+\top) \\
& \quad=\perp+\top \mid \perp+\top=\perp+\top \\
& ((\mathbf{I} \mid \perp)+(\mathbf{I} \mid \top))(\perp+\top) \\
& \quad=\mathbf{I}(\perp+\top)+\top(\perp+\top)=(\perp+\top)+\top
\end{aligned}
$$

We can still sample, but never in parallel, inside joins. So we'll require R-normal forms for "nice" inhabitants.
For example...

Random convergence/divergence

The smallest nontrivial closure is

$$
\operatorname{div}:=\lambda x . x|x \top| \times \top \top|x \top \top \top| \ldots
$$

Random convergence/divergence

The smallest nontrivial closure is

$$
\operatorname{div}:=\lambda x . x|\times \top| x \top \top|x \top \top \top| \ldots
$$

Theorem
In $S K J$, inhab(div) $=\{\perp, \top\}$.

Random convergence/divergence

The smallest nontrivial closure is

$$
\operatorname{div}:=\lambda x . x|x \top| x \top \top|x \top \top \top| \ldots
$$

Theorem
In $S K J$, inhab(div) $=\{\perp, \top\}$.
Since $\{\perp, T\}$ is the two-point lattice, we get R-normal forms for div,

Random convergence/divergence

The smallest nontrivial closure is

$$
\operatorname{div}:=\lambda \times . x|\times \top| \times \top \top|x \top \top \top| \ldots
$$

Theorem
In $S K J$, inhab(div) $=\{\perp, \top\}$.
Since $\{\perp, T\}$ is the two-point lattice, we get R-normal forms for div, and thus
Theorem
In SKJR, inhab(div) $=\{\perp @ \mathrm{t}+\mathrm{T} @(1-\mathrm{t}) \mid \mathrm{t} \in[0,1]\}$.

Random convergence/divergence

The smallest nontrivial closure is

$$
\operatorname{div}:=\lambda \times . x|\times \top| \times \top \top|x \top \top \top| \ldots
$$

Theorem
In $S K J$, inhab(div) $=\{\perp, \top\}$.
Since $\{\perp, \top\}$ is the two-point lattice, we get R-normal forms for div, and thus
Theorem
In $S K J R$, inhab(div) $=\{\perp @ \mathrm{t}+\mathrm{T} @(1-\mathrm{t}) \mid \mathrm{t} \in[0,1]\}$.
Convergence in SKJR is probabilistic;

Random convergence/divergence

The smallest nontrivial closure is

$$
\operatorname{div}:=\lambda \times . \times|\times \top| \times \top \top|\times \top \top \top| \ldots
$$

Theorem

In $S K J$, inhab(div) $=\{\perp, \top\}$.
Since $\{\perp, T\}$ is the two-point lattice, we get R-normal forms for div, and thus Theorem In SKJR, inhab(div) $=\{\perp @ \mathrm{t}+\mathrm{T} @(1-\mathrm{t}) \mid \mathrm{t} \in[0,1]\}$.

Convergence in SKJR is probabilistic; observational information ordering is defined by $M \sqsubseteq M^{\prime}$ iff $\forall \operatorname{trace} \underline{N} . \operatorname{conv}(M \underline{N}) \leq \operatorname{conv}\left(M^{\prime} \underline{N}\right)$.

The range property, spectra

(recall we want small ranges, few inhabitants)

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite,

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite, e.g., $|\operatorname{rng}(\top)|=1$,

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite,

$$
\text { e.g., }|\operatorname{rng}(\top)|=1, \mid \operatorname{rng}(\text { div }) \mid=2
$$

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite, e.g., $|\operatorname{rng}(T)|=1, \mid \operatorname{rng}($ div $) \mid=2$
rng(semi) $\mid=3, \ldots$
Λ PAUSE In
SKJR, all nontrivial ranges are infinite,

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite, e.g., $|\operatorname{rng}(T)|=1, \mid \operatorname{rng}($ div $) \mid=2$
$\operatorname{rng}($ semi $) \mid=3, \ldots$
^PAUSE In
SKJR, all nontrivial ranges are infinite, but some are finite dimensional,

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite, e.g., $|\operatorname{rng}(T)|=1, \mid \operatorname{rng}($ div $) \mid=2$
$\operatorname{rng}($ semi $) \mid=3, \ldots$
Λ PAUSE In
SKJR, all nontrivial ranges are infinite, but some are finite dimensional, e.g., $\operatorname{dim}(r n g(T))=0$,

The range property, spectra

(recall we want small ranges, few inhabitants) In SK, all nontrivial ranges are infinite.

In SKJ, some nontrivial ranges are finite, e.g., $|\operatorname{rng}(T)|=1, \mid \operatorname{rng}($ div $) \mid=2$
rng(semi) $\mid=3, \ldots$
Λ PAUSE In
SKJR, all nontrivial ranges are infinite, but some are finite dimensional, e.g., $\operatorname{dim}(r n g(T))=0, \operatorname{dim}(r n g(\operatorname{div}))=1$.

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite, e.g., $|\operatorname{rng}(T)|=1, \mid \operatorname{rng}($ div $) \mid=2$
$\operatorname{rng}($ semi $) \mid=3, \ldots$
^PAUSE In
SKJR, all nontrivial ranges are infinite, but some are finite dimensional, e.g., $\operatorname{dim}(\operatorname{rng}(T))=0, \operatorname{dim}(r n g(\operatorname{div}))=1$.

Question What is the spectrum of dimensions?

The range property, spectra

(recall we want small ranges, few inhabitants)
In SK, all nontrivial ranges are infinite.
In SKJ, some nontrivial ranges are finite, e.g., $|\operatorname{rng}(T)|=1, \mid \operatorname{rng}($ div $) \mid=2$
$\operatorname{rng}($ semi $) \mid=3, \ldots$
^PAUSE In
SKJR, all nontrivial ranges are infinite, but some are finite dimensional, e.g., $\operatorname{dim}(\operatorname{rng}(T))=0, \operatorname{dim}(r n g(\operatorname{div}))=1$.

Question What is the spectrum of dimensions?

Known At least $\left\{0,1,2^{\aleph_{0}}\right\}$.

Are there less trivial types?

In SKJ we can define types boool and semi with inhab $($ boool $)=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\}$

Are there less trivial types?

In SKJ we can define types boool and semi with inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\}$ $\operatorname{inhab}($ semi $)=\{\perp, \mathbf{I}, \top\}$

Are there less trivial types?

In SKJ we can define types boool and semi with inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\}$ inhab $($ semi) $=\{\perp, \mathbf{I}, \top\}$ and disambiguate $\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F}):$ boool \rightarrow bool, inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$

Are there less trivial types?

In SKJ we can define types boool and semi with

$$
\begin{aligned}
& \text { inhab }(\text { boool })=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} \\
& \text { inhab(semi) }=\{\perp, \mathbf{I}, \top\}
\end{aligned}
$$

and disambiguate $\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F}):$ boool \rightarrow bool, inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$

Similarly in SKJR we can define semi, bool with inhabitants slurries of $\{\perp, \mathbf{I}, \top\}$ and $\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.

Are there less trivial types?

In SKJ we can define types boool and semi with

$$
\begin{aligned}
& \text { inhab(boool) }=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} \\
& \text { inhab(semi) }=\{\perp, \mathbf{I}, \top\}
\end{aligned}
$$

and disambiguate $\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F}):$ boool \rightarrow bool,

$$
\text { inhab }(\text { bool })=\{\perp, \mathbf{K}, \mathbf{F}, \top\}
$$

Similarly in SKJR we can define semi, bool with inhabitants slurries of $\{\perp, \mathbf{I}, \top\}$ and $\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
The Slurry ${ }_{\alpha}$, sample $_{\alpha}$, always $_{\alpha}$ monad exists for many types: bool, nat, Prod, Sum, Exp, recursive. (not obvious)

Are there less trivial types?

In SKJ we can define types boool and semi with

$$
\begin{aligned}
& \text { inhab(boool) }=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} \\
& \text { inhab }(\text { semi })=\{\perp, \mathbf{I}, \top\}
\end{aligned}
$$

and disambiguate $\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F}):$ boool \rightarrow bool,

$$
\text { inhab }(\text { bool })=\{\perp, \mathbf{K}, \mathbf{F}, \top\}
$$

Similarly in SKJR we can define semi, bool with inhabitants slurries of $\{\perp, \mathbf{I}, \top\}$ and $\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
The Slurry ${ }_{\alpha}$, sample $_{\alpha}$, always $_{\alpha}$ monad exists for many types: bool, nat, Prod, Sum, Exp, recursive. (not obvious)
But slurries aren't "nice":

Are there less trivial types?

In SKJ we can define types boool and semi with

$$
\begin{aligned}
& \text { inhab(boool) }=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} \\
& \text { inhab(semi) }=\{\perp, \mathbf{I}, \top\}
\end{aligned}
$$

and disambiguate $\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F}):$ boool \rightarrow bool,

$$
\text { inhab }(\text { bool })=\{\perp, \mathbf{K}, \mathbf{F}, \top\}
$$

Similarly in SKJR we can define semi, bool with inhabitants slurries of $\{\perp, \mathbf{I}, \top\}$ and $\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
The Slurry ${ }_{\alpha}$, sample $_{\alpha}$, always ${ }_{\alpha}$ monad exists for many types: bool, nat, Prod, Sum, Exp, recursive. (not obvious)
But slurries aren't "nice":
no R-normal forms,

Are there less trivial types?

In SKJ we can define types boool and semi with

$$
\begin{aligned}
& \text { inhab }(\text { boool })=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} \\
& \text { inhab(semi) }=\{\perp, \mathbf{I}, \top\}
\end{aligned}
$$

and disambiguate $\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F}):$ boool \rightarrow bool,

$$
\text { inhab }(\text { bool })=\{\perp, \mathbf{K}, \mathbf{F}, \top\}
$$

Similarly in SKJR we can define semi, bool with inhabitants slurries of $\{\perp, \mathbf{I}, \top\}$ and $\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
The Slurry ${ }_{\alpha}$, sample $_{\alpha}$, always ${ }_{\alpha}$ monad exists for many types: bool, nat, Prod, Sum, Exp, recursive. (not obvious)
But slurries aren't "nice":
no R-normal forms, no sampling semantics.

Are there less trivial types?

In SKJ we can define types boool and semi with

$$
\begin{aligned}
& \text { inhab }(\text { boool })=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} \\
& \text { inhab(semi) }=\{\perp, \mathbf{I}, \top\}
\end{aligned}
$$

and disambiguate $\lambda x . x(x$ K T) $(x \top \mathbf{F})$: boool \rightarrow bool,

$$
\text { inhab }(\text { bool })=\{\perp, \mathbf{K}, \mathbf{F}, \top\}
$$

Similarly in SKJR we can define semi, bool with inhabitants slurries of $\{\perp, \mathbf{I}, \top\}$ and $\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
The Slurry ${ }_{\alpha}$, sample $_{\alpha}$, always $_{\alpha}$ monad exists for many types: bool, nat, Prod, Sum, Exp, recursive. (not obvious)
But slurries aren't "nice":
no R-normal forms, no sampling semantics.
Can we disambiguate to finite dimensional mixtures, without determinizing? (unknown)

Mixtures of semibooleans

The space of \perp, \mathbf{I}, T-mixtures is 2-dimensional:

Slurries of semibooleans

Theorem
\perp, \mathbf{I}, \top-slurries are completely characterized by their action on the unit interval $[\perp, \top]$.

Slurries of semibooleans

Theorem
\perp, \mathbf{I}, \top-slurries are completely characterized by their action on the unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1] \rightarrow[0,1]$.

Slurries of semibooleans

Theorem
\perp, \mathbf{I}, \top-slurries are completely characterized by their action on the unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1] \rightarrow[0,1]$.
This space has dimension $2^{\aleph_{0}}$.

Slurries of semibooleans

Theorem
\perp, \mathbf{I}, \top-slurries are completely characterized by their action on the unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1] \rightarrow[0,1]$.
This space has dimension $2^{\aleph_{0}}$.
Can we raise to a finite-dimensional subspace?

A 1-dimensional subspace

Try raising with $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \times$ and then $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \mid \mathbf{I}$:

A 1-dimensional subspace

Try raising with $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \times$ and then $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \mid \mathrm{I}$:
Range is 1 -dimensional,

A 1-dimensional subspace

Try raising with $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \times \mathrm{x}$ and then $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \mid \mathrm{I}$:
Range is 1 -dimensional, almost has R-n.f. (binary join of mixtures)

A 1-dimensional subspace

Try raising with $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \times$ and then $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \mid \mathrm{I}$:
Range is 1 -dimensional, almost has R-n.f. (binary join of mixtures) but arguably useless...

A 1-dimensional subspace

Try raising with $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \times$ and then $\mathrm{V} \lambda \mathrm{x} . \mathrm{x} \mid \mathrm{I}$:
Range is 1 -dimensional, almost has R-n.f. (binary join of mixtures) but arguably useless...

The closure $V \lambda x . x x$ is more useful but has infinite dimensional range.

Mixtures of booleans

In SKJ, inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}=\mathbf{K} \mid \mathbf{F}, \mathrm{T}\} ;$

Mixtures of booleans

In SKJ, inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}=\mathbf{K} \mid \mathbf{F}, \quad \mathrm{T}\}$; a "disambiguation" trick then raises \mathbf{J} to T yielding inhab(bool) $=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.

Mixtures of booleans

In SKJ, inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}=\mathbf{K} \mid \mathbf{F}, \quad \mathrm{T}\}$; a "disambiguation" trick then raises \mathbf{J} to T
yielding inhab(bool) $=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
In SKJR, disambiguation interferes with randomness,

Mixtures of booleans

In SKJ, inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}=\mathbf{K} \mid \mathbf{F}, \quad \mathrm{T}\}$; a "disambiguation" trick then raises \mathbf{J} to T yielding inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
In SKJR, disambiguation interferes with randomness, and we're stuck with $\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \mathrm{T}$-mixtures.

Mixtures of booleans

In SKJ, inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}=\mathbf{K} \mid \mathbf{F}, \quad \mathrm{T}\}$; a "disambiguation" trick then raises \mathbf{J} to T yielding inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
In SKJR, disambiguation interferes with randomness, and we're stuck with $\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \mathrm{T}$-mixtures.
$\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}$, T-mixtures are 5-dimensional.

Mixtures of booleans

In SKJ, inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}=\mathbf{K} \mid \mathbf{F}, \quad \mathrm{T}\}$; a "disambiguation" trick then raises \mathbf{J} to \top yielding inhab(bool) $=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
In SKJR, disambiguation interferes with randomness, and we're stuck with $\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \mathrm{T}$-mixtures.
$\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}$, T-mixtures are 5-dimensional.
Cumulative distribution functions yield a model:

Mixtures of booleans

In SKJ, inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}=\mathbf{K} \mid \mathbf{F}, \quad \mathrm{T}\}$; a "disambiguation" trick then raises \mathbf{J} to \top yielding inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
In SKJR, disambiguation interferes with randomness, and we're stuck with $\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top$-mixtures.
$\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top$-mixtures are 5-dimensional.
Cumulative distribution functions yield a model:
$\left\{(b, k, f, j, t) \in[0,1]^{5}\right.$
$\mid \mathrm{k} \geq \mathrm{b}, \mathrm{f} \geq \mathrm{b}, \mathrm{j}+\mathrm{b} \geq \mathrm{k}+\mathrm{f}, \mathrm{t} \geq \mathrm{j}\}$
partially ordered componentwise.

Slurries of booleans

Theorem
$\perp, \mathbf{K}, \mathbf{F}, \top$-slurries are completely characterized by their action on two arguments in unit interval $[\perp, \top]$.

Slurries of booleans

Theorem

$\perp, \mathbf{K}, \mathbf{F}, \mathbf{T}$-slurries are completely characterized by their action on two arguments in unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1]^{2} \rightarrow[0,1]$.

Slurries of booleans

Theorem

$\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-slurries are completely characterized by their action on two arguments in unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1]^{2} \rightarrow[0,1]$.
Can we raise to a finite-dimensional subspace?

Slurries of booleans

Theorem

$\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-slurries are completely characterized by their action on two arguments in unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1]^{2} \rightarrow[0,1]$.
Can we raise to a finite-dimensional subspace? Want to raise to a linear upper bound.

Slurries of booleans

Theorem

$\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-s/urries are completely characterized by their action on two arguments in unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1]^{2} \rightarrow[0,1]$.
Can we raise to a finite-dimensional subspace? Want to raise to a linear upper bound.

We can raise $\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-slurries with $\lambda \mathrm{x} . \mathrm{x} \times \mathrm{x}$.

Slurries of booleans

Theorem

$\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-slurries are completely characterized by their action on two arguments in unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1]^{2} \rightarrow[0,1]$.
Can we raise to a finite-dimensional subspace? Want to raise to a linear upper bound.

We can raise $\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-slurries with $\lambda \mathrm{x} . \mathrm{x} \times \mathrm{x}$. and partially disambiguate with $\lambda \mathrm{x} \cdot \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F})$.

Slurries of booleans

Theorem

$\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-slurries are completely characterized by their action on two arguments in unit interval $[\perp, \top]$.

We thus have JR-isomorphism with the monotone convex functions: $[0,1]^{2} \rightarrow[0,1]$.
Can we raise to a finite-dimensional subspace? Want to raise to a linear upper bound.

We can raise $\perp, \mathbf{K}, \mathbf{F}, \mathrm{T}$-slurries with $\lambda \mathrm{x} . \mathrm{x} \times \mathrm{x}$. and partially disambiguate with $\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} \mathbf{K} \top)(\mathrm{x} \top \mathbf{F})$. ???

Problems with SKJR

Problem Disambiguation fails:

Problems with SKJR

Problem Disambiguation fails: even if we can raise slurries to mixtures, random samples may be ambiguous.

Problems with SKJR

Problem Disambiguation fails: even if we can raise slurries to mixtures, random samples may be ambiguous.

Unambiguity can be checked equationally,

Problems with SKJR

> Problem Disambiguation fails: even if we can raise slurries to mixtures, random samples may be ambiguous.

Unambiguity can be checked equationally, but not enforced at the term level.

Problems with SKJR

Problem Disambiguation fails: even if we can raise slurries to mixtures, random samples may be ambiguous.

Unambiguity can be checked equationally, but not enforced at the term level.

Problem Lower-bounding fails:

Problems with SKJR

> Problem Disambiguation fails: even if we can raise slurries to mixtures, random samples may be ambiguous.

Unambiguity can be checked equationally, but not enforced at the term level.

Problem Lower-bounding fails: without distributivity, we can't raise e.g. $\perp+\top$ to $\mathbf{I}+T$.

Problems with SKJR

> Problem Disambiguation fails: even if we can raise slurries to mixtures, random samples may be ambiguous.

Unambiguity can be checked equationally, but not enforced at the term level.

Problem Lower-bounding fails: without distributivity, we can't raise e.g. $\perp+\top$ to $\mathbf{I}+T$.

Adding parallelism allows lower-bounding,

Problems with SKJR

> Problem Disambiguation fails: even if we can raise slurries to mixtures, random samples may be ambiguous.

Unambiguity can be checked equationally, but not enforced at the term level.

Problem Lower-bounding fails: without distributivity, we can't raise e.g. $\perp+\top$ to $\mathbf{I}+\mathrm{T}$.

Adding parallelism allows lower-bounding, but then requires sequentialization...

