Definable (types-as-)closures in concurrent combinatory algebra

Fritz Obermeyer

Department of Mathematics
Carnegie-Mellon University
2007:03:27

Outline

What is concurrent combinatory algebra
Motivation, Complexity-of-Definition (4)
Typed semantics from untyped syntax (4)
What myriad types there are (4)
In search of definable types
Types from section-retract pairs (5)
Concurrent simple types (5)
Sequential simple types (3)
Products and sums and numerals, Oh my (5)
Summary (1)
Appendix
Improved definition of Simple (3)
Correctness of semi (5)

Motivation: complexity-of-definition

What mathematical objects are definable?

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)
When is a description simple?

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)
When is a description simple?
\rightarrow Fewer and shorter symbols

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)
When is a description simple?
\rightarrow Fewer and shorter symbols (parametrized)

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)
When is a description simple?
\rightarrow Fewer and shorter symbols (parametrized)
How does complexity depend on language (parameters)?

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)
When is a description simple?
\rightarrow Fewer and shorter symbols (parametrized)
How does complexity depend on language (parameters)? Hmm... these are more than r.e. sets...

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)
When is a description simple?
\rightarrow Fewer and shorter symbols (parametrized)
How does complexity depend on language (parameters)? Hmm... these are more than r.e. sets...
these are weighted grammars or weighted presentations.

Motivation: complexity-of-definition

What mathematical objects are definable?
\rightarrow First, the constructive objects are definable, say r.e. sets mod r.e. relations.

How simple is a given object?
\rightarrow As simple as its shortest description. (Kolmogorov)
When is a description simple?
\rightarrow Fewer and shorter symbols (parametrized)
How does complexity depend on language (parameters)? Hmm... these are more than r.e. sets...
these are weighted grammars or weighted presentations. Simpler grammars/signatures are simpler to parametrize.

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.
Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.
Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient?

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.
Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient? Terms need to:

- do nothing at all: $\lambda \mathrm{f} . \mathrm{f}$

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.

Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient? Terms need to:

- do nothing at all: $\lambda \mathrm{f}$. f
- move terms around: $\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} . \mathrm{f}(\mathrm{x} y), \quad \lambda \mathrm{f}, \mathrm{x}, \mathrm{y} .(\mathrm{f} x) \mathrm{y}$

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.

Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient? Terms need to:

- do nothing at all: $\lambda \mathrm{f}$. f
- move terms around: $\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} . \mathrm{f}(\mathrm{x} y), \quad \lambda \mathrm{f}, \mathrm{x}, \mathrm{y} .(\mathrm{f} x) \mathrm{y}$
- project/ignore terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f}$

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.

Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient? Terms need to:

- do nothing at all: $\lambda \mathrm{f}$. f
- move terms around: $\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} . \mathrm{f}(\mathrm{x} y), \quad \lambda \mathrm{f}, \mathrm{x}, \mathrm{y} .(\mathrm{f} x) \mathrm{y}$
- project/ignore terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f}$
- copy terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times \mathrm{x}$

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.

Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient? Terms need to:

- do nothing at all: $\lambda \mathrm{f} . \mathrm{f}$
- move terms around: $\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} . \mathrm{f}(\mathrm{x} y), \quad \lambda \mathrm{f}, \mathrm{x}, \mathrm{y} .(\mathrm{f} x) \mathrm{y}$
- project/ignore terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f}$
- copy terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times \mathrm{x}$
- (join terms: $\lambda \mathrm{f}, \mathrm{g} . \mathrm{f} \mid \mathrm{g}$?)

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.

Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient? Terms need to:

- do nothing at all: $\lambda \mathrm{f} . \mathrm{f}$
- move terms around: $\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} . \mathrm{f}(\mathrm{x} y), \quad \lambda \mathrm{f}, \mathrm{x}, \mathrm{y} .(\mathrm{f} x) \mathrm{y}$
- project/ignore terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f}$
- copy terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times \mathrm{x}$
- (join terms: $\lambda \mathrm{f}, \mathrm{g} \cdot \mathrm{f} \mid \mathrm{g}$?)

That's enough!

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is... λ-calculus mod an r.e. theory: $\beta, \beta+\eta$, etc.

Curry: λ-calculus has a complicated syntax, but a few closed terms generate all others.

What basis is sufficient? Terms need to:

- do nothing at all: $\lambda \mathrm{f} . \mathrm{f}$
- move terms around: $\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} . \mathrm{f}(\mathrm{x} y), \quad \lambda \mathrm{f}, \mathrm{x}, \mathrm{y} .(\mathrm{f} x) \mathrm{y}$
- project/ignore terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f}$
- copy terms: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times \mathrm{x}$
- (join terms: $\lambda \mathrm{f}, \mathrm{g} . \mathrm{f} \mid \mathrm{g}$?)

That's enough! Many other bases would work.

Why semantics, extensionality?

How simple is a given object?

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.
\rightarrow But "empty" / "undefined" should remain the same.

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.
\rightarrow But "empty" / "undefined" should remain the same.
(1) Identify all "empty" / "undefined" terms (the theory \mathcal{H})

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.
\rightarrow But "empty" / "undefined" should remain the same.
(1) Identify all "empty" / "undefined" terms (the theory \mathcal{H})
(2) Then identify as much as consistently possible $\left(\mathcal{H}^{*}\right)$

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.
\rightarrow But "empty" / "undefined" should remain the same.
(1) Identify all "empty" / "undefined" terms (the theory \mathcal{H})
(2) Then identify as much as consistently possible $\left(\mathcal{H}^{*}\right)$

From seqential λ-calculus, we get term fragment of \mathcal{D}_{∞}.

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.
\rightarrow But "empty" / "undefined" should remain the same.
(1) Identify all "empty" / "undefined" terms (the theory \mathcal{H})
(2) Then identify as much as consistently possible $\left(\mathcal{H}^{*}\right)$

From seqential λ-calculus, we get term fragment of \mathcal{D}_{∞}.
From concurrent λ-calculus, we get term+join fragment.

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.
\rightarrow But "empty" / "undefined" should remain the same.
(1) Identify all "empty" / "undefined" terms (the theory \mathcal{H})
(2) Then identify as much as consistently possible $\left(\mathcal{H}^{*}\right)$

From seqential λ-calculus, we get term fragment of \mathcal{D}_{∞}.
From concurrent λ-calculus, we get term+join fragment.
But \mathcal{H}^{*} is Π_{2}^{0}-complete, not r.e.; what about "constructive"?

Why semantics, extensionality?

How simple is a given object?
\rightarrow should not depend on any one description, but also
\rightarrow should not depend on any one language
We want meaning, not syntax.
\rightarrow Coarser theories/quotients are better.
\rightarrow But "empty" / "undefined" should remain the same.
(1) Identify all "empty" / "undefined" terms (the theory \mathcal{H})
(2) Then identify as much as consistently possible $\left(\mathcal{H}^{*}\right)$

From seqential λ-calculus, we get term fragment of \mathcal{D}_{∞}.
From concurrent λ-calculus, we get term + join fragment.
But \mathcal{H}^{*} is Π_{2}^{0}-complete, not r.e.; what about "constructive"?
\rightarrow Approximate \mathcal{H}^{*} by r.e. theory, e.g., ZFC.

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a,

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat $\rightarrow a$, intersection, union

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates: $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$,

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates: $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation)

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation) but this does not work for oracles.

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation)
but this does not work for oracles.
Add join as a primitive: $a \rightarrow$ semi becomes a lattice,

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation)
but this does not work for oracles.
Add join as a primitive: $a \rightarrow$ semi becomes a lattice,
Scott came from opposite direction:
Some top. spaces yield models of λ-calculus

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation)
but this does not work for oracles.
Add join as a primitive: $a \rightarrow$ semi becomes a lattice,
Scott came from opposite direction:
Some top. spaces yield models of λ-calculus and in these models join is of course definable.

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation)
but this does not work for oracles.
Add join as a primitive: $a \rightarrow$ semi becomes a lattice,
Scott came from opposite direction:
Some top. spaces yield models of λ-calculus and in these models join is of course definable.
But $\mathcal{D}_{\infty}, \mathcal{P} \omega$ introduce extra junk, e.g. step functions.

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation)
but this does not work for oracles.
Add join as a primitive: $a \rightarrow$ semi becomes a lattice,
Scott came from opposite direction:
Some top. spaces yield models of λ-calculus and in these models join is of course definable.
But $\mathcal{D}_{\infty}, \mathcal{P} \omega$ introduce extra junk, e.g. step functions.
So... Consider pure fragement of \mathcal{D}_{∞} :

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
\rightarrow enumerations: nat \rightarrow a, intersection, union
\rightarrow semipredicates : $\mathrm{a} \rightarrow\{\perp, \mathbf{I}\}$, intersection, no union
Disjunction is representable at meta-level (simulation)
but this does not work for oracles.
Add join as a primitive: $a \rightarrow$ semi becomes a lattice,
Scott came from opposite direction:
Some top. spaces yield models of λ-calculus and in these models join is of course definable.
But $\mathcal{D}_{\infty}, \mathcal{P} \omega$ introduce extra junk, e.g. step functions.
So... Consider pure fragement of \mathcal{D}_{∞} :
$=$ concurrent combinatory algebra, $\bmod \mathcal{H}^{*}$

Combinatory algebra with join

Combinatory algebra: equational, \mathbf{S} and \mathbf{K} for abstraction

$$
\mathbf{K} \times y=x \quad S \times y z=x z(y z)
$$

Combinatory algebra with join

Combinatory algebra: equational, \mathbf{S} and \mathbf{K} for abstraction

$$
\mathbf{K} \times \mathrm{y}=\mathrm{x} \quad \mathbf{S} \times \mathrm{y} z=x z(y z)
$$

Concurrent CA: partially ordered, also J for join

$$
\mathbf{J} \times \mathrm{y} \sqsupseteq \mathrm{x} \quad \mathbf{J} x \mathrm{y} \sqsupseteq \mathrm{y} \quad \frac{\mathrm{x} \sqsubseteq \mathrm{z} \quad \mathrm{y} \sqsubseteq \mathrm{z}}{\mathbf{J} \times \mathrm{y} \sqsubseteq \mathrm{z}}
$$

Combinatory algebra with join

Combinatory algebra: equational, \mathbf{S} and \mathbf{K} for abstraction

$$
K \times y=x \quad S \times y z=x z(y z)
$$

Concurrent CA: partially ordered, also J for join

$$
\mathbf{J} \times \mathrm{y} \sqsupseteq \mathrm{x} \quad \mathbf{J} x \mathrm{y} \sqsupseteq \mathrm{y} \quad \frac{\mathrm{x} \sqsubseteq \mathrm{z} \quad \mathrm{y} \sqsubseteq \mathrm{z}}{\mathbf{J} \times \mathrm{y} \sqsubseteq \mathrm{z}}
$$

In either case, add T for error: $\quad \top x=x$, or $\top \sqsupseteq x$

Combinatory algebra with join

Combinatory algebra: equational, \mathbf{S} and \mathbf{K} for abstraction

$$
K \times y=x \quad S \times y z=x z(y z)
$$

Concurrent CA: partially ordered, also J for join

$$
\mathbf{J} \times \mathrm{y} \sqsupseteq \mathrm{x} \quad \mathbf{J} x \mathrm{y} \sqsupseteq \mathrm{y} \quad \frac{\mathrm{x} \sqsubseteq \mathrm{z} \quad \mathrm{y} \sqsubseteq \mathrm{z}}{\mathbf{J} \times \mathrm{y} \sqsubseteq \mathrm{z}}
$$

In either case, add \top for error: $\quad \top x=x$, or $\top \sqsupseteq x$
Translation from λ-calculus

$$
\begin{array}{rlrl}
\llbracket \lambda \mathrm{x} . \mathrm{M} \rrbracket & =\mathbf{K} \mathrm{M} & \mathrm{x} \text { not free in } \mathrm{M} \\
\llbracket \lambda \times . \mathrm{M} \rrbracket & =\mathbf{S} \llbracket \lambda \mathrm{x} . \mathrm{M} \rrbracket \llbracket \lambda \mathrm{x} . \mathrm{N} \rrbracket &
\end{array}
$$

Combinatory algebra with join

Combinatory algebra: equational, \mathbf{S} and \mathbf{K} for abstraction

$$
\mathbf{K} \times \mathrm{y}=\mathrm{x} \quad \mathbf{S} \times \mathrm{y} z=x \mathrm{z}(\mathrm{y} z)
$$

Concurrent CA: partially ordered, also J for join

$$
\mathbf{J} \times \mathrm{y} \sqsupseteq \mathrm{x} \quad \mathbf{J} \times \mathrm{y} \sqsupseteq \mathrm{y} \quad \frac{\mathrm{x} \sqsubseteq \mathrm{z} \quad \mathrm{y} \sqsubseteq \mathrm{z}}{\mathbf{J} \times \mathrm{y} \sqsubseteq \mathrm{z}}
$$

In either case, add T for error: $\quad \top x=x$, or $\top \sqsupseteq x$
Translation from λ-calculus with join

$$
\begin{aligned}
\llbracket \lambda x \cdot M \rrbracket & =\mathbf{K} M \\
\llbracket \lambda x \cdot M N \rrbracket & =S \llbracket \lambda x \cdot M \rrbracket \llbracket \lambda \cdot N \rrbracket \\
\llbracket M \mid N \rrbracket & =J \llbracket M \rrbracket \llbracket N \rrbracket
\end{aligned}
$$

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times \top^{\sim n}=T$.

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times T^{\sim n}=T$.
Definition
(Scott's information ordering)
$\mathcal{H}^{*} \vdash \mathrm{x} \sqsubseteq \mathrm{y}$ iff $\forall \mathrm{M} \in\langle\mathbf{S}, \mathbf{K}\rangle$. M x conv $\Longrightarrow \mathrm{M} \mathrm{y}$ conv.

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times T^{\sim n}=T$.
Definition
(Scott's information ordering)

$$
\mathcal{H}^{*} \vdash \mathrm{x} \sqsubseteq \mathrm{y} \text { iff } \forall \mathrm{M} \in\langle\mathbf{S}, \mathbf{K}\rangle . \mathrm{M} \times \text { conv } \Longrightarrow \mathrm{M} \text { y conv. }
$$

Consider the term model $\mathcal{B} \bmod \mathcal{H}^{*}$,

$$
\begin{array}{ll}
\\
\mathbf{S}, \mathbf{K}, \mathbf{J} \in \mathcal{B} & \frac{x \in \mathcal{B}}{(x y) \in \mathcal{B}} \quad y \in \mathcal{B}
\end{array}
$$

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times T^{\sim n}=T$.
Definition
(Scott's information ordering)
$\mathcal{H}^{*} \vdash \mathrm{x} \sqsubseteq \mathrm{y}$ iff $\forall \mathrm{M} \in\langle\mathbf{S}, \mathbf{K}\rangle$. M x conv $\Longrightarrow \mathrm{M} \mathrm{y}$ conv.
Consider the term model $\mathcal{B} \bmod \mathcal{H}^{*}$, with arbirary joins

$$
\begin{aligned}
& \\
& \mathbf{S}, \mathbf{K}, \mathbf{J} \in \mathcal{B}
\end{aligned} \frac{x \in \mathcal{B} \quad y \in \mathcal{B}}{(x y) \in \mathcal{B}} \quad \frac{x \subseteq \mathcal{B}}{\bigsqcup x \in \mathcal{B}}
$$

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times T^{\sim n}=T$.
Definition
(Scott's information ordering)
$\mathcal{H}^{*} \vdash \mathrm{x} \sqsubseteq \mathrm{y}$ iff $\forall \mathrm{M} \in\langle\mathbf{S}, \mathbf{K}\rangle$. $\mathrm{M} \times$ conv $\Longrightarrow \mathrm{M}$ y conv.
Consider the term model $\mathcal{B} \bmod \mathcal{H}^{*}$, with arbirary joins

$$
\begin{aligned}
& \\
& \mathbf{S}, \mathbf{K}, \mathbf{J} \in \mathcal{B}
\end{aligned} \frac{x \in \mathcal{B} \quad y \in \mathcal{B}}{(x y) \in \mathcal{B}} \quad \frac{x \subseteq \mathcal{B}}{\bigsqcup x \in \mathcal{B}}
$$

Theorem
\mathcal{B} is an algebraic lattice

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times T^{\sim n}=T$.
Definition
(Scott's information ordering)
$\mathcal{H}^{*} \vdash \mathrm{x} \sqsubseteq \mathrm{y}$ iff $\forall \mathrm{M} \in\langle\mathbf{S}, \mathbf{K}\rangle$. $\mathrm{M} \times$ conv $\Longrightarrow \mathrm{M}$ y conv.
Consider the term model $\mathcal{B} \bmod \mathcal{H}^{*}$, with arbirary joins

$$
\begin{aligned}
& \\
& \mathbf{S}, \mathbf{K}, \mathbf{J} \in \mathcal{B}
\end{aligned} \frac{x \in \mathcal{B} \quad y \in \mathcal{B}}{(x y) \in \mathcal{B}} \quad \frac{x \subseteq \mathcal{B}}{\bigsqcup x \in \mathcal{B}}
$$

Theorem
\mathcal{B} is an algebraic lattice with join $\mathbf{J}=\mathbf{K} \mid \mathbf{S} \mathbf{K}$,

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times T^{\sim n}=T$.
Definition
(Scott's information ordering)
$\mathcal{H}^{*} \vdash \mathrm{x} \sqsubseteq \mathrm{y}$ iff $\forall \mathrm{M} \in\langle\mathbf{S}, \mathbf{K}\rangle$. $\mathrm{M} \times$ conv $\Longrightarrow \mathrm{M}$ y conv.
Consider the term model $\mathcal{B} \bmod \mathcal{H}^{*}$, with arbirary joins

$$
\overline{\mathbf{S}, \mathbf{K}, \mathbf{J} \in \mathcal{B}} \quad \frac{x \in \mathcal{B} \quad y \in \mathcal{B}}{(x y) \in \mathcal{B}} \quad \frac{x \subseteq \mathcal{B}}{\bigsqcup x \in \mathcal{B}}
$$

Theorem
\mathcal{B} is an algebraic lattice with join $\mathbf{J}=\mathbf{K} \mid \mathbf{S} \mathbf{K}$, bottom $\perp=\mathbf{Y} \mathbf{K}$,

The completed term model

Definition
A term \times converges iff $\exists \mathrm{n} \in \mathbb{N} . \times T^{\sim n}=T$.
Definition
(Scott's information ordering)
$\mathcal{H}^{*} \vdash \mathrm{x} \sqsubseteq \mathrm{y}$ iff $\forall \mathrm{M} \in\langle\mathbf{S}, \mathbf{K}\rangle$. $\mathrm{M} \times$ conv $\Longrightarrow \mathrm{M}$ y conv.
Consider the term model $\mathcal{B} \bmod \mathcal{H}^{*}$, with arbirary joins

$$
\begin{aligned}
& \\
& \mathbf{S}, \mathbf{K}, \mathbf{J} \in \mathcal{B}
\end{aligned} \frac{x \in \mathcal{B} \quad y \in \mathcal{B}}{(x y) \in \mathcal{B}} \quad \frac{x \subseteq \mathcal{B}}{\bigsqcup x \in \mathcal{B}}
$$

Theorem
\mathcal{B} is an algebraic lattice with join $\mathbf{J}=\mathbf{K} \mid \mathbf{S} \mathbf{K}$, bottom $\perp=\mathbf{Y} \mathbf{K}$, and top $\top=\mathbf{Y} \mathbf{J}$.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed a type \Longleftrightarrow aoa $=\mathrm{a}$

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
a \text { type } & \Longleftrightarrow a \circ a=a \\
x: a & \Longleftrightarrow a x=x
\end{aligned}
$$

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{a} x=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{f} \circ \mathrm{a}
\end{aligned}
$$

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{a} x=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{f} \circ \mathrm{a}
\end{aligned}
$$

Is this really typed, fully abstract?
Not usefully.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{a} x=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{f} \circ \mathrm{a}
\end{aligned}
$$

Is this really typed, fully abstract?
Not usefully.
Range property: every range is a singleton or infinite.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{a} x=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{f} \circ \mathrm{a}
\end{aligned}
$$

Is this really typed, fully abstract?
Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans,

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{a} \times=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{f} \circ \mathrm{a}
\end{aligned}
$$

Is this really typed, fully abstract?
Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans, \Longrightarrow no numerals.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{a} x=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{f} \circ \mathrm{a}
\end{aligned}
$$

Is this really typed, fully abstract? Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans, \Longrightarrow no numerals.
How many denotations of not : K, $\mathbf{F} \mapsto \mathbf{F}, \mathbf{K}$?

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{a} x=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{f} \circ \mathrm{a}
\end{aligned}
$$

Is this really typed, fully abstract? Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans, \Longrightarrow no numerals.
How many denotations of not : K, $\mathbf{F} \mapsto \mathbf{F}, \mathbf{K}$? Infinitely many.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{foa}
\end{aligned}
$$

Is this really typed, fully abstract? Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans, \Longrightarrow no numerals.
How many denotations of not: K, F $\mapsto \mathbf{F}, \mathbf{K}$? Infinitely many.

Is there a solution to and $\mathrm{x} y=$ and y x ?

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{foa}
\end{aligned}
$$

Is this really typed, fully abstract? Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans, \Longrightarrow no numerals.
How many denotations of not: K, F $\mapsto \mathbf{F}, \mathbf{K}$? Infinitely many.

Is there a solution to

$$
\text { and } \mathrm{x} y=\text { and } \mathrm{y} \mathrm{x} \text { ? }
$$

No.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{foa}
\end{aligned}
$$

Is this really typed, fully abstract? Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans, \Longrightarrow no numerals.
How many denotations of not: K, F $\mapsto \mathbf{F}, \mathbf{K}$? Infinitely many.

Is there a solution to

$$
\text { and } \mathrm{x} y=\text { and } \mathrm{y} \mathrm{x} \text { ? }
$$

No.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped \longrightarrow typed

$$
\begin{aligned}
\mathrm{a} \text { type } & \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \\
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} \\
\mathrm{f}: \mathrm{a} \rightarrow \mathrm{~b} & \Longleftrightarrow \mathrm{~b} \circ \mathrm{f}=\mathrm{f}=\mathrm{foa}
\end{aligned}
$$

Is this really typed, fully abstract? Not usefully.
Range property: every range is a singleton or infinite.
\Longrightarrow No booleans, \Longrightarrow no numerals.
How many denotations of not: K, F $\mapsto \mathbf{F}, \mathbf{K}$? Infinitely many.

Is there a solution to

$$
\text { and } \mathrm{x} y=\text { and } \mathrm{y} \mathrm{x} \text { ? }
$$

No.

Semantically typed λ-calculus (concurrent)

Types as closures

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{aoa}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails,

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \text { a०a }=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle\top\rangle))=\{\perp, \top\}$.

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \text { a०a }=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle\top\rangle))=\{\perp, \top\}$. We will define bool, nat, ...

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \text { a०a }=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle\top\rangle))=\{\perp, \top\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle\top\rangle))=\{\perp, \top\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

How many denotations of 'not' ?

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle\top\rangle))=\{\perp, \top\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

How many denotations of 'not' ?
Still infinitely many solutions,
but unique maximum denotation.

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle T\rangle))=\{\perp, T\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

How many denotations of 'not' ?
Still infinitely many solutions, but unique maximum denotation.

Is there a solution to and $\mathrm{x} y=$ and y x ?

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle T\rangle))=\{\perp, T\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

How many denotations of 'not' ?
Still infinitely many solutions, but unique maximum denotation.

Is there a solution to and $\mathrm{x} \mathrm{y}=$ and y x ? Yes.

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle T\rangle))=\{\perp, T\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

How many denotations of 'not' ?
Still infinitely many solutions, but unique maximum denotation.

Is there a solution to and $\mathrm{x} \mathrm{y}=$ and y x ? Yes.

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{a} \circ \mathrm{a}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle T\rangle))=\{\perp, T\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

How many denotations of 'not' ?
Still infinitely many solutions, but unique maximum denotation.

Is there a solution to and $\mathrm{x} \mathrm{y}=$ and y x ? Yes.

Semantically typed λ-calculus (concurrent)

Types as closures

$$
\text { a type } \Longleftrightarrow \mathrm{aoa}=\mathrm{a} \sqsupseteq \mathbf{I}
$$

Is this really typed, fully abstract? Yes!
Range property fails, e.g. $\operatorname{rng}(\mathbf{Y}(\mathbf{I} \mid\langle\top\rangle))=\{\perp, \top\}$. We will define bool, nat, ... from only $\mathbf{S}, \mathbf{K}, \mathbf{J}$.

How many denotations of 'not' ?
Still infinitely many solutions, but unique maximum denotation.

Is there a solution to and $\mathrm{x} \mathrm{y}=$ and y x ? Yes.
Main difference: coproducts (dropped, lifted)

What types are definable?

$$
\begin{array}{rll}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} . \mathrm{M}) \circ \mathrm{a} & \text { (typed abstraction) }
\end{array}
$$

What types are definable?

$$
\begin{aligned}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} \cdot \mathrm{M}) \circ \mathrm{a} & & \text { (typed abstraction) } \\
\mathrm{a} \rightarrow \mathrm{~b} & =\lambda \mathrm{f} . \mathrm{b} \circ \mathrm{f} \circ \mathrm{a} & & \text { (function = exponential) } \\
\forall \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\lambda \mathrm{x}, \mathrm{y}: \mathrm{a} \cdot \mathrm{M}(\mathrm{x} \mathrm{y}) & & \text { (dependent, polymorphic) }
\end{aligned}
$$

What types are definable?

$$
\begin{aligned}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} \cdot \mathrm{M}) \circ \mathrm{a} & & \text { (typed abstraction) } \\
\mathrm{a} \rightarrow \mathrm{~b} & =\lambda \mathrm{f} . \mathrm{b} \circ \mathrm{foa} & & \text { (function = exponential) } \\
\forall \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\lambda \mathrm{x}, \mathrm{y}: \mathrm{a} \cdot \mathrm{M}(\mathrm{x} \mathrm{y}) & & \text { (dependent, polymorphic) } \\
\mathrm{a}<: \mathrm{b} & \Longleftrightarrow \mathrm{boaob}=\mathrm{a} & & \text { (subtyping) } \\
\mathrm{a} \wedge \mathrm{~b} & =\text { Sub a } \mathrm{b} & & \text { (type intersection) }
\end{aligned}
$$

What types are definable?

$$
\begin{array}{rlrl}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} \cdot \mathrm{M}) \circ \mathrm{a} & & \begin{array}{l}
\text { (typed abstraction) }
\end{array} \\
\mathrm{a} \rightarrow \mathrm{~b} & =\lambda \mathrm{f} . \mathrm{b} \circ \mathrm{foa} & & \text { (function = exponential) } \\
\forall \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\lambda \mathrm{x}, \mathrm{y}: \mathrm{a} \cdot \mathrm{M}(\mathrm{x} \mathrm{y}) & & \text { (dependent, polymorphic) } \\
\mathrm{a}<\mathrm{a} \mathrm{~b} & \Longleftrightarrow \text { boaob }=\mathrm{a} & & \text { (subtyping) } \\
\mathrm{a} \wedge \mathrm{~b} & =\text { Sub a b } & & \text { (type intersection) } \\
\mathrm{a} \times \mathrm{b} & =\text { Prod a b } & & \text { (dropped products) } \\
\mathrm{a}+\mathrm{b} & =\text { Sum a } \mathrm{b} & & \text { (dropped lifted sums) } \\
\exists \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\text { Exists } \lambda \mathrm{y}: \mathrm{a} . \mathrm{M} & \text { (d'd l'd indexed sums) }
\end{array}
$$

What types are definable?

$$
\begin{array}{rlrl}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} \cdot \mathrm{M}) \circ \mathrm{a} & & \begin{array}{l}
\text { (typed abstraction) }
\end{array} \\
\mathrm{a} \rightarrow \mathrm{~b} & =\lambda \mathrm{f} . \mathrm{b} \circ \mathrm{foa} & & \text { (function = exponential) } \\
\forall \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\lambda \mathrm{x}, \mathrm{y}: \mathrm{a} \cdot \mathrm{M}(\mathrm{x} \mathrm{y}) & & \text { (dependent, polymorphic) } \\
\mathrm{a}<\mathrm{b} & \Longleftrightarrow \text { boaob }=\mathrm{a} & & \text { (subtyping) } \\
\mathrm{a} \wedge \mathrm{~b} & =\text { Sub a b } & & \text { (type intersection) } \\
\mathrm{a} \times \mathrm{b} & =\text { Prod a b } & & \text { (dropped products) } \\
\mathrm{a}+\mathrm{b} & =\text { Sum a } \mathrm{b} & & \text { (dropped lifted sums) } \\
\exists \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\text { Exists } \lambda \mathrm{y}: \mathrm{a} . \mathrm{M} & \text { (d'd l'd indexed sums) }
\end{array}
$$

Also atoms: type,

What types are definable?

$$
\begin{array}{rlrl}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} \cdot \mathrm{M}) \circ \mathrm{a} & & \begin{array}{l}
\text { (typed abstraction) }
\end{array} \\
\mathrm{a} \rightarrow \mathrm{~b} & =\lambda \mathrm{f} . \mathrm{b} \circ \mathrm{foa} & & \text { (function = exponential) } \\
\forall \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\lambda \mathrm{x}, \mathrm{y}: \mathrm{a} \cdot \mathrm{M}(\mathrm{x} \mathrm{y}) & & \text { (dependent, polymorphic) } \\
\mathrm{a}<\mathrm{b} & \Longleftrightarrow \text { boaob }=\mathrm{a} & & \text { (subtyping) } \\
\mathrm{a} \wedge \mathrm{~b} & =\text { Sub a b } & & \text { (type intersection) } \\
\mathrm{a} \times \mathrm{b} & =\text { Prod a b } & & \text { (dropped products) } \\
\mathrm{a}+\mathrm{b} & =\text { Sum a } \mathrm{b} & & \text { (dropped lifted sums) } \\
\exists \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\text { Exists } \lambda \mathrm{y}: \mathrm{a} . \mathrm{M} & \text { (d'd l'd indexed sums) }
\end{array}
$$

Also atoms: type, any,

What types are definable?

$$
\begin{array}{rlrl}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} \cdot \mathrm{M}) \circ \mathrm{a} & & \begin{array}{l}
\text { (typed abstraction) }
\end{array} \\
\mathrm{a} \rightarrow \mathrm{~b} & =\lambda \mathrm{f} . \mathrm{bofoa} & & \text { (function = exponential) } \\
\forall \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\lambda \mathrm{x}, \mathrm{y}: \mathrm{a} \cdot \mathrm{M}(\mathrm{x} \mathrm{y}) & & \text { (dependent, polymorphic) } \\
\mathrm{a}<: \mathrm{b} & \Longleftrightarrow \text { boaob }=\mathrm{a} & & \text { (subtyping) } \\
\mathrm{a} \wedge \mathrm{~b} & =\text { Sub a b } & & \text { (type intersection) } \\
\mathrm{a} \times \mathrm{b} & =\text { Prod a b } & & \text { (dropped products) } \\
\mathrm{a}+\mathrm{b} & =\text { Sum a b } & & \text { (dropped lifted sums) } \\
\exists \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\text { Exists } \lambda \mathrm{y}: \mathrm{a} . \mathrm{M} & \text { (d'd l'd indexed sums) }
\end{array}
$$

Also atoms: type, any, nil, unit, bool,

What types are definable?

$$
\begin{array}{rlrl}
\mathrm{x}: \mathrm{a} & \Longleftrightarrow \mathrm{ax}=\mathrm{x} & & \text { (inhabitation) } \\
\lambda \mathrm{x}: \mathrm{a} \cdot \mathrm{M} & =(\lambda \mathrm{x} \cdot \mathrm{M}) \circ \mathrm{a} & & \begin{array}{l}
\text { (typed abstraction) }
\end{array} \\
\mathrm{a} \rightarrow \mathrm{~b} & =\lambda \mathrm{f} . \mathrm{bofoa} & & \text { (function = exponential) } \\
\forall \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\lambda \mathrm{x}, \mathrm{y}: \mathrm{a} \cdot \mathrm{M}(\mathrm{x} \mathrm{y}) & & \text { (dependent, polymorphic) } \\
\mathrm{a}<: \mathrm{b} & \Longleftrightarrow \text { boaob }=\mathrm{a} & & \text { (subtyping) } \\
\mathrm{a} \wedge \mathrm{~b} & =\text { Sub a b } & & \text { (type intersection) } \\
\mathrm{a} \times \mathrm{b} & =\text { Prod a b } & & \text { (dropped products) } \\
\mathrm{a}+\mathrm{b} & =\text { Sum a b } & & \text { (dropped lifted sums) } \\
\exists \mathrm{y}: \mathrm{a} \cdot \mathrm{M} & =\text { Exists } \lambda \mathrm{y}: \mathrm{a} . \mathrm{M} & \text { (d'd l'd indexed sums) }
\end{array}
$$

Also atoms: type, any, nil, unit, bool, nat

The universal type of types

$$
\text { type }:=\lambda \text { a. } \mathbf{I} \mid \text { a } \mid \text { aoa } \mid \text { aoaoa } \mid \ldots
$$

The universal type of types
type $:=\lambda \mathrm{a} . \mathbf{I}|\mathrm{a}| \mathrm{a} \circ \mathrm{a}|\mathrm{a} \circ \mathrm{a} \circ \mathrm{a}| \ldots=\lambda \mathrm{a} . \mathbf{Y} \lambda \mathrm{b} . \mathbf{I} \mid \mathrm{a} \circ \mathrm{b}$

The universal type of types
type $:=\lambda a . \mathbf{I}|\mathrm{a}| \mathrm{aoa} \mid$ aoaoa $|\ldots=\lambda a . \mathbf{Y} \lambda \mathrm{b} . \mathbf{I}| \mathrm{aob}$
Theorem
type is a closure,

The universal type of types

type $:=\lambda \mathrm{a} . \mathbf{I}|\mathrm{a}| \mathrm{aoa}|\mathrm{aoaoa}| \ldots=\lambda \mathrm{a} . \mathrm{Y} \lambda \mathrm{b} . \mathbf{I} \mid \mathrm{aob}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.

The universal type of types

type $:=\lambda a . \mathbf{I}|\mathrm{a}| \mathrm{aoa} \mid$ aoaoa $|\ldots=\lambda a . \mathbf{Y} \lambda \mathrm{b} . \mathbf{I}| \mathrm{aob}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.
Proof.
(closure) type $\sqsupseteq \lambda \mathrm{a} . \mathrm{a}=\mathbf{I}$,

The universal type of types

type $:=\lambda \mathrm{a} . \mathbf{I}|\mathrm{a}| \mathrm{a} \circ \mathrm{a}|\mathrm{aoaoa}| \ldots=\lambda \mathrm{a} . \mathrm{Y} \lambda \mathrm{b} . \mathbf{I} \mid \mathrm{a} \circ \mathrm{b}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.
Proof.
(closure) type $\sqsupseteq \lambda a . a=\mathbf{I}$, and type(type a) = type a.

The universal type of types

type $:=\lambda \mathrm{a} . \mathbf{I}|\mathrm{a}| \mathrm{a} \circ \mathrm{a} \mid$ aoaoa $|\ldots=\lambda \mathrm{a} . \mathbf{Y} \lambda \mathrm{b} . \mathbf{I}| \mathrm{aob}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.
Proof.
(closure) type $\sqsupseteq \lambda a . a=\mathbf{I}$, and type(type a) = type a.
(\Longrightarrow) Suppose a:type, i.e., $a=\mathbf{I}|a| a \circ a \mid \ldots$.

The universal type of types

type $:=\lambda \mathrm{a}$. $\mathbf{I}|\mathrm{a}| \mathrm{aoa} \mid$ aoaoa $|\ldots=\lambda \mathrm{a} . \mathrm{Y} \lambda \mathrm{b} . \mathbf{I}| \mathrm{a} \circ \mathrm{b}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.
Proof.
(closure) type $\sqsupseteq \lambda$ a. $\mathrm{a}=\mathbf{I}$, and type(type a) = type a.
(\Longrightarrow) Suppose a:type, i.e., $a=I|a|$ aoa $\mid \ldots$
Then $\mathrm{a} \sqsupseteq \mathbf{I}$,

The universal type of types

type $:=\lambda \mathrm{a}$. $\mathbf{I}|\mathrm{a}| \mathrm{aoa} \mid$ aoaoa $|\ldots=\lambda \mathrm{a} . \mathrm{Y} \lambda \mathrm{b} . \mathbf{I}| \mathrm{a} \circ \mathrm{b}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.
Proof.
(closure) type $\sqsupseteq \lambda$ a. $\mathrm{a}=\mathbf{I}$, and type(type a) = type a.
(\Longrightarrow) Suppose a:type, i.e., $a=I|a|$ aoa $\mid \ldots$
Then $\mathrm{a} \sqsupseteq \mathbf{I}$, and $\mathrm{a} \circ \mathrm{a}=\mathrm{a}$.

The universal type of types

type $:=\lambda \mathrm{a}$. $\mathbf{I}|\mathrm{a}| \mathrm{aoa}|\mathrm{aoaoa}| \ldots=\lambda \mathrm{a} . \mathrm{Y} \lambda \mathrm{b} . \mathbf{I} \mid \mathrm{a} \circ \mathrm{b}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.
Proof.
(closure) type $\sqsupseteq \lambda \mathrm{a} . \mathrm{a}=\mathbf{I}$, and type(type a) = type a.
(\Longrightarrow) Suppose a:type, i.e., $a=I|a|$ aoa $\mid \ldots$
Then $\mathrm{a} \sqsupseteq \mathbf{I}$, and $\mathrm{a} \circ \mathrm{a}=\mathrm{a}$.
(\Longleftarrow) If $\mathrm{a} \sqsupseteq \mathbf{I}$ then $(\mathbf{I}|\mathrm{a}| \mathrm{a} \circ \mathrm{a} \mid \ldots)=(\mathrm{a}|\mathrm{a} \circ \mathrm{a}| \ldots)$.

The universal type of types

type $:=\lambda \mathrm{a} . \mathbf{I}|\mathrm{a}| \mathrm{aoa}|\mathrm{aoaoa}| \ldots=\lambda \mathrm{a} . \mathrm{Y} \lambda \mathrm{b} . \mathbf{I} \mid \mathrm{a} \circ \mathrm{b}$
Theorem
type is a closure, and a:type \Longleftrightarrow a is a closure.
Proof.
(closure) type $\sqsupseteq \lambda$ a. $\mathrm{a}=\mathbf{I}$, and type(type a) = type a.
(\Longrightarrow) Suppose a: type, ie., $a=\mathbf{I}|\mathrm{a}|$ aaa $\mid \ldots$.
Then $\mathrm{a} \sqsupseteq \mathbf{I}$, and $\mathrm{a} \circ \mathrm{a}=\mathrm{a}$.
(\Longleftarrow) If $a \sqsupseteq \mathbf{I}$ then $(\mathbf{I}|\mathrm{a}|$ aaa $\mid \ldots)=(\mathrm{a} \mid$ aaa $\mid \ldots)$.
If also $\mathrm{a}=$ aaa, the chain collapses to a.

Maximal and minimal types

Everything is fixed by the identity,

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

$$
\text { any }:=\mathbf{I} \quad=\text { type } \mathbf{I}
$$

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

$$
\text { any }:=\mathbf{I} \quad=\text { type } \mathbf{I}
$$

$$
\text { inhab }(\text { any })=\mathcal{B}
$$

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

$$
\begin{aligned}
& \text { any }:=\mathbf{I}=\text { type } \mathbf{I} . \\
& \text { inhab(any })=\mathcal{B}
\end{aligned}
$$

Every type is inhabited by \top,

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

$$
\begin{aligned}
& \text { any }:=\mathbf{I}=\text { type } \mathbf{I} . \\
& \text { inhab(any })=\mathcal{B}
\end{aligned}
$$

Every type is inhabited by \top, so the smallest type is

$$
\text { nil }:=\top \quad=\text { type } \top .
$$

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

$$
\begin{aligned}
& \text { any }:=\mathbf{I}=\text { type } \mathbf{I} . \\
& \text { inhab(any })=\mathcal{B}
\end{aligned}
$$

Every type is inhabited by \top, so the smallest type is

$$
\begin{aligned}
& \text { nil }:=\top=\text { type } \top . \\
& \text { inhab(nil })=\{\top\}
\end{aligned}
$$

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

$$
\begin{aligned}
& \text { any }:=\mathbf{I}=\text { type } \mathbf{I} . \\
& \text { inhab(any })=\mathcal{B}
\end{aligned}
$$

Every type is inhabited by \top, so the smallest type is

$$
\begin{aligned}
& \text { nil }:=\top=\text { type } \top . \\
& \text { inhab(nil })=\{\top\}
\end{aligned}
$$

nil is: terminal object,

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

$$
\begin{aligned}
& \text { any }:=\mathbf{I}=\text { type } \mathbf{I} . \\
& \text { inhab }(\text { any })=\mathcal{B}
\end{aligned}
$$

Every type is inhabited by T, so the smallest type is

$$
\begin{aligned}
& \text { nil }:=\top=\text { type } \top . \\
& \text { inhab(nil })=\{T\}
\end{aligned}
$$

nil is: terminal object, dropped initial object.
(\mathcal{B} has no initial object)

Function types (exponentials)

Definition
For any terms a, b, define the conjugation operator

$$
\mathrm{a} \rightarrow \mathrm{~b}:=\lambda \mathrm{f} . \mathrm{b} \circ f \circ \mathrm{a} \quad=\lambda \mathrm{f}, \mathrm{x} . \mathrm{b}(\mathrm{f}(\mathrm{a} \times))
$$

Function types (exponentials)

Definition
For any terms a, b, define the conjugation operator

$$
\mathrm{a} \rightarrow \mathrm{~b}:=\lambda \mathrm{f} . \mathrm{b} \circ f \circ \mathrm{a} \quad=\lambda \mathrm{f}, \mathrm{x} . \mathrm{b}(\mathrm{f}(\mathrm{a} \times))
$$

(associates to the right)

Function types (exponentials)

Definition
For any terms a, b, define the conjugation operator

$$
\mathrm{a} \rightarrow \mathrm{~b}:=\lambda \mathrm{f} . \mathrm{b} \circ f \circ \mathrm{a} \quad=\lambda \mathrm{f}, \mathrm{x} . \mathrm{b}(\mathrm{f}(\mathrm{a} \times))
$$

(associates to the right)
Now define a binary operation on types

$$
\text { Exp }:=\text { type } \rightarrow \text { type } \rightarrow \text { type }(\lambda a, b . a \rightarrow b) .
$$

Function types (exponentials)

Definition
For any terms a, b, define the conjugation operator

$$
\mathrm{a} \rightarrow \mathrm{~b}:=\lambda \mathrm{f} . \mathrm{b} \circ f \circ \mathrm{a} \quad=\lambda \mathrm{f}, \mathrm{x} . \mathrm{b}(\mathrm{f}(\mathrm{a} \times))
$$

(associates to the right)
Now define a binary operation on types

$$
\begin{aligned}
\operatorname{Exp} & :=\text { type } \rightarrow \text { type } \rightarrow \text { type }(\lambda a, b . a \rightarrow b) . \\
& =\lambda a: \text { type. type } \rightarrow \text { type } \lambda b . a \rightarrow b
\end{aligned}
$$

Function types (exponentials)

Definition
For any terms a, b, define the conjugation operator

$$
\mathrm{a} \rightarrow \mathrm{~b}:=\lambda \mathrm{f} . \mathrm{b} \circ f \circ \mathrm{a} \quad=\lambda \mathrm{f}, \mathrm{x} . \mathrm{b}(\mathrm{f}(\mathrm{a} \times))
$$

(associates to the right)
Now define a binary operation on types

$$
\begin{aligned}
\operatorname{Exp} & :=\text { type } \rightarrow \text { type } \rightarrow \text { type }(\lambda a, b . a \rightarrow b) . \\
& =\lambda a: \text { type. type } \rightarrow \text { type } \lambda b . a \rightarrow b \\
& =\lambda a: \text { type, } b: \text { type. type }(a \rightarrow b)
\end{aligned}
$$

Function types (exponentials)

Definition

For any terms a, b, define the conjugation operator

$$
\mathrm{a} \rightarrow \mathrm{~b}:=\lambda \mathrm{f} . \mathrm{b} \circ f \circ \mathrm{a} \quad=\lambda \mathrm{f}, \mathrm{x} . \mathrm{b}(\mathrm{f}(\mathrm{a} \times))
$$

(associates to the right)
Now define a binary operation on types

$$
\begin{aligned}
\operatorname{Exp} & :=\text { type } \rightarrow \text { type } \rightarrow \text { type }(\lambda a, b . a \rightarrow b) . \\
& =\lambda a: \text { type. type } \rightarrow \text { type } \lambda b . a \rightarrow b \\
& =\lambda a: \text { type, } b: \text { type. type }(a \rightarrow b)
\end{aligned}
$$

We'll use this form often:
some_term := its_type untyped_definition.

Navigating a minefield.

Consider the section-retract pair

Navigating a minefield.

Consider the section-retract pair

$$
R_{m n}:=\lambda f, w_{1}, \ldots, w_{m}, x, y_{1}, \ldots, y_{n} \cdot f x
$$

Navigating a minefield.

Consider the section-retract pair

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{mn}}:=\lambda \mathrm{f}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}, \times, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}} . \mathrm{f} \times \\
& \mathrm{L}_{\mathrm{mn}}:=\lambda \mathrm{g}, \mathrm{x} . \mathrm{g} \quad \mathrm{~T} \sim \mathrm{~m} \times \sim \mathrm{T}
\end{aligned}
$$

Navigating a minefield.

Consider the section-retract pair

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{mn}}:=\lambda \mathrm{f}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}, \mathrm{x}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}} . \mathrm{f} \times \\
& \mathrm{L}_{\mathrm{mn}}:=\lambda \mathrm{g}, \mathrm{x} \cdot \mathrm{~g} \mathrm{~T}^{\sim \mathrm{m}} \times \mathrm{T} \sim \mathrm{n}
\end{aligned}
$$

so that

$$
\mathrm{L}_{\mathrm{mn}} \circ \mathrm{R}_{\mathrm{mn}}=\mathbf{I}
$$

Navigating a minefield.

Consider the section-retract pair

$$
\begin{aligned}
& R_{m n}:=\lambda f, w_{1}, \ldots, w_{m}, x, y_{1}, \ldots, y_{n} . f \times x \\
& L_{m n}:=\lambda g, x . g T^{\sim m} \times T \sim n
\end{aligned}
$$

so that

$$
\begin{aligned}
& \mathrm{L}_{m n} \circ \mathrm{R}_{m n}=\mathbf{I} \\
& \mathrm{R}_{m n} \circ \mathrm{~L}_{m n}=\lambda \mathrm{f}, \underline{\mathrm{w}}, \mathrm{x}, \underline{\mathrm{y}} . \mathrm{f} \quad \mathrm{~T}^{\sim m} \times \mathrm{T}^{\sim n}
\end{aligned}
$$

Navigating a minefield.

Consider the section-retract pair

$$
\begin{aligned}
& R_{m n}:=\lambda f, w_{1}, \ldots, w_{m}, x, y_{1}, \ldots, y_{n} . f \times x \\
& L_{m n}:=\lambda g, x . g T^{\sim m} \times T \sim n
\end{aligned}
$$

so that

$$
\begin{aligned}
& \mathrm{L}_{m n} \circ \mathrm{R}_{m n}=\mathbf{I} \\
& \mathrm{R}_{\mathrm{mn}} \circ \mathrm{~L}_{m n}=\lambda \mathrm{f}, \underline{\mathrm{w}}, \mathrm{x}, \underline{\mathrm{y}} . \mathrm{f} \mathrm{~T}^{\sim \mathrm{m}} \times \top^{\sim n} \sqsupseteq \mathbf{I}
\end{aligned}
$$

Navigating a minefield.

Consider the section-retract pair

$$
\begin{aligned}
& R_{m n}:=\lambda f, w_{1}, \ldots, w_{m}, x, y_{1}, \ldots, y_{n} . f \times x \\
& L_{m n}:=\lambda g, x . g T^{\sim m} \times T \sim n
\end{aligned}
$$

so that

$$
\begin{aligned}
& \mathrm{L}_{m n} \circ \mathrm{R}_{\mathrm{mn}}=\mathbf{I} \\
& \mathrm{R}_{\mathrm{mn}} \circ \mathrm{~L}_{\mathrm{mn}}=\lambda \mathrm{f}, \underline{\mathrm{w}}, \times, \underline{\mathrm{y}} . \mathrm{f} \top^{\sim m} \times \top^{\sim n} \sqsupseteq \mathbf{I}
\end{aligned}
$$

Hence $R_{m n} \circ L_{m n}$ is a closure.

Navigating a minefield.

Consider the section-retract pair

$$
\begin{aligned}
& R_{m n}:=\lambda f, w_{1}, \ldots, w_{m}, x, y_{1}, \ldots, y_{n} . f \times x \\
& L_{m n}:=\lambda g, x . g T^{\sim m} \times T \sim n
\end{aligned}
$$

so that

$$
\begin{aligned}
& L_{m n} \circ R_{m n}=\mathbf{I} \\
& R_{m n} \circ L_{m n}=\lambda f, \underline{w}, x, \underline{y} . f T^{\sim m} \times T^{\sim n} \sqsupseteq \mathbf{I}
\end{aligned}
$$

Hence $R_{m n} \circ L_{m n}$ is a closure.
(often omit indices: $\mathrm{L} \circ \mathrm{R}=\mathrm{I}$)

Navigating a minefield.

Consider the section-retract pair

$$
\begin{aligned}
& R_{m n}:=\lambda f, w_{1}, \ldots, w_{m}, x, y_{1}, \ldots, y_{n} . f \times x \\
& L_{m n}:=\lambda g, x . g T^{\sim m} \times T \sim n
\end{aligned}
$$

so that

$$
\begin{aligned}
& \mathrm{L}_{m n} \circ \mathrm{R}_{\mathrm{mn}}=\mathbf{I} \\
& \mathrm{R}_{\mathrm{mn}} \circ \mathrm{~L}_{\mathrm{mn}}=\lambda \mathrm{f}, \underline{\mathrm{w}}, \times, \underline{\mathrm{y}} . \mathrm{f} \top^{\sim m} \times T^{\sim n} \sqsupseteq \mathbf{I}
\end{aligned}
$$

Hence $R_{m n} \circ L_{m n}$ is a closure.
(often omit indices: $\mathrm{L} \circ \mathrm{R}=\mathrm{I}$)
Think of L as a minefield of errors and R as a map through the minefield.

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(a \rightarrow a) \rightarrow a \rightarrow a
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(a \rightarrow a) \rightarrow a \rightarrow a \quad \text { note variance of each } a
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(a \rightarrow a) \rightarrow a \rightarrow a \quad \text { note variance of each } a
$$

Consider the action of $(L \rightarrow R) \rightarrow R \rightarrow L$ on 1 :

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a} \quad \text { note variance of each } \mathrm{a}
$$

Consider the action of $(L \rightarrow R) \rightarrow R \rightarrow L$ on 1 :

$$
(L \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a} \quad \text { note variance of each } \mathrm{a}
$$

Consider the action of $(L \rightarrow R) \rightarrow R \rightarrow L$ on 1 :

$$
\begin{aligned}
& (L \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x \\
& \quad=L((\lambda f, x . f x)(R \circ f \circ L)(R x))
\end{aligned}
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a} \quad \text { note variance of each } \mathrm{a}
$$

Consider the action of $(L \rightarrow R) \rightarrow R \rightarrow L$ on 1 :

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x \\
& =L((\lambda f, x . f x)(R \circ f \circ L)(R x)) \\
& =L(R \circ f \circ L(R x))
\end{aligned}
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a} \quad \text { note variance of each } \mathrm{a}
$$

Consider the action of $(L \rightarrow R) \rightarrow R \rightarrow L$ on 1 :

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x \\
& =L((\lambda f, x . f x)(R \circ f \circ L)(R x)) \\
& =L(R \circ f \circ L(R x)) \\
& =(L \circ R) \circ f \circ(L \circ R) x
\end{aligned}
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a} \quad \text { note variance of each } \mathrm{a}
$$

Consider the action of $(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$ on 1 :

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x \\
& =L((\lambda f, x . f x)(R \circ f \circ L)(R x)) \\
& =L(R \circ f \circ L(R x)) \\
& =(L \circ R) \circ f \circ(L \circ R) x \\
& =I \circ f \circ \mathbf{I} x
\end{aligned}
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a} \quad \text { note variance of each } \mathrm{a}
$$

Consider the action of $(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$ on 1 :

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x \\
& =L((\lambda f, x . f x)(R \circ f \circ L)(R x)) \\
& =L(R \circ f \circ L(R x)) \\
& =(L \circ R) \circ f \circ(L \circ R) x \\
& =I \circ f \circ I x \\
& =f x
\end{aligned}
$$

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a} \quad \text { note variance of each } \mathrm{a}
$$

Consider the action of $(L \rightarrow R) \rightarrow R \rightarrow L$ on 1 :

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x \\
& =L((\lambda f, x . f x)(R \circ f \circ L)(R x)) \\
& =L(R \circ f \circ L(R x)) \\
& =(L \circ R) \circ f \circ(L \circ R) x \\
& =I \circ f \circ I x \\
& =f x \quad=1 f x
\end{aligned}
$$

Hence $1:(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$.

Avoiding errors.

The Church numeral $1=\lambda \mathrm{f}, \mathrm{x} . \mathrm{f} \times$ has simple type

$$
(a \rightarrow a) \rightarrow a \rightarrow a \quad \text { note variance of each } a
$$

Consider the action of $(L \rightarrow R) \rightarrow R \rightarrow L$ on 1 :

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . f x) f x \\
& =L((\lambda f, x . f x)(R \circ f \circ L)(R x)) \\
& =L(R \circ f \circ L(R x)) \\
& =(L \circ R) \circ f \circ(L \circ R) x \\
& =I \circ f \circ I x \\
& =f x \quad=1 f x
\end{aligned}
$$

Hence $1:(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$. actually works for any section-retract pair

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda \mathrm{f}, \mathrm{x} . \mathrm{x} f$?

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda \mathrm{f}, \mathrm{x} . \mathrm{x} f$?

$$
(L \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \cdot x f) f x
$$

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda f, x . x f$?

$$
\begin{aligned}
& (L \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \cdot x f) f x \\
& \quad=L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x))
\end{aligned}
$$

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda f, x . x f$?

$$
\begin{aligned}
& (L \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x . x f) f x \\
& \quad=L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x)) \\
& \quad=L(R \times(R \circ f \circ L))
\end{aligned}
$$

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda f, x . x f$?

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \cdot x f) f x \\
& =L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x)) \\
& =L(R \times(R \circ f \circ L)) \\
& =L x
\end{aligned}
$$

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda f, x . x f$?

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \cdot x f) f x \\
& =L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x)) \\
& =L(R \times(R \circ f \circ L)) \\
& =L x \\
& =x T
\end{aligned}
$$

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda \mathrm{f}, \mathrm{x} . \mathrm{x} f$?

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \cdot x f) f x \\
& =L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x)) \\
& =L(R \times(R \circ f \circ L)) \\
& =L x \\
& =x T \quad \neq x f
\end{aligned}
$$

oops: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{xf} \div(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$.

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda \mathrm{f}, \mathrm{x} . \mathrm{x} f$?

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \times f) f x \\
& =L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x)) \\
& =L(R \times(R \circ f \circ L)) \\
& =L \times \\
& =x T \quad \neq x f
\end{aligned}
$$

oops: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{xf} \div(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$.
Can we force any incorrect term up to $\top=$ error?

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda \mathrm{f}, \mathrm{x} . \mathrm{x} f$?

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \cdot x f) f x \\
& =L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x)) \\
& =L(R \times(R \circ f \circ L)) \\
& =L x \\
& =x T \quad \neq x f
\end{aligned}
$$

oops: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{xf} \div(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$.
Can we force any incorrect term up to $\top=$ error?
Can we raise any partial term up to a fixedpoint?

Failing to avoid errors.

What about non-Church numerals, e.g., $\lambda \mathrm{f}, \mathrm{x} . \mathrm{x} f$?

$$
\begin{aligned}
(L & \rightarrow R) \rightarrow R \rightarrow L(\lambda f, x \cdot x f) f x \\
& =L((\lambda f, x \cdot x f)(R \circ f \circ L)(R x)) \\
& =L(R \times(R \circ f \circ L)) \\
& =L x \\
& =x T \quad \neq x f
\end{aligned}
$$

oops: $\lambda \mathrm{f}, \mathrm{x} . \mathrm{xf} \div(\mathrm{L} \rightarrow \mathrm{R}) \rightarrow \mathrm{R} \rightarrow \mathrm{L}$.
Can we force any incorrect term up to $\top=$ error?
Can we raise any partial term up to a fixedpoint?
...sometimes...

The type of divergent computations

$$
\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle
$$

The type of divergent computations

$$
\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=\text { type }\langle\top\rangle
$$

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.

Proof.
Since $\perp T=\perp, \quad \perp$: div.

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.

Proof.
Since $\perp T=\perp, \quad \perp$: div.
Any other term q: div in question must converge

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.
Proof.
Since $\perp \top=\perp, \quad \perp$: div.
Any other term q: div in question must converge
(recall q converges iff for some $\mathrm{m}, \mathrm{q} \mathrm{T}^{\sim \mathrm{m}} \equiv \top$).

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.
Proof.
Since $\perp \top=\perp, \quad \perp$: div.
Any other term $\mathrm{q}:$ div in question must converge
(recall q converges iff for some $\mathrm{m}, \mathrm{q} \mathrm{T}^{\sim \mathrm{m}} \equiv \top$).
Then

$$
\mathrm{q}=\operatorname{div} \mathrm{q}
$$

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.
Proof.
Since $\perp \top=\perp, \quad \perp$: div.
Any other term q: div in question must converge
(recall q converges iff for some $\mathrm{m}, \mathrm{q} \mathrm{T}^{\sim \mathrm{m}} \equiv \top$).
Then

$$
\begin{aligned}
\mathrm{q} & =\operatorname{div} \mathrm{q} \\
& =\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle \mathrm{q}
\end{aligned}
$$

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.
Proof.
Since $\perp \top=\perp, \quad \perp$: div.
Any other term q: div in question must converge
(recall q converges iff for some $\mathrm{m}, \mathrm{q} \mathrm{T}^{\sim \mathrm{m}} \equiv \top$).
Then

$$
\begin{aligned}
\mathrm{q} & =\operatorname{div} \mathrm{q} \\
& =\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle \mathrm{q} \\
& =\bigsqcup \mathrm{m} \geq 0 . \mathrm{q} T \sim \mathrm{~m}
\end{aligned}
$$

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.
Proof.
Since $\perp \top=\perp, \quad \perp$: div.
Any other term q: div in question must converge
(recall q converges iff for some $\mathrm{m}, \mathrm{q} \mathrm{T}^{\sim \mathrm{m}} \equiv \top$).
Then

$$
\begin{aligned}
\mathrm{q} & =\operatorname{div} \mathrm{q} \\
& =\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle \mathrm{q} \\
& =\bigsqcup \mathrm{m} \geq 0 . \mathrm{q} T \sim \mathrm{~m}
\end{aligned}=\top
$$

The type of divergent computations

$\operatorname{div}:=\bigsqcup \mathrm{m} \geq 0 . \mathrm{L}_{\mathrm{m} 0}=\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle=$ type $\langle T\rangle$
Theorem inhab(div) $=\{\perp, \top\}$.
Proof.
Since $\perp \top=\perp, \quad \perp$: div.
Any other term q: div in question must converge
(recall q converges iff for some $\mathrm{m}, \mathrm{q} \mathrm{T}^{\sim \mathrm{m}} \equiv \top$).
Then

$$
\begin{aligned}
\mathrm{q} & =\operatorname{div} \mathrm{q} \\
& =\bigsqcup \mathrm{m} \geq 0 . \mathrm{m}\langle T\rangle \mathrm{q} \\
& =\bigsqcup \mathrm{m} \geq 0 . \mathrm{q} T \sim \mathrm{~m}
\end{aligned}=\top
$$

Moral: every candidate q stepped on a mine somewhere.

Protecting terms from divergence

We'll also need to make terms temporarily inert

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle \quad=\lambda f, x, y \cdot f(\lambda g \cdot g \times y)
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry } & :=\lambda f, x, y \cdot f\langle x, y\rangle \\
\text { uncurry } & :=\lambda g,\langle x, y\rangle \cdot g \times y
\end{aligned} \quad=\lambda f, x, y \cdot f(\lambda g \cdot g \times y)
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle & =\lambda f, x, y \cdot f(\lambda g \cdot g \times y) \\
\text { uncurry }:=\lambda g,\langle x, y\rangle \cdot g \times y & =\lambda g, p \cdot p g
\end{aligned}
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle & =\lambda f, x, y \cdot f(\lambda g \cdot g \times y) \\
\text { uncurry }:=\lambda g,\langle x, y\rangle \cdot g \times y & =\lambda g, p \cdot p g
\end{aligned}
$$

Then

$$
\text { uncurryocurry = } \mathbf{I}
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle & =\lambda f, x, y \cdot f(\lambda g \cdot g \times y) \\
\text { uncurry }:=\lambda g,\langle x, y\rangle \cdot g \times y & =\lambda g, p \cdot p g
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryocurry }=\mathbf{I} \\
& \text { curryouncurry } \ddagger \mathbf{I}
\end{aligned}
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle & =\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f} \\
\text { uncurry }:=\lambda \mathrm{g},\langle\mathrm{x}, \mathrm{y}\rangle \cdot \mathrm{g} x \mathrm{y} & =\lambda \mathrm{g}, \mathrm{p} \cdot \mathrm{p} \mathrm{~g}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryocurry }=\mathbf{I} \\
& \text { curryouncurry } \ddagger \mathbf{I}
\end{aligned}
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle & =\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f}(\\
\text { uncurry }:=\lambda \mathrm{g},\langle\mathrm{x}, \mathrm{y}\rangle \cdot \mathrm{g} x \mathrm{y} & =\lambda \mathrm{g}, \mathrm{p} \cdot \mathrm{p} \mathrm{~g}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryo curry }=\mathbf{I} \\
& \text { curryo uncurry } \ddagger \mathbf{I}
\end{aligned}
$$

For example is $q=\lambda f, \quad f(f \perp): a \rightarrow a$?

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle & =\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f}(\\
\text { uncurry }:=\lambda \mathrm{g},\langle\mathrm{x}, \mathrm{y}\rangle \cdot \mathrm{g} x \mathrm{y} & =\lambda \mathrm{g}, \mathrm{p} \cdot \mathrm{p} \mathrm{~g}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryo curry }=\mathbf{I} \\
& \text { curryo uncurry } \ddagger \mathbf{I}
\end{aligned}
$$

For example is $q=\lambda f, \ldots f(f \perp): a \rightarrow a$? How do we see the second f without diverging?

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle & =\lambda \mathrm{f}, \mathrm{x}, \mathrm{y} \cdot \mathrm{f}(\\
\text { uncurry }:=\lambda \mathrm{g},\langle\mathrm{x}, \mathrm{y}\rangle \cdot \mathrm{g} x \mathrm{y} & =\lambda \mathrm{g}, \mathrm{p} \cdot \mathrm{p} \mathrm{~g}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryocurry }=\mathbf{I} \\
& \text { curryo uncurry } \ddagger \mathbf{I}
\end{aligned}
$$

For example is $q=\lambda f, \ldots f(f \perp): a \rightarrow a$? How do we see the second f without diverging?

$$
\mathrm{C} \rightarrow \mathrm{Uq}
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle & =\lambda f, x, y \cdot f(\lambda g \cdot g \times y) \\
\text { uncurry }:=\lambda g,\langle x, y\rangle \cdot g \times y & =\lambda g, p \cdot p g
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryocurry }=\mathbf{I} \\
& \text { curryo uncurry } \ddagger \mathbf{I}
\end{aligned}
$$

For example is $q=\lambda f, \ldots f(f \perp): a \rightarrow a$? How do we see the second f without diverging?

$$
C \rightarrow U q=\lambda f . U\left(\lambda_{-} . C f(C f \perp)\right)
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle & =\lambda f, x, y \cdot f(\lambda g \cdot g \times y) \\
\text { uncurry }:=\lambda g,\langle x, y\rangle \cdot g \times y & =\lambda g, p \cdot p g
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryocurry }=\mathbf{I} \\
& \text { curryo uncurry } \ddagger \mathbf{I}
\end{aligned}
$$

For example is $q=\lambda f, \ldots f(f \perp): a \rightarrow a$? How do we see the second f without diverging?

$$
\begin{aligned}
\mathrm{C} \rightarrow \mathrm{Uq} & =\lambda \mathrm{f} . \mathrm{U}\left(\lambda_{-} \cdot \mathrm{C} f(\mathrm{Cf} \perp)\right) \\
& =\lambda \mathrm{f} .(\mathrm{U} \circ \mathrm{C}) \lambda_{-} \cdot \mathrm{f}(\mathrm{Cf} \perp)
\end{aligned}
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle & =\lambda f, x, y \cdot f(\lambda g \cdot g \times y) \\
\text { uncurry }:=\lambda g,\langle x, y\rangle \cdot g \times y & =\lambda g, p \cdot p g
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryocurry }=\mathbf{I} \\
& \text { curryo uncurry } \ddagger \mathbf{I}
\end{aligned}
$$

For example is $q=\lambda f, \ldots f(f \perp): a \rightarrow a$? How do we see the second f without diverging?

$$
\begin{aligned}
\mathrm{C} \rightarrow \mathrm{Uq} & =\lambda \mathrm{f} . \mathrm{U}\left(\lambda_{-} \cdot \mathrm{C} f(\mathrm{Cf} \perp)\right) \\
& =\lambda \mathrm{f} \cdot(\mathrm{UoC}) \lambda_{-} \cdot \mathrm{f}(\mathrm{Cf} \perp) \\
& =\lambda \mathrm{f}, \ldots \mathrm{f}(\lambda \mathrm{x} \cdot \mathrm{f}\langle\perp, \mathrm{x}\rangle)
\end{aligned}
$$

Protecting terms from divergence

We'll also need to make terms temporarily inert

$$
\begin{aligned}
\text { curry }:=\lambda f, x, y \cdot f\langle x, y\rangle & =\lambda f, x, y \cdot f(\lambda g \cdot g \times y) \\
\text { uncurry }:=\lambda g,\langle x, y\rangle \cdot g \times y & =\lambda g, p \cdot p g
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { uncurryo curry }=\mathbf{I} \\
& \text { curryo uncurry } \ddagger \mathbf{I}
\end{aligned}
$$

For example is $q=\lambda f, \ldots f(f \perp): a \rightarrow a$? How do we see the second f without diverging?

$$
\begin{aligned}
\mathrm{C} \rightarrow \mathrm{Uq} & =\lambda \mathrm{f} . \mathrm{U}\left(\lambda_{-} \cdot \mathrm{C} f(\mathrm{Cf} \perp)\right) \\
& =\lambda \mathrm{f} \cdot(\mathrm{U} \circ \mathrm{C}) \lambda_{-} \cdot \mathrm{f}(\mathrm{Cf} \perp) \\
& =\lambda \mathrm{f},{ }_{-} \cdot \mathrm{f}(\lambda \mathrm{x} \cdot \mathrm{f}\langle\perp, \mathrm{x}\rangle)
\end{aligned}
$$

Closing this operation: \quad type $C \rightarrow U q=\lambda f,{ }_{-} f \top$.

Constructing simple concurrent types

Generalize to functors of mixed variance:
join over all sorts of section-retract pairs.

Constructing simple concurrent types

Generalize to functors of mixed variance: join over all sorts of section-retract pairs.

Simple $:=$ any \rightarrow type (

Constructing simple concurrent types

Generalize to functors of mixed variance: join over all sorts of section-retract pairs.

Simple $:=$ any \rightarrow type (
λf. f curry uncurry

Constructing simple concurrent types

Generalize to functors of mixed variance: join over all sorts of section-retract pairs.

Simple $:=$ any \rightarrow type (
λ f. f curry uncurry
$\mid \bigsqcup m, n \geq 0 . f R_{m n} L_{m n}$

Constructing simple concurrent types

Generalize to functors of mixed variance: join over all sorts of section-retract pairs.

$$
\begin{aligned}
& \text { Simple }:=\text { any } \rightarrow \text { type }(\\
& \quad \lambda \text { f. } f \text { curry uncurry } \\
& \quad \mid \bigsqcup m, n \geq 0 . f R_{m n} L_{m n} \\
& \text {). }
\end{aligned}
$$

- alternate definition

For example
div $=$ Simple $\lambda a, a^{\prime} . a^{\prime}$
nat $<$: Simple $\lambda a, a^{\prime} .\left(a^{\prime} \rightarrow a\right) \rightarrow a \rightarrow a^{\prime}$

Constructing simple concurrent types

Generalize to functors of mixed variance: join over all sorts of section-retract pairs.

$$
\begin{aligned}
& \text { Simple }:=\text { any } \rightarrow \text { type }(\\
& \quad \lambda \text { f. f curry uncurry } \\
& \text {). } \quad ل m, n \geq 0 . f R_{m n} L_{m n}
\end{aligned}
$$

- alternate definition

For example
div $=$ Simple $\lambda a, a^{\prime} . a^{\prime}$
nat $<$: Simple $\lambda a, a^{\prime} .\left(a^{\prime} \rightarrow a\right) \rightarrow a \rightarrow a^{\prime}$
Prod $<$: $\lambda \mathrm{a}:$ type, b :type. Simple $\lambda c, \mathrm{c}^{\prime} .(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c}) \rightarrow \mathrm{c}^{\prime}$

Constructing simple concurrent types

Generalize to functors of mixed variance: join over all sorts of section-retract pairs.

$$
\begin{aligned}
& \text { Simple }:=\text { any } \rightarrow \text { type (} \\
& \quad \lambda \text { f. f curry uncurry } \\
& \text {). } \quad ل m, n \geq 0 . f R_{m n} L_{m n} \\
& \text {). }
\end{aligned}
$$

- alternate definition

For example

$$
\begin{aligned}
& \operatorname{div}=\text { Simple } \lambda a, a^{\prime} . a^{\prime} \\
& \text { nat }<\text { Simple } \lambda a, a^{\prime} .\left(a^{\prime} \rightarrow a\right) \rightarrow a \rightarrow a^{\prime} \\
& \text { Prod }<: \lambda a: \text { type, } b: \text { type. Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow c^{\prime}
\end{aligned}
$$

This is amost enough, but there may be T's in the body.

Checking the body for errors

We saw (Simple $\lambda \mathrm{a}, \mathrm{a}^{\prime} . \mathrm{a} \rightarrow \mathrm{a}^{\prime}$) $\lambda \mathrm{f}, \ldots \mathrm{f}(\mathrm{f} \perp)=\lambda \mathrm{f}, \ldots \mathrm{f} \mathrm{T}$.

Checking the body for errors

We saw (Simple $\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \lambda f, \ldots f(f \perp)=\lambda f,{ }_{.} . f$. But is $\lambda \mathrm{f}, \ldots . \mathrm{f} \top: a \rightarrow a$?

Checking the body for errors

We saw (Simple $\lambda \mathrm{a}, \mathrm{a}^{\prime} . \mathrm{a} \rightarrow \mathrm{a}^{\prime}$) $\lambda \mathrm{f}, \ldots \mathrm{f}(\mathrm{f} \perp)=\lambda \mathrm{f}, \ldots \mathrm{f} \mathrm{T}$. But is $\lambda \mathrm{f}, \ldots \mathrm{f} \top: a \rightarrow a$?

Try combining intro and elim forms: $\lambda \mathrm{x} . \mathrm{x} \mathbf{I}=\langle\mathbf{I}\rangle$.

Checking the body for errors

We saw (Simple $\lambda \mathrm{a}, \mathrm{a}^{\prime} . \mathrm{a} \rightarrow \mathrm{a}^{\prime}$) $\lambda \mathrm{f}, \ldots \mathrm{f}(\mathrm{f} \perp)=\lambda \mathrm{f}, \ldots \mathrm{f} \mathrm{T}$. But is $\lambda \mathrm{f}, \ldots \mathrm{f} \top: a \rightarrow a$?

Try combining intro and elim forms: $\lambda \mathrm{x} . \mathrm{x} \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle\left(\lambda f,{ }_{-} \cdot f T\right)
$$

Checking the body for errors

We saw (Simple $\lambda \mathrm{a}, \mathrm{a}^{\prime} . \mathrm{a} \rightarrow \mathrm{a}^{\prime}$) $\lambda \mathrm{f}, \ldots \mathrm{f}(\mathrm{f} \perp)=\lambda \mathrm{f}, \ldots \mathrm{f} \mathrm{T}$. But is $\lambda \mathrm{f}, \ldots \mathrm{f} \top: a \rightarrow a$?

Try combining intro and elim forms: $\lambda \mathrm{x} . \mathrm{x} \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle\left(\lambda f,_{-} . f \top\right)=\lambda x . \mathbf{I} \top
$$

Checking the body for errors

We saw (Simple $\lambda \mathrm{a}, \mathrm{a}^{\prime} . \mathrm{a} \rightarrow \mathrm{a}^{\prime}$) $\lambda \mathrm{f}, \ldots \mathrm{f}(\mathrm{f} \perp)=\lambda \mathrm{f}, \ldots \mathrm{f} \mathrm{T}$. But is $\lambda \mathrm{f}, \ldots \mathrm{f} \top: a \rightarrow a$?

Try combining intro and elim forms: $\lambda x . x \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle\left(\lambda f,_{-} . f \top\right)=\lambda x . \mathbf{I} \top=\top
$$

What about numerals?

Checking the body for errors

We saw (Simple $\lambda \mathrm{a}, \mathrm{a}^{\prime} . \mathrm{a} \rightarrow \mathrm{a}^{\prime}$) $\lambda \mathrm{f}, \ldots \mathrm{f}(\mathrm{f} \perp)=\lambda \mathrm{f}, \ldots \mathrm{f} \mathrm{T}$.
But is $\lambda \mathrm{f}, \ldots \mathrm{f} \top: a \rightarrow a$?
Try combining intro and elim forms: $\lambda x . x \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle\left(\lambda f,_{-} . f \top\right)=\lambda x . \mathbf{I} \top=\top
$$

What about numerals? Is $\lambda \mathrm{f}, \ldots \mathrm{f}(\ldots(\mathrm{f} \top) \ldots)$: nat?

Checking the body for errors

We saw (Simple $\lambda \mathrm{a}, \mathrm{a}^{\prime} . \mathrm{a} \rightarrow \mathrm{a}^{\prime}$) $\lambda \mathrm{f}, \ldots \mathrm{f}(\mathrm{f} \perp)=\lambda \mathrm{f}, \ldots \mathrm{f} \mathrm{T}$.
But is $\lambda \mathrm{f}, \ldots . \mathrm{f} \top: a \rightarrow a$?
Try combining intro and elim forms: $\lambda \mathrm{x} . \mathrm{x} \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle\left(\lambda f,_{-} . f \top\right)=\lambda x . \mathbf{I} \top=\top
$$

What about numerals? Is $\lambda \mathrm{f}, \ldots \mathrm{f}(\ldots(\mathrm{f} \top) \ldots)$: nat?
Try intro and elim forms: λ n.n succ zero $=\langle$ succ, zero \rangle.

Checking the body for errors

We saw (Simple $\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \lambda f, \quad . f(f \perp$) $=\lambda f$, . $f T$.
But is $\lambda \mathrm{f}$, . $\mathrm{f} \top: a \rightarrow a$?
Try combining intro and elim forms: $\lambda \mathrm{x} \cdot \mathrm{x} \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle(\lambda \mathrm{f}, \ldots \mathrm{f} T)=\lambda \mathrm{x} . \mathbf{I} T=T
$$

What about numerals? Is $\lambda \mathrm{f}, \ldots \mathrm{f}(\ldots(\mathrm{f} T) \ldots)$: nat?
Try intro and elim forms: λ n.n succ zero $=\langle$ succ, zero \rangle.

$$
\langle s, z\rangle \lambda f, \ldots f(\ldots(f T) \ldots)=s(\ldots(s T) \ldots)
$$

Checking the body for errors

We saw (Simple $\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \lambda f, \ldots f(f \perp$) $=\lambda f, \ldots f$.
But is $\lambda \mathrm{f}$, . $\mathrm{f} \top: a \rightarrow a$?
Try combining intro and elim forms: $\lambda \mathrm{x} \cdot \mathrm{x} \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle(\lambda \mathrm{f}, \ldots \mathrm{f} T)=\lambda \mathrm{x} . \mathbf{I} T=T
$$

What about numerals? Is $\lambda \mathrm{f}, \ldots \mathrm{f}(\ldots(\mathrm{f} T) \ldots)$: nat?
Try intro and elim forms: λ n.n succ zero $=\langle$ succ, zero \rangle.

$$
\langle s, z\rangle \lambda f, \ldots f(\ldots(f T) \ldots)=s(\ldots(s T) \ldots)=\top
$$

Checking the body for errors

We saw (Simple $\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \lambda f, \ldots f(f \perp$) $=\lambda f, \ldots f T$.
But is $\lambda \mathrm{f}$, . $\mathrm{f} \top: a \rightarrow a$?
Try combining intro and elim forms: $\lambda \mathrm{x} \cdot \mathrm{x} \mathbf{I}=\langle\mathbf{I}\rangle$.

$$
\langle\mathbf{I}\rangle(\lambda \mathrm{f}, \ldots \mathrm{f} T)=\lambda \mathrm{x} . \mathbf{I} \top=\top
$$

What about numerals? Is $\lambda \mathrm{f}, \ldots \mathrm{f}(\ldots(\mathrm{f} T) \ldots)$: nat?
Try intro and elim forms: λ n.n succ zero $=\langle$ succ, zero \rangle.

$$
\langle s, z\rangle \lambda f, \ldots f(\ldots(f T) \ldots)=s(\ldots(s \top) \ldots)=\top
$$

This is enough: descend into body with intro and elim forms.

Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

$$
\lambda \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{v}} \cdot \times \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{a}}
$$

Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

$$
\lambda \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{v}} \cdot \times \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{a}}
$$

where $a, v \geq 0$, and M_{1}, \ldots, M_{a} are concurrent λ-terms.

Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

$$
\lambda \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{v}} \cdot \times \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{a}}
$$

where $\mathrm{a}, \mathrm{v} \geq 0$, and $\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{a}}$ are concurrent λ-terms.
Call x the head variable, and M_{1}, \ldots, M_{a} the body.
Definition
A concurrent Böhm tree is a h.n.f. where the M^{\prime} s are recursively joins of $B T$'s.

Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

$$
\lambda \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{v}} \cdot \times \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{a}}
$$

where $a, v \geq 0$, and M_{1}, \ldots, M_{a} are concurrent λ-terms.
Call x the head variable, and M_{1}, \ldots, M_{a} the body.
Definition
A concurrent Böhm tree is a h.n.f. where the M^{\prime} s are recursively joins of $B T$'s.

Proposition
Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

$$
\lambda \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{v}} \cdot \times \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{a}}
$$

where $a, v \geq 0$, and M_{1}, \ldots, M_{a} are concurrent λ-terms.
Call x the head variable, and M_{1}, \ldots, M_{a} the body.
Definition
A concurrent Böhm tree is a h.n.f. where the M^{\prime} s are recursively joins of BT's.

Proposition
Everything is a join of h.n.f.s (modulo observability $\left.\mathcal{H}^{*}\right)$.
E.g. $\mathbf{J}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x} \mid \mathrm{y}$

Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

$$
\lambda \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{v}} \cdot \times \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{a}}
$$

where $a, v \geq 0$, and M_{1}, \ldots, M_{a} are concurrent λ-terms.
Call x the head variable, and M_{1}, \ldots, M_{a} the body.
Definition
A concurrent Böhm tree is a h.n.f. where the M^{\prime} s are recursively joins of BT's.

Proposition
Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).
E.g. $\mathbf{J}=\lambda \mathrm{x}, \mathrm{y} . \mathrm{x}|\mathrm{y}=(\lambda \mathrm{x}, \mathrm{y} . \mathrm{x})|(\lambda \mathrm{x}, \mathrm{y} . \mathrm{y})$, by η-conversion.

Intermezzo: interpolation by head normal forms

Proposition
Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

Intermezzo: interpolation by head normal forms

Proposition
Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

- Necessary for S, K, J-definable closures.

Intermezzo: interpolation by head normal forms

Proposition
Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

- Necessary for S, K, J-definable closures.
- Fails in Scott's model: step functions.

Intermezzo: interpolation by head normal forms

Proposition
Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

- Necessary for S, K, J-definable closures.
- Fails in Scott's model: step functions.
- Trivially true in the completed term model \mathcal{B}.

Intermezzo: interpolation by head normal forms

Proposition

Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

- Necessary for S, K, J-definable closures.
- Fails in Scott's model: step functions.
- Trivially true in the completed term model \mathcal{B}.

Corollary
If q converges then q extends a h.n.f.;

Intermezzo: interpolation by head normal forms

Proposition

Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

- Necessary for S, K, J-definable closures.
- Fails in Scott's model: step functions.
- Trivially true in the completed term model \mathcal{B}.

Corollary
If q converges then q extends a h.n.f.;
If $\mathrm{q} \ddagger \mathrm{q}^{\prime}$ then $\mathrm{q} \sqsupseteq \mathrm{M} \ddagger \mathrm{q}^{\prime}$ for a h.n.f. M .

Intermezzo: interpolation by head normal forms

Proposition

Everything is a join of h.n.f.s (modulo observability \mathcal{H}^{*}).

- Necessary for S, K, J-definable closures.
- Fails in Scott's model: step functions.
- Trivially true in the completed term model \mathcal{B}.

Corollary
If q converges then q extends a h.n.f.;
If $\mathrm{q} \ddagger \mathrm{q}^{\prime}$ then $\mathrm{q} \sqsupseteq \mathrm{M} \ddagger \mathrm{q}^{\prime}$ for a h.n.f. M .
...and now for the Main Example...

Can't say no? maybe you need a...

Can't say no? maybe you need a...

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)
$$

Can't say no? maybe you need a...

semi $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem inhab $($ semi $)=\{\perp, \mathbf{I}, \top\}$.

Can't say no? maybe you need a...

semi $:=$ type $\left(\left(\right.\right.$ Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.

Proof.
\perp :semi by β-reduction.

Can't say no? maybe you need a...

semi $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.

Proof.
\perp :semi by β-reduction. Any other q :semi converges,

Can't say no? maybe you need a...

semi $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem
inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q : semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Can't say no? maybe you need a...

semi $:=$ type $\left(\left(\right.\right.$ Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $q=T$

Can't say no? maybe you need a...

semi $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem
inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $\mathrm{q}=\mathrm{T}$ or

$$
z=f,
$$

Can't say no? maybe you need a...

semi $:=$ type $\left(\left(\right.\right.$ Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem
inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $q=T$ or

$$
\mathrm{z}=\mathrm{f}, \quad \mathrm{~m}=\mathrm{n} \quad \text { (use minefields), }
$$

Can't say no? maybe you need a...

semi $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem
inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.

Proof.

\perp :semi by β-reduction. Any other q : semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $q=T$ or

$$
\begin{array}{ll}
\mathrm{z}=\mathrm{f}, \quad \mathrm{~m}=\mathrm{n} & \text { (use minefields), } \\
\mathrm{M}_{\mathrm{i}} \sqsubseteq \mathrm{x}_{\mathrm{i}} & \text { (descend, minefields, curry). }
\end{array}
$$

Can't say no? maybe you need a...

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)
$$

Theorem
inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $q=T$ or

$$
\begin{array}{ll}
\mathrm{z}=\mathrm{f}, \quad \mathrm{~m}=\mathrm{n} & \text { (use minefields), } \\
\mathrm{M}_{\mathrm{i}} \sqsubseteq \mathrm{x}_{\mathrm{i}} & \text { (descend, minefields, curry). }
\end{array}
$$

Finally raise q^{\prime} up to I with minefields.

Can't say no? maybe you need a...

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)
$$

Theorem
inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $q=T$ or

$$
\begin{array}{ll}
\mathrm{z}=\mathrm{f}, \quad \mathrm{~m}=\mathrm{n} & \text { (use minefields), } \\
\mathrm{M}_{\mathrm{i}} \sqsubseteq \mathrm{x}_{\mathrm{i}} & \text { (descend, minefields, curry). }
\end{array}
$$

Finally raise q^{\prime} up to I with minefields.

Enforcing sequentiality

Consider a bad definition of bool boool $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \mid\langle\mathbf{K}, \mathbf{F}\rangle\right)$.

Enforcing sequentiality

Consider a bad definition of bool
boool $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \mid\langle\mathbf{K}, \mathbf{F}\rangle\right)$.
Theorem
inhab $($ boool $)=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} .($ recall $\mathbf{J}=\mathbf{K} \mid \mathbf{F})$

Enforcing sequentiality

Consider a bad definition of bool
boool $:=$ type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \mid\langle\mathbf{K}, \mathbf{F}\rangle\right)$.
Theorem
inhab $($ boool $)=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} .($ recall $\mathbf{J}=\mathbf{K} \mid \mathbf{F})$
Proof.
Similar to semi, but now q can extend two h.n.f.'s:

Enforcing sequentiality

Consider a bad definition of bool
boool $:=$ type ((Simple $\left.\lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \mid\langle\mathbf{K}, \mathbf{F}\rangle$).
Theorem
inhab $($ boool $)=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} .($ recall $\mathbf{J}=\mathbf{K} \mid \mathbf{F})$
Proof.
Similar to semi, but now q can extend two h.n.f.'s:

$$
\mathrm{q} \sqsupseteq \lambda \mathrm{x}, \mathrm{y} \cdot \mathrm{x}=\mathbf{K}, \quad \mathrm{q} \sqsupseteq \lambda \mathrm{x}, \mathrm{y} \cdot \mathrm{y}=\mathbf{F}
$$

Enforcing sequentiality

Consider a bad definition of bool
boool $:=$ type ((Simple $\left.\lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \mid\langle\mathbf{K}, \mathbf{F}\rangle$).
Theorem
inhab $($ boool $)=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} .($ recall $\mathbf{J}=\mathbf{K} \mid \mathbf{F})$
Proof.
Similar to semi, but now q can extend two h.n.f.'s:

$$
\mathrm{q} \sqsupseteq \lambda \mathrm{x}, \mathrm{y} \cdot \mathrm{x}=\mathbf{K}, \quad \mathrm{q}, \quad \text { Ə } \mathrm{x}, \mathrm{y} \cdot \mathrm{y}=\mathbf{F}
$$

J extends both.

Enforcing sequentiality

Consider a bad definition of bool
boool $:=$ type ((Simple $\left.\lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \mid\langle\mathbf{K}, \mathbf{F}\rangle$).
Theorem
inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} .($ recall $\mathbf{J}=\mathbf{K} \mid \mathbf{F})$
Proof.
Similar to semi, but now q can extend two h.n.f.'s:

$$
\mathrm{q} \sqsupseteq \lambda \mathrm{x}, \mathrm{y} \cdot \mathrm{x}=\mathbf{K}, \quad \mathrm{q}, \quad \text { Ə } \mathrm{x}, \mathrm{y} \cdot \mathrm{y}=\mathbf{F}
$$

J extends both.

How to ensure sequentiality?

Enforcing sequentiality

Consider a bad definition of bool
boool $:=$ type ((Simple $\left.\lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \mid\langle\mathbf{K}, \mathbf{F}\rangle$).
Theorem
inhab(boool) $=\{\perp, \mathbf{K}, \mathbf{F}, \mathbf{J}, \top\} .($ recall $\mathbf{J}=\mathbf{K} \mid \mathbf{F})$
Proof.
Similar to semi, but now q can extend two h.n.f.'s:

$$
\mathrm{q} \sqsupseteq \lambda \mathrm{x}, \mathrm{y} \cdot \mathrm{x}=\mathbf{K}, \quad \mathrm{q} \sqsupseteq \lambda \mathrm{x}, \mathrm{y} \cdot \mathrm{y}=\mathbf{F}
$$

J extends both.

How to ensure sequentiality? Make q decide.

Corrected definition of bool

$$
\text { make_up_your_mind }:=\lambda \mathrm{q} . \mathrm{q} \perp(\mathrm{q} \top \perp) \text {. }
$$

Corrected definition of bool

$$
\begin{aligned}
& \text { make_up_your_mind }:=\lambda \mathrm{q} . \mathrm{q} \perp(\mathrm{q} \top \perp) . \\
& \text { bool }:=\text { type (boool } \mid \text { make_up_your_mind). }
\end{aligned}
$$

Corrected definition of bool

$$
\begin{aligned}
& \text { make_up_your_mind }:=\lambda \mathrm{q} . \mathrm{q} \perp(\mathrm{q} \top \perp) . \\
& \text { bool }:=\text { type (boool } \mid \text { make_up_your_mind). }
\end{aligned}
$$

Theorem inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.

Corrected definition of bool

make_up_your_mind $:=\lambda q$. $\mathrm{q} \perp(\mathrm{q} \top \perp)$.
bool $:=$ type (boool | make_up_your_mind).
Theorem
inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
Proof.
Since bool $<$: boool, we need only check inhabitants.

Corrected definition of bool

make_up_your_mind $:=\lambda q$. $\mathrm{q} \perp(\mathrm{q} \top \perp)$.
bool $:=$ type (boool | make_up_your_mind).
Theorem
inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
Proof.
Since bool $<$: boool, we need only check inhabitants.
All but J are fixed by make_up_your_mind:
$(\lambda \mathrm{q} \cdot \mathrm{q} \perp(\mathrm{q} \top \perp)) \mathbf{J}$

Corrected definition of bool

make_up_your_mind $:=\lambda q$. $\mathrm{q} \perp(\mathrm{q} \top \perp)$.
bool $:=$ type (boool | make_up_your_mind).
Theorem
inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
Proof.
Since bool $<$: boool, we need only check inhabitants.
All but J are fixed by make_up_your_mind:

$$
\begin{aligned}
& (\lambda \mathrm{q} \cdot \mathrm{q} \perp(\mathrm{q} \top \perp)) \mathbf{J} \\
& \quad=\mathbf{J} \perp(\mathbf{J} \top \perp)
\end{aligned}
$$

Corrected definition of bool

make_up_your_mind $:=\lambda q$. $\mathrm{q} \perp(\mathrm{q} \top \perp)$.
bool $:=$ type (boool | make_up_your_mind).
Theorem
inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
Proof.
Since bool $<$: boool, we need only check inhabitants.
All but J are fixed by make_up_your_mind:

$$
\begin{aligned}
& (\lambda \mathrm{q} . \mathrm{q} \perp(\mathrm{q} \top \perp)) \mathbf{J} \\
& =\mathbf{J} \perp(\mathbf{J} \top \perp) \\
& =\perp|\top| \perp
\end{aligned}
$$

Corrected definition of bool

make_up_your_mind $:=\lambda q$. $\mathrm{q} \perp(\mathrm{q} \top \perp)$.
bool $:=$ type (boool | make_up_your_mind).
Theorem
inhab $($ bool $)=\{\perp, \mathbf{K}, \mathbf{F}, \top\}$.
Proof.
Since bool $<$: boool, we need only check inhabitants.
All but J are fixed by make_up_your_mind:

$$
\begin{aligned}
&(\lambda \mathrm{q} . \mathrm{q} \\
&\quad \perp(\mathrm{q} \top \perp)) \mathbf{J} \\
& \quad=\mathbf{J} \perp(\mathbf{J} \top \perp) \\
& \quad=\perp|\top| \perp \\
& \quad=\top
\end{aligned}
$$

Outline of constructing types

This technique generalizes to more complicated types.

$$
\begin{aligned}
& \text { bool }:=\text { type }(\\
& \quad\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \\
& \\
& \quad \mid\langle\mathbf{K}, \mathbf{F}\rangle \\
&) . \\
& \text {). } \quad \text { q. } \perp(\mathrm{q} \top \perp)
\end{aligned}
$$

Outline of constructing types

This technique generalizes to more complicated types.

$$
\begin{aligned}
& \text { bool }:=\text { type }(\\
& \quad\left(\text { Simple } \lambda a, a^{\prime} \cdot a \rightarrow a \rightarrow a^{\prime}\right) \\
& \\
& \quad \mid\langle\mathbf{K}, \mathbf{F}\rangle \\
&) . \\
& \text {). } \quad
\end{aligned}
$$

(1) enforce simple concurrent typing

Outline of constructing types

This technique generalizes to more complicated types.

$$
\begin{aligned}
& \text { bool }:=\text { type }(\\
& \quad\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \\
& \quad \mid\langle\mathbf{K}, \mathbf{F}\rangle \\
& \\
&) .
\end{aligned}
$$

(1) enforce simple concurrent typing
(2) descend Böhm tree with intro and elim forms

Outline of constructing types

This technique generalizes to more complicated types.

$$
\begin{aligned}
& \text { bool }:=\text { type }(\\
& \quad\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \\
& \quad \mid\langle\mathbf{K}, \mathbf{F}\rangle \\
& \\
&) .
\end{aligned}
$$

(1) enforce simple concurrent typing
(2) descend Böhm tree with intro and elim forms
(3) enforce sequentiality: one head variable only

Outline of constructing types

This technique generalizes to more complicated types.

$$
\begin{aligned}
& \text { bool }:=\text { type }(\\
& \quad\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a \rightarrow a^{\prime}\right) \\
& \quad \mid\langle\mathbf{K}, \mathbf{F}\rangle \\
& \\
&) .
\end{aligned}
$$

(1) enforce simple concurrent typing
(2) descend Böhm tree with intro and elim forms
(3) enforce sequentiality: one head variable only

Product types (actually dropped product)

$$
\begin{aligned}
& \text { Prod }:=\text { type } \rightarrow \text { type } \rightarrow \text { type }(\\
& \quad \lambda a, \text { b. }\left(\text { Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow \mathrm{c}^{\prime}\right) \\
& \\
& \\
& \quad \mid\langle\lambda x, \mathrm{y} .\langle\mathrm{x}, \mathrm{y}\rangle\rangle \\
& \text {). } \quad \mid \lambda \mathrm{q} \cdot\langle\mathrm{q} \mathbf{K}, \mathrm{q} \mathbf{F}\rangle
\end{aligned}
$$

Product types (actually dropped product)

$$
\begin{aligned}
& \text { Prod }:=\text { type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \lambda a, b .\left(\text { Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \langle\lambda x, y .\langle x, y\rangle\rangle \\
& \lambda q .\langle q \mathbf{K}, \mathbf{q} \mathbf{F}\rangle \\
& \text {). }
\end{aligned}
$$

Theorem
For $\mathrm{a}, \mathrm{b}:$ type, inhab(Prod $\mathrm{a} b)=\{T\} \cup\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x}: \mathrm{a}, \mathrm{y}: \mathrm{b}\}$

Product types (actually dropped product)

$$
\begin{aligned}
& \text { Prod }:=\text { type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \lambda a, b .\left(\text { Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \langle\lambda x, y \cdot\langle x, y\rangle\rangle \\
& \lambda q .\langle q \mathbf{K}, \mathbf{q} \mathbf{F}\rangle \\
& \text {). }
\end{aligned}
$$

Theorem
For $\mathrm{a}, \mathrm{b}:$ type, $\operatorname{inh} \mathrm{b}(\operatorname{Prod} \mathrm{a} \mathrm{b})=\{T\} \cup\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x}: \mathrm{a}, \mathrm{y}: \mathrm{b}\}$
Proof.
Any h.n.f. below q : Prod a b must be $\langle\mathrm{a} \mathrm{x}, \mathrm{b} \mathrm{y}\rangle$ or T .

Product types (actually dropped product)

$$
\begin{aligned}
& \text { Prod }:=\text { type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \lambda a, b \text {. }\left(\text { Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \langle\lambda x, y \cdot\langle x, y\rangle\rangle \\
& \lambda q .\langle q \mathbf{K}, \mathbf{q} \mathbf{F}\rangle \\
& \text {). }
\end{aligned}
$$

Theorem
For $\mathrm{a}, \mathrm{b}:$ type, $\operatorname{inh} \mathrm{b}(\operatorname{Prod} \mathrm{a} \mathrm{b})=\{T\} \cup\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x}: \mathrm{a}, \mathrm{y}: \mathrm{b}\}$
Proof.
Any h.n.f. below q : Prod a b must be $\langle\mathrm{a} x, \mathrm{~b} y\rangle$ or \top.
What is the maximal such?

Product types (actually dropped product)

$$
\begin{aligned}
& \text { Prod }:=\text { type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \lambda a, b \text {. }\left(\text { Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \langle\lambda x, y \cdot\langle x, y\rangle\rangle \\
& \lambda q .\langle q \mathbf{K}, \mathbf{q} \mathbf{F}\rangle \\
& \text {). }
\end{aligned}
$$

Theorem
For $\mathrm{a}, \mathrm{b}:$ type, $\operatorname{inh} \mathrm{b}(\operatorname{Prod} \mathrm{a} \mathrm{b})=\{T\} \cup\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x}: \mathrm{a}, \mathrm{y}: \mathrm{b}\}$
Proof.
Any h.n.f. below q : Prod a b must be $\langle\mathrm{a} \mathrm{x}, \mathrm{b} \mathrm{y}\rangle$ or T .
What is the maximal such?
First component is q \mathbf{K}.

Product types (actually dropped product)

$$
\begin{aligned}
& \text { Prod }:=\text { type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \lambda a, b \text {. }\left(\text { Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \langle\lambda x, y \cdot\langle x, y\rangle\rangle \\
& \lambda q .\langle q \mathbf{K}, \mathbf{q} \mathbf{F}\rangle \\
& \text {). }
\end{aligned}
$$

Theorem
For $\mathrm{a}, \mathrm{b}:$ type, $\operatorname{inh} \mathrm{b}(\operatorname{Prod} \mathrm{a} \mathrm{b})=\{T\} \cup\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x}: \mathrm{a}, \mathrm{y}: \mathrm{b}\}$
Proof.
Any h.n.f. below q : Prod a b must be $\langle\mathrm{a} \mathrm{x}, \mathrm{b} \mathrm{y}\rangle$ or T .
What is the maximal such?
First component is q K. Second component is q F.

Product types (actually dropped product)

$$
\begin{aligned}
& \text { Prod }:=\text { type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \lambda a, b \text {. }\left(\text { Simple } \lambda c, c^{\prime} .(a \rightarrow b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \langle\lambda x, y \cdot\langle x, y\rangle\rangle \\
& \lambda q .\langle q \mathbf{K}, \mathbf{q} \mathbf{F}\rangle \\
& \text {). }
\end{aligned}
$$

Theorem
For $\mathrm{a}, \mathrm{b}:$ type, $\operatorname{inh} \mathrm{b}(\operatorname{Prod} \mathrm{a} \mathrm{b})=\{T\} \cup\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x}: \mathrm{a}, \mathrm{y}: \mathrm{b}\}$
Proof.
Any h.n.f. below q : Prod a b must be $\langle\mathrm{a} \mathrm{x}, \mathrm{b} \mathrm{y}\rangle$ or T .
What is the maximal such?
First component is $\mathbf{q} \mathbf{K}$. Second component is $\mathbf{q} \mathbf{F}$.
So $\lambda \mathbf{q}$. $\langle\mathbf{q} \mathbf{K}, q \mathbf{F}\rangle$ ensures sequentiality.

Sum types（actually dropped，lifted sum）

$$
\begin{aligned}
& \text { Sum := type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \left.\lambda a, b \text {. (Simple } \lambda c, c^{\prime} .(a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \text { 〈inl, inr〉 } \\
& \lambda q, f, g . q(K I) \perp(q f T) \\
& \mid \mathrm{q} \perp(\mathrm{KI})(\mathrm{q} \top \mathrm{~g}) \\
& \text {). }
\end{aligned}
$$

Sum types (actually dropped, lifted sum)

$$
\begin{aligned}
\text { Sum }: & =\text { type } \rightarrow \text { type } \rightarrow \text { type }(\\
\lambda \mathrm{a}, \mathrm{~b} . & \left(\text { Simple } \lambda \mathrm{c}, \mathrm{c}^{\prime} .(\mathrm{a} \rightarrow \mathrm{c}) \rightarrow(\mathrm{b} \rightarrow \mathrm{c}) \rightarrow \mathrm{c}^{\prime}\right) \\
& \mid \text { inl, inr }\rangle \\
\mid & \lambda \mathrm{q}, \mathrm{f}, \mathrm{~g} \cdot \mathrm{q}(\mathrm{~K} \text { I) } \perp(\mathrm{q} \mathrm{f} \top) \\
& \mid \mathrm{q} \perp(\mathrm{~K} \mathrm{I})(\mathrm{q} \top \mathrm{~g})
\end{aligned}
$$

).
where

$$
\mathrm{inl}=\lambda \mathrm{x}, \mathrm{f},,_{-} . \mathrm{f} x, \quad \mathrm{inr}=\lambda \mathrm{y},{ }_{-}, \mathrm{g} \cdot \mathrm{~g} \mathrm{x}
$$

Sum types（actually dropped，lifted sum）

).
where

$$
\text { inl }=\lambda x, f, \ldots f x, \quad \text { inr }=\lambda y, \ldots, g . g x
$$

Theorem
inhab $($ Sum $\mathrm{a} b)=\{T, \perp\} \cup\{$ inl $\mathrm{x} \mid \mathrm{x}: \mathrm{a}\} \cup\{$ inr $\mathrm{y} \mid \mathrm{y}: \mathrm{b}\}$ ．

$$
\begin{aligned}
& \text { Sum := type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \left.\lambda a, b \text {. (Simple } \lambda c, c^{\prime} .(a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \text { 〈inl, inr〉 } \\
& \lambda q, f, g . q(K I) \perp(q f T) \\
& \mid q \perp(\text { K I) }(q \top g)
\end{aligned}
$$

Sum types（actually dropped，lifted sum）

).
where

Theorem
inhab（Sum ab）$=\{T, \perp\} \cup\{$ inl $x \mid x: a\} \cup\{$ inr $y \mid y: b\}$ ．
Proof．
Combine proofs of bool

$$
\begin{aligned}
& \text { Sum := type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \left.\lambda a, b \text {. (Simple } \lambda c, c^{\prime} .(a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \text { 〈inl, inr〉 } \\
& \lambda q, f, g . q(K I) \perp(q f T) \\
& \mid q \perp(\text { K I) }(q] g)
\end{aligned}
$$

Sum types（actually dropped，lifted sum）

).
where

$$
\text { inl }=\lambda x, f,{ }_{-} f x, \quad \text { inr }=\lambda y,{ }_{-}, g . g x
$$

Theorem inhab（Sum ab）$=\{T, \perp\} \cup\{$ inl $x \mid x: a\} \cup\{$ inr $y \mid y: b\}$ ．

Proof．
Combine proofs of bool and Prod．

$$
\begin{aligned}
& \text { Sum := type } \rightarrow \text { type } \rightarrow \text { type (} \\
& \left.\lambda a, b \text {. (Simple } \lambda c, c^{\prime} .(a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow c^{\prime}\right) \\
& \text { 〈inl, inr〉 } \\
& \lambda q, f, g . q\left(K_{I}\right) \perp(q f T) \\
& \mid q \perp(\text { K I) }(q \top g)
\end{aligned}
$$

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$.

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.
For self recursion, redefine nat $=\mu \mathrm{n} .(\mathrm{n} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$:

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.
For self recursion, redefine nat $=\mu \mathrm{n} .(\mathrm{n} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$:

$$
\text { zero }:=\lambda_{-}, x . x .
$$

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.
For self recursion, redefine nat $=\mu \mathrm{n} .(\mathrm{n} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$:

$$
\begin{aligned}
& \text { zero }:=\lambda_{-}, \mathrm{x} . \mathrm{x} . \\
& \text { succ }:=\lambda \mathrm{n}, \mathrm{f}, \mathrm{x} \cdot \mathrm{nf}(\mathrm{f} \mathrm{n} \mathrm{x})
\end{aligned}
$$

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.
For self recursion, redefine nat $=\mu \mathrm{n} .(\mathrm{n} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$:

$$
\begin{aligned}
& \text { zero }:=\lambda_{-}, \mathrm{x} . \mathrm{x} . \\
& \text { succ }:=\lambda \mathrm{n}, \mathrm{f}, \mathrm{x} \cdot \mathrm{nf}(\mathrm{fn} \mathrm{x})
\end{aligned}
$$

These nats are redundant;

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.
For self recursion, redefine nat $=\mu \mathrm{n} .(\mathrm{n} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$:

$$
\begin{aligned}
& \text { zero }:=\lambda_{-}, x . x . \\
& \text { succ }:=\lambda \mathrm{n}, \mathrm{f}, \mathrm{x} . \mathrm{nf}(\mathrm{fn} \mathrm{x})
\end{aligned}
$$

These nats are redundant; exponentially large normal forms:

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.
For self recursion, redefine nat $=\mu \mathrm{n} .(\mathrm{n} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$:

$$
\begin{aligned}
& \text { zero }:=\lambda_{-}, \mathrm{x} . \mathrm{x} . \\
& \text { succ }:=\lambda \mathrm{n}, \mathrm{f}, \mathrm{x} . \mathrm{nf}(\mathrm{f} \mathrm{n} \mathrm{x})
\end{aligned}
$$

These nats are redundant; exponentially large normal forms:

$$
2=\lambda f, x \cdot f(\lambda f, x \cdot f(\lambda f, x \cdot x) x)(f(\lambda f, x \cdot x) x)
$$

Self-recursing numerals: motivation

Church numerals have simple type $(a \rightarrow a) \rightarrow a \rightarrow a$. but predecessor has problems:

- on well-defined terms, it is linear-time.
- on partially-defined terms it diverges.

Gödel's recursor has type nat $\rightarrow($ nat $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a$.
For self recursion, redefine nat $=\mu \mathrm{n} .(\mathrm{n} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$:

$$
\begin{aligned}
& \text { zero }:=\lambda_{-}, \mathrm{x} . \mathrm{x} . \\
& \text { succ }:=\lambda \mathrm{n}, \mathrm{f}, \mathrm{x} . \mathrm{nf}(\mathrm{f} \mathrm{n} \mathrm{x})
\end{aligned}
$$

These nats are redundant; exponentially large normal forms:

$$
2=\lambda f, x \cdot f(\lambda f, x \cdot f(\lambda f, x \cdot x) x)(f(\lambda f, x \cdot x) x)
$$

Self-recursing numerals: correctness

$$
\begin{aligned}
& \text { nat }:=\text { type (} \\
& \text { Y } \left.\lambda \mathrm{a} \text {. (Simple } \lambda \mathrm{b}, \mathrm{~b}^{\prime} .\left(\mathrm{a} \rightarrow \mathrm{~b}^{\prime} \rightarrow \mathrm{b}\right) \rightarrow \mathrm{b} \rightarrow \mathrm{~b}^{\prime}\right) \\
& \left\langle\lambda \mathrm{n}: \mathrm{a},{ }_{-}, \mathrm{f}: \mathrm{a} \rightarrow \mathrm{a}, \mathrm{x}: \mathrm{a} . \mathrm{f} \mathrm{n}(\mathrm{nf} \mathrm{x}), \quad \lambda_{-}, \mathrm{x}: \mathrm{a} . \mathrm{x}\right\rangle \\
& \left\langle\lambda_{-}, n: a, f: a \rightarrow a, x: a . f n(n f x), \quad \lambda_{-}, x: a . x\right\rangle \\
& \lambda \mathrm{q} . \mathrm{q} \perp(\mathrm{q} \top \perp) \\
& \text {). }
\end{aligned}
$$

Note the two different ways of descending: left and right.

Self-recursing numerals: correctness

$$
\begin{aligned}
& \text { nat }:=\text { type (} \\
& \text { Y } \left.\lambda \mathrm{a} \text {. (Simple } \lambda \mathrm{b}, \mathrm{~b}^{\prime} .\left(\mathrm{a} \rightarrow \mathrm{~b}^{\prime} \rightarrow \mathrm{b}\right) \rightarrow \mathrm{b} \rightarrow \mathrm{~b}^{\prime}\right) \\
& \left\langle\lambda n: a, \quad, f: a \rightarrow a, x: a . f n(n f x), \quad \lambda_{-}, x: a . x\right\rangle \\
& \left\langle\lambda_{-}, n: a, f: a \rightarrow a, x: a . f n(n f x), \quad \lambda_{-}, x: a . x\right\rangle \\
& \lambda \mathrm{q} \cdot \mathrm{q} \perp(\mathrm{q} \top \perp) \\
& \text {). }
\end{aligned}
$$

Note the two different ways of descending: left and right.
Theorem inhab(nat) $=\{T\} \cup\left\{\right.$ succ $^{n} z \mid n \in \mathbb{N}, z \in\{\perp$, zero $\left.\}\right\}$.

Self-recursing numerals: correctness

$$
\begin{aligned}
& \text { nat }:=\text { type (} \\
& \text { Y } \left.\lambda \mathrm{a} \text {. (Simple } \lambda \mathrm{b}, \mathrm{~b}^{\prime} .\left(\mathrm{a} \rightarrow \mathrm{~b}^{\prime} \rightarrow \mathrm{b}\right) \rightarrow \mathrm{b} \rightarrow \mathrm{~b}^{\prime}\right) \\
& \left\langle\lambda \mathrm{n}: \mathrm{a},{ }_{-}, \mathrm{f}: \mathrm{a} \rightarrow \mathrm{a}, \mathrm{x}: \mathrm{a} . \mathrm{f} \mathrm{n}(\mathrm{nfx}), \quad \lambda_{-}, \mathrm{x}: \mathrm{a} . \mathrm{x}\right\rangle \\
& \left\langle\lambda_{-}, n: a, f: a \rightarrow a, x: a . f n(n f x), \quad \lambda_{-}, x: a . x\right\rangle \\
& \lambda \mathrm{q} \cdot \mathrm{q} \perp(\mathrm{q} \top \perp) \\
& \text {). }
\end{aligned}
$$

Note the two different ways of descending: left and right.
Theorem inhab(nat) $=\{T\} \cup\left\{\right.$ succ $^{n} z \mid n \in \mathbb{N}, z \in\{\perp$, zero $\left.\}\right\}$.
Proof.
As above, only we need to ensure consistency across BT.

Self-recursing numerals: correctness

$$
\begin{aligned}
& \text { nat }:=\text { type (} \\
& \text { Y } \left.\lambda \mathrm{a} \text {. (Simple } \lambda \mathrm{b}, \mathrm{~b}^{\prime} .\left(\mathrm{a} \rightarrow \mathrm{~b}^{\prime} \rightarrow \mathrm{b}\right) \rightarrow \mathrm{b} \rightarrow \mathrm{~b}^{\prime}\right) \\
& \left\langle\lambda \mathrm{n}: \mathrm{a},{ }_{-}, \mathrm{f}: \mathrm{a} \rightarrow \mathrm{a}, \mathrm{x}: \mathrm{a} . \mathrm{f} \mathrm{n}(\mathrm{nfx}), \quad \lambda_{-}, \mathrm{x}: \mathrm{a} . \mathrm{x}\right\rangle \\
& \left\langle\lambda_{-}, n: a, f: a \rightarrow a, x: a . f n(n f x), \quad \lambda_{-}, x: a . x\right\rangle \\
& \lambda \mathrm{q} \cdot \mathrm{q} \perp(\mathrm{q} \top \perp) \\
& \text {). }
\end{aligned}
$$

Note the two different ways of descending: left and right.
Theorem inhab(nat) $=\{T\} \cup\left\{\right.$ succ $^{\mathrm{n}} \mathrm{z} \mid \mathrm{n} \in \mathbb{N}, \mathrm{z} \in\{\perp$, zero $\left.\}\right\}$.
Proof.
As above, only we need to ensure consistency across BT.
At root, descend in either direction.

Self-recursing numerals: correctness

$$
\begin{aligned}
& \text { nat }:=\text { type }\left(\begin{array}{rl}
\\
\text { Y } \left.\lambda \text { a. (Simple } \lambda b, b^{\prime} .\left(a \rightarrow b^{\prime} \rightarrow b\right) \rightarrow b \rightarrow b^{\prime}\right) \\
& \mid\left\langle\lambda n: a,, f: a \rightarrow a, x: a . f n(n f x), \quad \lambda_{-}, x: a . x\right\rangle \\
& \mid\left\langle\lambda_{-}, n: a, f: a \rightarrow a, x: a . f n(n f x), \quad \lambda_{-}, x: a \cdot x\right\rangle \\
& \mid \lambda q \cdot q \perp(q T \perp)
\end{array}\right.
\end{aligned}
$$

Note the two different ways of descending: left and right.
Theorem inhab(nat) $=\{T\} \cup\left\{\right.$ succ $^{n} z \mid n \in \mathbb{N}, z \in\{\perp$, zero $\left.\}\right\}$.
Proof.
As above, only we need to ensure consistency across BT.
At root, descend in either direction.
The a in $\left(\mathrm{a} \rightarrow \mathrm{b}^{\prime} \rightarrow \mathrm{b}\right) \rightarrow \mathrm{b} \rightarrow \mathrm{b}^{\prime}$ descends below root.

Quotient types

What is an r.e. set (of x :a's)?

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat $\rightarrow a$?

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat \rightarrow a? ...but order doesn't matter

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat $\rightarrow a$? ...but order doesn't matter
\rightarrow A semipredicate $: a \rightarrow$ semi?

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat $\rightarrow a$? ...but order doesn't matter \rightarrow A semipredicate $: a \rightarrow$ semi? ...but no mapping

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat \rightarrow a? ...but order doesn't matter \rightarrow A semipredicate $: a \rightarrow$ semi? ...but no mapping
$\rightarrow A$ semiset $:(a \rightarrow b) \rightarrow b$?

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat $\rightarrow a$? ...but order doesn't matter \rightarrow A semipredicate $: a \rightarrow$ semi? ...but no mapping
\rightarrow A semiset $:(a \rightarrow b) \rightarrow b$? ...works in concurrent CA.

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat $\rightarrow a$? ...but order doesn't matter
\rightarrow A semipredicate $: a \rightarrow$ semi? ...but no mapping
\rightarrow A semiset : $(a \rightarrow b) \rightarrow b$? ...works in concurrent CA.
Semiset $:=$ type \rightarrow type $\left(\lambda a\right.$. Simple $\left.\lambda b, b^{\prime} .(a \rightarrow b) \rightarrow b^{\prime}\right)$.
Now we can define quotient types.
Let M : Semiset $(a \rightarrow a)$ generate a monoid action on a.

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat $\rightarrow a$? ...but order doesn't matter
\rightarrow A semipredicate $: a \rightarrow$ semi? ...but no mapping
\rightarrow A semiset : $(a \rightarrow b) \rightarrow b$? ...works in concurrent CA.
Semiset $:=$ type \rightarrow type $\left(\lambda a\right.$. Simple $\left.\lambda b, b^{\prime} .(a \rightarrow b) \rightarrow b^{\prime}\right)$.
Now we can define quotient types.
Let M : Semiset $(a \rightarrow a)$ generate a monoid action on a.
The quotient type of M -orbits is Mod M ,

Quotient types

What is an r.e. set (of x :a's)?
\rightarrow A sequence : nat $\rightarrow a$? ...but order doesn't matter
\rightarrow A semipredicate $: a \rightarrow$ semi? ...but no mapping
\rightarrow A semiset $:(a \rightarrow b) \rightarrow b$? ...works in concurrent CA.
Semiset $:=$ type \rightarrow type $\left(\lambda a\right.$. Simple $\left.\lambda b, b^{\prime} .(a \rightarrow b) \rightarrow b^{\prime}\right)$.
Now we can define quotient types.
Let M : Semiset $(a \rightarrow a)$ generate a monoid action on a.
The quotient type of M-orbits is Mod M, where

$$
\begin{aligned}
& \text { Mod }:=(\forall \mathrm{a}: \text { close. (Semiset } \mathrm{a} \rightarrow \mathrm{a}) \rightarrow(\text { Sub }(\text { Semiset } \mathrm{a}))) \\
& \quad \lambda \mathrm{a} . \lambda \mathrm{M} . \mathrm{M} \lambda \mathrm{~m} . \lambda \mathrm{X} . \mathrm{X} \lambda \mathrm{x} .\langle\mathrm{m} \mathrm{x}\rangle \\
&) .
\end{aligned}
$$

Summary and Questions

- Concurrent CA is inadvertantly typed

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).
- S, K, J-definable types required head normal forms:

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).
- S, K, J-definable types required head normal forms: $\mathcal{P} \omega$ fails,

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).
- S, K, J-definable types required head normal forms: $\mathcal{P} \omega$ fails, $\quad \mathcal{D}_{\infty}$ fails,

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).
- S, K, J-definable types required head normal forms: $\mathcal{P} \omega$ fails, $\quad \mathcal{D}_{\infty}$ fails, completed term model works.

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).
- S, K, J-definable types required head normal forms: $\mathcal{P} \omega$ fails, $\quad \mathcal{D}_{\infty}$ fails, completed term model works.
- Very rich type structure.

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).
- S, K, J-definable types required head normal forms: $\mathcal{P} \omega$ fails, $\quad \mathcal{D}_{\infty}$ fails, completed term model works.
- Very rich type structure.

Questions.

- Exactly which types are definable?

Summary and Questions

- Concurrent CA is inadvertantly typed (sequential CA is not).
- S, K, J-definable types required head normal forms: $\mathcal{P} \omega$ fails, $\quad \mathcal{D}_{\infty}$ fails, completed term model works.
- Very rich type structure.

Questions.

- Exactly which types are definable?
- Are sequential simple types uniformly definable?

Definition of raising and lowering operators

Define raising and lowering operators

$$
\begin{aligned}
& \text { raise }:=\left(\lambda x,{ }_{-} \cdot x\right)=\mathbf{K} . \\
& \text { lower }:=(\lambda x \cdot x \top)=\langle T\rangle .
\end{aligned}
$$

so that

$$
\begin{aligned}
& \text { loweroraise }=\mathbf{I}, \\
& \text { raiseolower }=\lambda x, \ldots \times \top \quad \sqsupseteq \mathbf{I}
\end{aligned}
$$

Definition of raising and lowering operators

Define raising and lowering operators

$$
\begin{aligned}
& \text { raise }:=\left(\lambda x,{ }_{-} \cdot x\right)=\mathbf{K} . \\
& \text { lower }:=(\lambda x \cdot x T)=\langle T\rangle .
\end{aligned}
$$

so that

$$
\begin{aligned}
& \text { loweroraise }=\mathbf{I}, \\
& \text { raiseolower }=\lambda x, \ldots \times \top \quad \sqsupseteq \mathbf{I}
\end{aligned}
$$

Similarly at function type,

$$
\begin{aligned}
& \mathbf{I} \rightarrow \text { raise }=\lambda \mathrm{f}, \mathrm{x}, . \mathrm{f} \times \\
& \mathbf{I} \rightarrow \text { lower }=\lambda \mathbf{f}, \mathrm{x} . \mathrm{f} \times \top
\end{aligned}
$$

so that

$$
\begin{aligned}
& (\mathbf{I} \rightarrow \text { lower }) \circ(\mathbf{I} \rightarrow \text { raise })=\mathbf{I}, \\
& (\mathbf{I} \rightarrow \text { raise }) \circ(\mathbf{I} \rightarrow \text { lower })=\lambda \mathbf{f},,_{,} . \mathrm{f} \times \top \quad \sqsupseteq \mathbf{I}
\end{aligned}
$$

Constructing simple concurrent types

Now these operators generate our previous $L_{m n}, R_{m n}$:

$$
\begin{aligned}
& R_{m n}=(m \text { raise }) \circ(n \mathrm{I} \rightarrow \text { raise }) \\
& L_{m n}=(\mathrm{n} \mathrm{I} \rightarrow \text { lower }) \circ(\mathrm{m} \text { lower })
\end{aligned}
$$

Hence we have a simple definition of semi

$$
\begin{aligned}
& \text { Simple }:=\text { any } \rightarrow \text { type }(\\
& \lambda \text { f. curry } \rightarrow \text { uncurry } \\
& \mid \text { f I I } \\
& \text { f raise lower } \\
& \text { | } \mathbf{I} \rightarrow \text { raise } \mathbf{I} \rightarrow \text { lower }
\end{aligned}
$$

).

Applications to typechecking

Now the boolean type becomes

$$
\begin{array}{ll}
\text { bool }:=\text { type }(\text { curry } \rightarrow \text { curry } \rightarrow \text { uncurry } \\
& \mid \\
& \text { raise } \rightarrow \text { raise } \rightarrow \text { lower } \\
& (\mathbf{I} \rightarrow \text { raise }) \rightarrow(\mathbf{I} \rightarrow \text { raise }) \rightarrow(\mathbf{I} \rightarrow \text { lower }) \\
& \langle\mathbf{K}, \mathbf{F}\rangle \\
) . & (\lambda \mathbf{q} \cdot \mathrm{q} \perp(\mathrm{q} \top \perp)) \\
) . &
\end{array}
$$

We can now reduce typechecking x : bool to five checks,

Applications to typechecking

Now the boolean type becomes

$$
\begin{array}{ll}
\text { bool } & :=\text { type }(\text { curry } \rightarrow \text { curry } \rightarrow \text { uncurry } \\
& \text { raise } \rightarrow \text { raise } \rightarrow \text { lower } \\
& (\mathbf{I} \rightarrow \text { raise }) \rightarrow(\mathbf{I} \rightarrow \text { raise }) \rightarrow(\mathbf{I} \rightarrow \text { lower }) \\
& \langle\mathbf{K}, \mathbf{F}\rangle \\
) & (\lambda \mathbf{q} \cdot \mathrm{q} \perp(\mathrm{q} \top \perp)) \\
) . &
\end{array}
$$

We can now reduce typechecking x : bool to five checks, which may succeed even under $\beta-\eta$ conversion!

Correctness of semi: overview

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)
$$

Correctness of semi: overview

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)
$$

Theorem inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.

Correctness of semi: overview

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)
$$

Theorem inhab (semi) $=\{\perp, \mathbf{I}, \top\}$.

Proof.
\perp :semi by β-reduction.

Correctness of semi: overview

semi := type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.

Proof.
\perp :semi by β-reduction. Any other q :semi converges,

Correctness of semi: overview

semi := type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.

Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Correctness of semi: overview

semi := type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.

Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $\mathrm{q}=\mathrm{T}$

Correctness of semi: overview

semi := type ((Simple $\left.\left.\lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right)$.
Theorem
inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $q=T$ or

$$
z=f
$$

(head is in the right place),

Correctness of semi: overview

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right) .
$$

Theorem
inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $\mathrm{q}=\mathrm{T}$ or

$$
\begin{aligned}
& z=f \\
& m=n
\end{aligned}
$$

(head is in the right place),
(right number of limbs), and

Correctness of semi: overview

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right) .
$$

Theorem
inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $\mathrm{q}=\mathrm{T}$ or

$$
\begin{array}{ll}
\mathrm{z}=\mathrm{f} & \text { (head is in the right place), } \\
\mathrm{m}=\mathrm{n} & \text { (right number of limbs), and } \\
\mathrm{M}_{\mathrm{i}} \sqsubseteq \mathrm{x}_{\mathrm{i}} & \text { (each limb is healthy). }
\end{array}
$$

Correctness of semi: overview

$$
\text { semi }:=\text { type }\left(\left(\text { Simple } \lambda a, a^{\prime} . a \rightarrow a^{\prime}\right) \mid\langle\mathbf{I}\rangle\right) .
$$

Theorem
inhab(semi) $=\{\perp, \mathbf{I}, \top\}$.
Proof.
\perp :semi by β-reduction. Any other q :semi converges, say

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Show that either $\mathrm{q}=\mathrm{T}$ or

$$
\begin{array}{ll}
\mathrm{z}=\mathrm{f} & \text { (head is in the right place), } \\
\mathrm{m}=\mathrm{n} & \text { (right number of limbs), and } \\
\mathrm{M}_{\mathrm{i}} \sqsubseteq \mathrm{x}_{\mathrm{i}} & \text { (each limb is healthy). }
\end{array}
$$

Finally raise a healthy $q^{\prime}=\lambda \mathbf{f}, \underline{x} . f \underline{M}$ up to \mathbf{I}.

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.
Cover all the $x_{j}^{\prime} s$ with a minefield $(n, 0)$:

$$
\mathrm{R} \rightarrow \mathrm{~L} \mathrm{q}^{\prime} \mathrm{f}
$$

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.
Cover all the $x_{j}^{\prime} s$ with a minefield $(n, 0)$:

$$
R \rightarrow L q^{\prime} f=q(n \mathbf{K}) T^{\sim n}
$$

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.
Cover all the $x_{j}^{\prime} s$ with a minefield $(n, 0)$:

$$
\begin{aligned}
\mathrm{R} \rightarrow \mathrm{~L} \mathrm{q}^{\prime} \mathrm{f} & =\mathrm{q}(\mathrm{n} \mathbf{K} \mathrm{f}) \top^{\top \sim n} \\
& =\left(\lambda \underline{x} \cdot x_{i} \underline{M}\right) \top^{\sim n}
\end{aligned}
$$

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.
Cover all the $x_{j}^{\prime} s$ with a minefield $(n, 0)$:

$$
\begin{aligned}
\mathrm{R} \rightarrow \mathrm{~L} \mathrm{q}^{\prime} \mathrm{f} & =\mathrm{q}(\mathrm{n} \mathbf{K} \mathrm{f}) \mathrm{T} \sim \mathrm{n} \\
& =\left(\lambda \underline{x} . x_{i} \underline{M}\right) T^{\sim n} \\
& =T \underline{M}
\end{aligned}
$$

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.
Cover all the $x_{j}^{\prime} s$ with a minefield $(n, 0)$:

$$
\begin{aligned}
\mathrm{R} \rightarrow \mathrm{~L} \mathrm{q}^{\prime} \mathrm{f} & =\mathrm{q}(\mathrm{n} \mathbf{K} \mathrm{f}) \top_{\sim n}^{\sim} \\
& =\left(\lambda \underline{x} \cdot x_{i} \underline{M}\right) \top \sim n \\
& =\top \underline{M}=\top
\end{aligned}
$$

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.
Cover all the $x_{j}^{\prime} s$ with a minefield $(n, 0)$:

$$
\begin{aligned}
\mathrm{R} \rightarrow \mathrm{~L} \mathrm{q}^{\prime} \mathrm{f} & =\mathrm{q}(\mathrm{n} \mathbf{K} \mathrm{f}) \mathrm{T} \sim \mathrm{n} \\
& =\left(\lambda \underline{x} \cdot x_{i} \underline{M}\right) T \sim n \\
& =T \underline{M}=\top
\end{aligned}
$$

So $q=T$.

Correctness of semi: head is in the right place

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \mathrm{z} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

If $z \neq f$ then $z=x_{i}$ for some i.
Cover all the $x_{j}^{\prime} s$ with a minefield $(n, 0)$:

$$
\begin{aligned}
\mathrm{R} \rightarrow \mathrm{~L} \mathrm{q}^{\prime} \mathrm{f} & =\mathrm{q}(\mathrm{n} \mathbf{K} \mathrm{f}) \mathrm{T} \sim \mathrm{n} \\
& =\left(\lambda \underline{x} \cdot x_{i} \underline{M}\right) \top \sim n \\
& =\top \underline{M}=\top
\end{aligned}
$$

So $q=T$.
otherwise...

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield,

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield, say ($n+m, n+m$)

$$
R \rightarrow L q^{\prime} f x=q^{\prime}(\lambda \underline{u}, v, \underline{w} \cdot f v) T^{\sim m+n} \times T^{\sim m+n}
$$

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield, say ($n+m, n+m$)

$$
\begin{aligned}
R \rightarrow L q^{\prime} f \times & =q^{\prime}(\lambda \underline{u}, v, \underline{w} \cdot f v) T^{\sim m+n} \times T^{\sim m+n} \\
& =(\lambda \underline{x}, \underline{u}, v, \underline{w} \cdot f v) \underline{M} T^{\sim m+n} \times T^{\sim m+n}
\end{aligned}
$$

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield, say $(n+m, n+m)$

$$
\begin{aligned}
R \rightarrow L q^{\prime} f \times & =q^{\prime}(\lambda \underline{u}, v, \underline{w} \cdot f v) T^{\sim m+n} \times T^{\sim m+n} \\
& =(\lambda \underline{x}, \underline{u}, v, \underline{w} \cdot f v) \underline{M} T^{\sim m+n} \times T^{\sim m+n}
\end{aligned}
$$

How far off can q^{\prime} be?

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield, say ($n+m, n+m$)

$$
\begin{aligned}
R \rightarrow L q^{\prime} f \times & =q^{\prime}(\lambda \underline{u}, v, \underline{w} \cdot f v) T^{\sim m+n} \times T^{\sim m+n} \\
& =(\lambda \underline{x}, \underline{u}, v, \underline{w} \cdot f v) \underline{M} T^{\sim m+n} \times T^{\sim m+n}
\end{aligned}
$$

How far off can q^{\prime} be?

$$
|\underline{\mathrm{x}}, \underline{\mathrm{u}}|=2 \mathrm{n}+\mathrm{m}
$$

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield, say $(n+m, n+m)$

$$
\begin{aligned}
R \rightarrow L q^{\prime} f x & =q^{\prime}(\lambda \underline{u}, v, \underline{w} \cdot f v) T^{\sim m+n} \times T^{\sim m+n} \\
& =(\lambda \underline{x}, \underline{u}, v, \underline{w} \cdot f v) \underline{M} T^{\sim m+n} \times T^{\sim m+n}
\end{aligned}
$$

How far off can q^{\prime} be?

$$
|\underline{x}, \underline{u}|=2 n+m \quad \stackrel{?}{=} \quad n+2 m=\left|\underline{M} T^{\sim m+n}\right|
$$

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield, say $(n+m, n+m)$

$$
\begin{aligned}
R \rightarrow L q^{\prime} f x & =q^{\prime}(\lambda \underline{u}, v, \underline{w} \cdot f v) T^{\sim m+n} \times T^{\sim m+n} \\
& =(\lambda \underline{x}, \underline{u}, v, \underline{w} \cdot f v) \underline{M} T^{\sim m+n} \times T^{\sim m+n}
\end{aligned}
$$

How far off can q^{\prime} be?

$$
|\underline{x}, \underline{u}|=2 n+m \quad \stackrel{?}{=} \quad n+2 m=\left|\underline{M} T^{\sim m+n}\right|
$$

If $n \neq m$ then semi $q^{\prime}=T$.

Correctness of semi: right number of limbs

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}
$$

Make q^{\prime} navigate a big minefield, say $(n+m, n+m)$

$$
\begin{aligned}
R \rightarrow L q^{\prime} f \times & =q^{\prime}(\lambda \underline{u}, v, \underline{w} \cdot f v) T^{\sim m+n} \times T^{\sim m+n} \\
& =(\lambda \underline{x}, \underline{u}, v, \underline{w} \cdot f v) \underline{M} T^{\sim m+n} \times T^{\sim m+n}
\end{aligned}
$$

How far off can q^{\prime} be?

$$
|\underline{x}, \underline{u}|=2 n+m \quad \stackrel{?}{=} \quad n+2 m=\left|\underline{M} T^{\sim m+n}\right|
$$

If $n \neq m$ then semi $q^{\prime}=T$. otherwise...

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \llbracket x_{i}$ for some h.n.f N.

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \ddagger x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \ddagger x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.
If $\mathrm{z} \notin\{\mathrm{f}, \underline{\mathrm{x}}\}$, descend with $\langle\mathbf{I}\rangle$ until it is.

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \llbracket x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.
If $\mathrm{z} \notin\{\mathrm{f}, \underline{x}\}$, descend with $\langle\mathbf{I}\rangle$ until it is.
If $z=x_{i}$, make q navigate a minefield;

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \llbracket x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.
If $z \notin\{\mathrm{f}, \underline{\mathrm{x}}\}$, descend with $\langle\mathbf{I}\rangle$ until it is.
If $z=x_{i}$, make q navigate a minefield; then descend.

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \llbracket x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.
If $\mathrm{z} \notin\{\mathrm{f}, \underline{\mathrm{x}}\}$, descend with $\langle\mathbf{I}\rangle$ until it is.
If $z=x_{i}$, make q navigate a minefield; then descend.
If $z=f$, make f inert with curry;

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \llbracket x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.
If $\mathrm{z} \notin\{\mathrm{f}, \underline{\mathrm{x}}\}$, descend with $\langle\mathbf{I}\rangle$ until it is.
If $z=x_{i}$, make q navigate a minefield; then descend.
If $z=f$, make f inert with curry; then descend.

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \llbracket x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.
If $\mathrm{z} \notin\{\mathrm{f}, \underline{\mathrm{x}}\}$, descend with $\langle\mathbf{I}\rangle$ until it is.
If $z=x_{i}$, make q navigate a minefield; then descend.
If $z=f$, make f inert with curry; then descend.
Eventually we hit a T.

Correctness of semi: each limb is healthy

We know q:semi and

$$
\mathrm{q} \sqsupseteq \mathrm{q}^{\prime}=\lambda \mathrm{f}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . f \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}}
$$

If $M_{i} \ddagger x_{i}$ then $M_{i} \sqsupseteq N \llbracket x_{i}$ for some h.n.f N.
Somewhere down the BT of q ' is either a T, or an offending head variable z.
If $\mathrm{z} \notin\{\mathrm{f}, \underline{\mathrm{x}}\}$, descend with $\langle\mathbf{I}\rangle$ until it is.
If $z=x_{i}$, make q navigate a minefield; then descend.
If $z=f$, make f inert with curry; then descend.
Eventually we hit a T. otherwise...

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

$$
\mathrm{n} \mathbf{K} \rightarrow\langle T\rangle \mathrm{q}^{\prime} \mathrm{f}
$$

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

$$
\begin{aligned}
n \mathbf{K} & \rightarrow\langle T\rangle \mathrm{q}^{\prime} \mathrm{f} \\
& =\mathrm{q}^{\prime}(\mathrm{n} \mathbf{K} f) T^{\sim n}
\end{aligned}
$$

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

$$
\begin{aligned}
\mathrm{n} \mathbf{K} & \rightarrow\langle T\rangle \mathrm{q}^{\prime} \mathrm{f} \\
& =\mathrm{q}^{\prime}(\mathrm{nKf}) T^{\sim n} \\
& =(\lambda \underline{x} \cdot n \mathbf{K} \underline{\mathrm{M}}) T^{\sim n}
\end{aligned}
$$

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

$$
\begin{aligned}
& \mathrm{n} \mathbf{K} \rightarrow\langle T\rangle \mathrm{q}^{\prime} \mathrm{f} \\
& =q^{\prime}(n \mathbf{K}) T^{\sim n} \\
& =(\lambda \underline{x} . n K f \underline{M}) T^{\sim n} \\
& =(\lambda \underline{x} \cdot f) T^{\sim n}
\end{aligned}
$$

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

$$
\begin{aligned}
\mathrm{n} \mathbf{K} & \rightarrow\langle T\rangle \mathrm{q}^{\prime} \mathrm{f} \\
& =\mathbf{q}^{\prime}(\mathrm{nKf}) T_{\sim n}^{\sim} \\
& =(\lambda \underline{x} \cdot n \mathbf{K} f \underline{M}) T^{\sim n} \\
& =(\lambda \underline{x} \cdot f) T_{\sim n} \\
& =\mathrm{f}
\end{aligned}
$$

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

$$
\begin{aligned}
\mathrm{n} \mathbf{K} & \rightarrow\langle T\rangle \mathrm{q}^{\prime} \mathrm{f} \\
& =\mathrm{q}^{\prime}(\mathrm{nKf}) \top_{\sim n} \\
& =(\lambda \underline{x} \cdot n \mathbf{K} f \underline{M}) \top_{\sim n}^{\sim} \\
& =(\lambda \underline{x} \cdot \mathrm{f}) \mathrm{T}^{\sim n} \\
& =\mathrm{f}
\end{aligned}
$$

So finally $\mathrm{q} \sqsupseteq$ semi $\mathrm{q}^{\prime}=\mathbf{I}$.

Correctness of semi: raising partial terms up to I

We know q^{\prime} is healthy, but not at full strength

$$
\lambda f, \underline{x} \cdot f \underline{x} \sqsupseteq q^{\prime} \sqsupseteq \lambda f, \underline{x} \cdot f \perp^{\sim n}
$$

Raise and lower n times to ignore faulty args

$$
\begin{aligned}
\mathrm{n} \mathbf{K} & \rightarrow\langle T\rangle \mathrm{q}^{\prime} \mathrm{f} \\
& =\mathrm{q}^{\prime}(\mathrm{nKf}) \top_{\sim n} \\
& =(\lambda \underline{x} \cdot n \mathbf{K} f \underline{M}) \top_{\sim n}^{\sim} \\
& =(\lambda \underline{x} \cdot \mathrm{f}) \mathrm{T}^{\sim n} \\
& =\mathrm{f}
\end{aligned}
$$

So finally $q \sqsupseteq$ semi $q^{\prime}=\mathbf{I}$.

