Tutorial: Generic Elementary Embeddings

Lecture 3: Towers

Matt Foreman

University of California, Irvine

Corrections

Additions

A partial ordering \mathbb{P} is weakly (ρ, δ) -saturated iff given any collection of antichains $\langle \mathcal{A}_{\alpha} : \alpha < \gamma \rangle$ where $\gamma < \rho$, there is a dense collection of $p \in \mathbb{P}$ such that for all $\alpha < \gamma$

$$|\{q \in \mathcal{A}_{\alpha} : p \land q \neq 0\}| < \delta.$$

A forcing exercise: Let $\gamma < \kappa$ be regular cardinals and $|\mathbb{P}| \leq \kappa$. Then

- \mathbb{P} is weakly (γ^+, κ) -saturated iff
- after forcing with \mathbb{P} , $cf(\kappa) > \gamma$.

Generic Elementary embeddings

Suppose that \mathbb{Q} is a partial ordering such that if $H \subset \mathbb{Q}$ is generic then there is a generic elementary embedding

$$j: V[H] \to N$$

defined over $V[H]^{\mathbb{P}}$. Then there is a generic elementary embedding

$$j' = j \upharpoonright V : V \to M$$

defined in $V^{\mathbb{Q}*\mathbb{P}}$.

Example

If $\mathbb{Q} = Col(\omega_1, < \kappa)$, where κ is Woodin, then there is an ω_2 -saturated ideal I on ω_1 in $V^{\mathbb{Q}}$.

Hence in $V^{\mathbb{Q}*P(\omega_1)/I}$, there is a generic elementary embedding $j: V \to M$ whose critical point is ω_1 , sends ω_1 to κ and is such that $M^{\omega} \cap V^{\mathbb{Q}*P(\omega_1)/I} \subset M$.

Can we get at the embedding directly?

Projections

Let $\pi : Z \to Z'$ be a surjective function. If $I \subset P(Z)$ is an ideal then π determines an ideal I' on Z' by setting:

$$A' \in I'$$
 iff $\pi^{-1}[A] \in I$.

I' is called a projection of I. In this case we get a natural Boolean algebra embedding

 $\iota: P(Z')/I' \to P(Z)/I.$

Towers

Let $\langle U, <_U \rangle$ be a linearly ordered set. A collection of ideals $\langle I_u : u \in U \rangle$ is a tower if there is a commuting system $\{\pi_{u,u'} : u < u'\}$ such that I_u is the projection of $I_{u'}$ via $\pi_{u,u'}$.

Given an tower of ideals we get Boolean algebra embeddings $\iota_{u,u'}$: $P(Z_u)/I_u \rightarrow P(Z_{u'})/I_{u'}$.

We can take the direct limit, \mathbb{B}_{∞} .

We will often abuse notation and view $a \in P(Z_u)/I_u$ as an *element* of $P(Z_{u'})/I_{u'}$.

Ultrapowers by towers

Forcing with \mathbb{B}_{∞} yields a system of ultrafilters G_u on the Z_u 's, and embeddings

$$k_{u,u'}: V^{Z_u}/G_u \to V^{Z_{u'}}/G_{u'}.$$

The direct limit of these models, M_{∞} is defined to be the generic ultrapower by the tower.

So we get a commuting diagram:

8

Concretely

In practical situations we will have $Z \subset P(X)$, $Z' \subset P(X')$ with $X' \subseteq X$. The projection maps will be of the form:

$$\pi: P(Z) \to P(Z')$$

defined by $\pi(A) = \{z \cap X' : z \in A\}.$

Even more: we will have $X = \lambda$ and $X' = \lambda'$ and we have a tower of ideals $\langle I_{\lambda} : \lambda < \delta \rangle$, for some $I_{\lambda} \subseteq PP(\lambda)$) and for $\lambda < \lambda', z \in Z_{\lambda'}$

$$\pi_{\lambda,\lambda'}(z) = z \cap \lambda'.$$

In the previous example

If κ is Woodin, and $G * H \subset Col(\omega_1, < \kappa) * P(\omega_1)/I$ is generic and $j : V \to M$ is the generic embedding, then for each $\lambda < \kappa$,

$$\left\{j ``\lambda \in M \cap [j(\lambda)]^{<\omega_1}\right\} \cap V[G * H].$$

Hence we get an ideal I_{λ} on $P([\lambda]^{<\omega_1})$ induced by $U(j, j ``\lambda)$. These form a tower and the tower forcing is a regular subalgebra of $Col(\omega_1, < \kappa) *$ $P(\omega_1)/I$. Moreover there is a commutative diagram:

where M_{∞} is the ultrapower by the tower.

Upshot

If κ is Woodin, there is an ultrapower by a tower yielding a well-founded model M_{∞} and an embedding $j: V \to M_{\infty}$ such that:

- 1. $\operatorname{crit}(j) = \omega_1$ and $j(\omega_1) = \kappa$,
- 2. M is closed under $<\kappa$ -sequences and
- 3. the forcing preserves κ .

Relationship to the Kunen Construction

A very similar argument applied to the second stage of the "Kunen Construction" of a saturated ideal, yields the consistency of tower forcings that of inaccessible height δ that are δ -saturated.

General Tower Theory

Conventions: δ is a strong limit cardinal, $U \subseteq \delta$ is an unbounded set of cardinals and

$$\mathcal{T} = \langle I_{\alpha} \subseteq PP(H(\alpha)) : \alpha \in U \rangle$$

is a tower of normal, fine, countably complete ideals.

We will call $\delta = sup(U)$ the *height* of the tower. For $\alpha < \delta$, we let α^* be the least element of U greater than $2^{2^{\alpha}}$.

We will let $\mathcal{P}_{\mathcal{T}}$ denote the Boolean algebra \mathbb{B}_∞ associated with $\mathcal{T}.$

Presaturation

We will say that a tower \mathcal{T} of inaccessible height δ is presaturated iff forcing with $\mathcal{P}_{\mathcal{T}}$ preserves the statement " δ is a regular cardinal".

Presaturation is what you want

Suppose that \mathcal{T} is a presaturated tower of inaccessible height δ . Then \mathcal{T} is precipitous. If $G \subseteq \mathcal{P}_{\mathcal{T}}$ is generic and $j: V \to M$ is the generic ultrapower with M transitive then

 $M^{<\delta} \cap V[G] \subseteq M.$

A typical example

Suppose that

- 1. $\rho \geq \omega_1$ is a successor cardinal,
- 2. each I_{α} is ρ -complete and concentrates on $[H(\alpha)]^{<\rho}$ and
- 3. $\mathcal{P}_{\mathcal{T}}$ is weakly (ρ, δ) -saturated.

Then \mathcal{T} is presaturated. If $j: V \to M \subseteq V[G]$ is the elementary elementary embedding arising from a generic $G \subseteq \mathcal{P}_{\mathcal{T}}$ then $crit(j) = \rho$, $j(\rho) = \delta$ and $M^{<\delta} \cap V[G] \subseteq M$.

General Technique

We say that N is good for α iff $\alpha \in N$ and N is good for I_{α} .

If $b \in \mathcal{P}_{\mathcal{T}}$ we will define the support of b to be the least α such that $b \in P(H(\alpha))$.

Let \mathcal{A} be a collection of subsets of $P(H(\alpha))$ for $\alpha \in U$ that form an antichain in \mathcal{P}_T . A structure N captures \mathcal{A} iff N is good for α and there is an $a \in N \cap \mathcal{A}$, with $a \subset P(H(\alpha))$ and $N \cap H(supp(a)) \in a$.

Catching antichains localizes them

Let \mathcal{A} be a maximal antichain. Suppose that $\alpha < \delta$ and $[S] \in \mathcal{P}_{\mathcal{T}}$.

If $S \subseteq \{z \in H(\delta) : z \text{ captures } \mathcal{A} \text{ below } \alpha\}$, then $\{b \in \mathcal{A} : b \text{ is compatible with } [S]\} \subseteq \{b : supp(b) < \alpha\}$.

In particular, $\{b \in \mathcal{A} : b \text{ is compatible with } [S]\}$ has cardinality less than δ .

Weak saturation from catching antichains

Let $\rho \leq \delta$. Suppose that for all $\gamma < \rho$ and all sequences of maximal antichains $\langle \mathcal{A}_{\alpha} : \alpha < \gamma \rangle$ there is a dense set of $S \in \mathcal{P}_{\mathcal{T}}$ with an η between γ and δ such that if $N \in S$ and $\alpha \in \gamma \cap N$, then N captures \mathcal{A}_{α} below η . Then:

 $\mathcal{P}_{\mathcal{T}}$ is weakly (ρ, δ) -saturated.

Let \mathcal{T} be a tower of height δ . Let \mathcal{A} be a maximal antichain in $\mathcal{P}_{\mathcal{T}}$. Then \mathcal{T} can capture \mathcal{A} at α iff

- 1. $\mathcal{A}\cap\mathcal{P}_{\mathcal{T}_{\alpha}}$ is a maximal antichain in $\mathcal{P}_{\mathcal{T}_{\alpha}}$ and
- 2. whenever:
 - (a) γ is between α and δ , $\sigma < \alpha$ and \mathfrak{A} is a structure in a countable language expanding $\langle H(\gamma^*), \in, \Delta \rangle$

there is a closed unbounded set of $N \prec \mathfrak{A}$ such that if:

- (b) N is good for γ ,
- (c) $\{\mathcal{A} \cap \mathcal{P}_{\mathcal{T}_{\alpha}}, \mathcal{T}_{\alpha}\} \subseteq N$ and
- (d) $N^* \prec N$ has cardinality less than α

then there is an $N'\prec\mathfrak{A}$ such that

(A)
$$N'$$
 is good for γ ,

(B)
$$N' \cap H(\sigma) = N \cap H(\sigma)$$
,

(C)
$$N^* \prec N'$$
 and

(D) N' captures \mathcal{A} below α .

Catching antichains implies precipitous

Suppose that \mathcal{T} is a tower that captures antichains. Then \mathcal{T} is precipitous.

A counterexample to precipitousness is given by an ω -sequence of antichains that form a tree. Catching them one by one gives a branch through the tree with non-empty intersection.

Presaturation

To show weak saturation, you typically have to capture more than ω many antichains. This requires more than antichain catching:

Example Let δ be Woodin. For regular $\alpha < \delta$ let Z_{α} be the collection of $N \in [H(\alpha)]^{<\omega_2}$ that are internally approachable by a sequence of length ω_1 . Then $\langle NS \upharpoonright Z_{\alpha} : \alpha$ is regular and $\alpha < \delta \rangle$ forms a precipitous tower. Further, if this tower is pre-saturated then $\Theta^{L(\mathbb{R})} < \omega_2$.

Presaturation

Let $\rho < \delta$ and δ inaccessible. A tower $\mathcal{T} = \langle I_{\alpha} : \alpha \in U \rangle$ of height δ will be called ρ -complete iff for all $\gamma < \rho$ and all increasing sequences $\langle \alpha_i : i < \gamma + 1 \rangle \subset U$ and all regular $\lambda \gg \alpha_{\gamma}$ and all $u \in H(\lambda)$ if:

- 1. $\langle N_i : i \in \gamma \rangle$ is a sequence of elementary substructures of $\langle H(\lambda), \in, \Delta, u \rangle$ with $\{ \langle \alpha_i : i < \gamma + 1 \rangle, \langle I_\alpha : \alpha \in U \cap (\alpha_\gamma + 1) \rangle \} \subseteq N_j$ for all $j < \gamma$,
- 2. N_i good for α_γ and
- 3. $N_i \cap H(\alpha_i) = N_j \cap H(\alpha_i)$ for $i < j < \gamma$.

then there is an $N_{\gamma} \prec \langle H(\lambda), \in, \Delta, u \rangle$ with $\{ \langle \alpha_i : i < \gamma + 1 \rangle, \langle I_{\alpha} : \alpha \in U \cap (\alpha_{\gamma} + 1) \rangle \} \subseteq N_{\gamma}$ that is good for α_{γ} and for all $i < \gamma$, $N_{\gamma} \cap H(\alpha_i) = N_{\alpha_i} \cap H(\alpha_i)$.

The payoff

Let $\mathcal{T} = \langle I_{\alpha} : \alpha \in U \rangle$ be a tower of normal, fine, countably complete ideals of inaccessible height δ . Suppose that:

- 1. $\ensuremath{\mathcal{T}}$ captures antichains and
- 2. T is $<\rho$ -complete.

Then \mathcal{T} is weakly (ρ, δ) -saturated.

An example

The previous theorem reduces the problem of presaturation to capturing antichains and completeness. Completeness can be difficult to verify:

Example Let δ be inaccessible. For regular $\alpha < \delta$, let $Z_{\alpha} = \{N \prec H(\alpha) : |N| < \omega_2 \text{ and } N \cap \alpha \text{ is } \omega\text{-closed}\}.$

Then $\langle NS \upharpoonright Z_{\alpha} : \alpha < \delta \rangle$ is a $<\omega_2$ -closed tower.

Natural towers

Let δ be an inaccessible cardinal and $U\subseteq \delta$ be a cofinal set. At tower

 $\mathcal{T} = \langle NS \upharpoonright Z_{\alpha} : \alpha \in U \rangle$

is called a stationary tower.

Woodin's Towers

- 1. When each $Z_{\alpha} = P(H(\alpha))$, the tower is called $\mathbb{P}_{<\delta}$ and
- 2. when each $Z_{\alpha} = [H(\alpha)]^{<\omega_1}$, the tower is called $\mathbb{Q}_{<\delta}$.

Woodin's Towers are presaturated

Theorem (Woodin) Let δ be a Woodin cardinal and \mathcal{T} the stationary tower $\langle NS \upharpoonright Z_{\alpha} : \alpha \in \delta \rangle$ where either:

- 1. for all $\alpha, Z_{\alpha} = P(H(\alpha))$ or
- 2. for all $\alpha, Z_{\alpha} = [H(\alpha)]^{<\kappa}$ for some regular uncountable cardinal $\kappa < \delta$.

Then $\ensuremath{\mathcal{T}}$ captures antichains.

Burke's Towers

Let δ be a supercompact cardinal and $\mathcal{T} = \langle NS \upharpoonright Z_{\alpha} : \alpha \in U \rangle$ be an arbitrary stationary tower of height δ . Suppose that there is a Σ_1 formula $\phi(x, x', \vec{y})$ and $\vec{p} \in H(\delta)$ such that if we set

$$f(\alpha) = \alpha' \text{ iff } \phi^V(\alpha, \alpha', \vec{p})$$

then f bounds the map sending α to the least element of U above α .

Then $\ensuremath{\mathcal{T}}$ captures antichains.

Woodinized Supercompact cardinals

Definition: δ is a Woodinized supercompact cardinal iff for all $f : \delta \to \delta$ there is an $\alpha < \delta$ closed under f and a $j : V \to M$ with critical point α such that M is closed under $|V_{j(f)(\alpha)}|$ sequences.

These cardinals are between supercompact and huge cardinals in consistency strength.

Arbitrary Stationary tower forcing.

Suppose that δ is a Woodinized supercompact cardinal and \mathcal{T} is a stationary tower of height δ . Then \mathcal{T} captures antichains.

An example of Burke

Suppose that κ is supercompact and $\delta > \kappa$ is inaccessible. Then there is a tower of height δ that is not precipitous.

Examples of applications

(Woodin) Let δ be Woodin and $\mu < \delta$ be a regular uncountable cardinal.

For $\mu \leq \alpha < \delta$, let $Z_{\alpha} = [H(\alpha)]^{<\mu}$ and $\mathcal{T} = \langle NS \mid Z_{\alpha} : \alpha < \delta \rangle$.

Then forcing with $\mathcal{P}_{\mathcal{T}}$ yields a generic embedding $j: V \to M$ with $M^{\leq \delta} \subseteq M$.

If η is an ordinal less than δ and $\{z : z \cap \mu \in \mu\}$ and $\{z : cf(z \cap \eta) = \rho\}$ are in the generic object G, then the critical point of j is μ and in both V[G] and M, the cofinality of η is $j(\rho)$.

Fixing $\mu = \eta = \aleph_{\omega+1}$ and $\rho = \aleph_{17}$ we see that we can force to preserve cardinals below \aleph_{ω} and change the cofinality of $\aleph_{\omega+1}^V$ to be \aleph_{17} .

A slight refinement

Let δ be a Woodin cardinal and ρ, μ, κ be regular with $\mu^+ \leq \rho < \kappa < \delta$. Let $\eta < \delta$ and

 $Z_{\alpha} = \{ z \in [H(\alpha)]^{<\kappa} : z \cap \kappa \in \kappa, z \cap \alpha \text{ is } <\mu^+ - \text{closed and } cf(z \cap \eta) = \rho \}.$

Then $\mathcal{T} = \langle NS \upharpoonright Z_{\alpha} : \alpha < \delta \rangle$ is a tower and if $G \subseteq \mathcal{P}_{\mathcal{T}}$ is generic, in V[G]:

- $cf(\eta) = \rho$ and
- for all ordinals ξ if $cf(\xi)^{V[G]} \leq \mu$ then $cf(\xi)^{V[G]} = cf(\xi)^{V}$.

Taking $\kappa = \eta = \aleph_{\omega+1}$ and $\mu = \aleph_{16}, \rho = \aleph_{17}$ we see that there are partial orderings that

- make $\aleph_{\omega+1}$ have cofinality \aleph_{17} ,
- preserve all cardinals below \aleph_{ω} and
- preserve the V-cofinality of any cardinal whose V[G] cofinality is less than \aleph_{17} .

Another application due to Woodin

Let δ be a Woodin cardinal, $G \subset \mathbb{P}_{<\delta}$ be generic and $j: V \to M$ be the generic elementary embedding. Then in V[G]:

1. $j(\delta) = \delta$,

- 2. δ is a regular cardinal and there are unboundedly many measurable $\mu < \delta$ with $j(\mu) = \mu$ and
- 3. for unboundedly many measurable $\mu \in \delta$ there is a $\gamma < \mu$ and $x \subseteq \gamma$ such that $V_{\mu} \subseteq L[x]$.

Conventional large cardinals cannot have fixed points inside their strength.

The End