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Recap

Last time:

We saw how generic elementary embedding as-

sumptions are natural generalizations of con-

ventional large cardinals.

We saw that they could naturally be charac-

terized by the “three parameters”.

Finally, we saw that the combinatorial device

of “ideals” could be used to encode the generic

elementary embedding assumptions.
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Induced vs. natural ideals

The manner we got ideals from generic em-

beddings was to start with a generic embed-

ding j : V → M ⊆ V [G], choose an element

i ∈ M and a Z such that i ∈ j(Z).

This gave an ultrafilter U(j, i) ⊆ P (Z)V by set-

ting A ∈ U(j, i) iff i ∈ j(A).

U(j, i) in turn gave an ideal in V by setting

A ∈ I iff ‖A ∈ U(j, i)‖ = 0.

An ideal that arises this way is called an in-

duced ideal.
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Natural ideals

Natural ideals are ideal with an extrinsic defi-
nition. Examples include:

1. The non-stationary ideals

(a) on a regular κ

(b) on [λ]<κ or more generally

(c) on P (Z) for some Z ⊆ P (λ)

2. Club guessing ideals

3. I[λ]

4. Null or meager ideals

5. etc. etc.
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Collapsing large cardinals

The methods for dealing with induced ideals

and natural ideals differ. We begin with con-

structions of induced ideals with strong prop-

erties.

The basic method is to take a large cardinal

embedding in a model V0:

j0 : V0 → M0

with critical point κ and force with a partial or-

dering P to make κ an accessible cardinal such

as ω1. We then want to extend the embedding

j0 to a

j : V P
0 → M

j(P)
0 .

Then our final model V = V P
0 will be the do-

main of a generic elementary embedding.
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Precisely

Given j : V → M and a generic G ⊂ P we want

to extend j to a

ĵ : V [G] → M ′

for some M ′. Then we must have:

• M ′ = M [H] for some M-generic H ⊆ j(P)

• ĵ(τG) = j(τ)H.
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Assume ĵ : V [G] → M [H]

Suppose that H ⊂ j(P) is V -generic. Then

there is an m ∈ j(P) which forces that

j−1(H) ⊂ P is V -generic.

This can be restated as:

j : P → j(P)/m is a regular embedding.

Such an m is called a master condition.
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More generally

We want to extend j to ĵ : V [G] → M [H]. It is

only necessary that H be M-generic. For this

it suffices to look at the filter F generated by

j“G.

IF forcing with j(P)/F yields an M-generic H ⊂
j(P) then we can extend the embedding.

This frequently happends in situations where

you have partial master conditions.
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Consistency results

Almost all consistency results for ideal axioms

follow this outline. The hard work is in building

the partial ordering P so that there is a master

condition m or so that the filter F has nice

properties.

An issue with all of the constructions is in cat-

egorizing the resulting induced ideal.
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Computing the quotient of the ideal

If the original j came from the ultraproduct by

an ultrafilter U ⊂ P (Z), and i = [id]M , then ĵ

yields U(ĵ, i) ⊇ U and hence an induced ideal

I.

Moreover, in most situations I is the dual of U

restricted to a single set M.

What is the partial ordering P (Z)/I?

Is it λ-c.c.? Is it precipitous? Presaturated?

etc.

10



Extending generic elementary embeddings

A more general question

If the original j comes from a generic ultra-

power, we force with P and can extend j to

ĵ, then what is the quotient forcing by the in-

duced ideal?
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Extending generic elementary embeddings

In this situation we start with a precipitous J

and ask about J̄, the ideal generated by J in

the forcing extension P.

The assertion of the existence of a master con-

dition in this setting is:

id ∗ j : P (Z)/J ∗ P → P (Z)/J ∗ j(P)/m is a

regular embedding.

In the special case that we are starting with

a conventional ultrapower by an ultrafilter U ,

then J = Ŭ is prime and P (Z)/J is trivial.
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Duality

What we want to say is that:

P ∗ P (Z)/J̄ ∼= P (Z)/J ∗ j(P).

This is almost true: you have to account for

the master condition in j(P).
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The duality theorem

Suppose that

id ∗ j : P (Z)/J ∗ P → P (Z)/J ∗ j(P)/m

is regular embedding.

Then there are conditions q and p so that

(P ∗ P (Z)/J̄)/q ∼= (P (Z)/J ∗ j(P))/p.
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Applications of the duality theorem

Example (classical) Suppose that κ is measur-

able and µ < κ is regular. Let P = Col(µ, < κ)

and J be the dual to a normal measure on κ.

In this case P ∗ P (κ)/J̄ ∼= P (κ)/J ∗ j(P) says

that in V P :

P (κ)/J̄ ∼= j(P)/P.

So:

P (κ)/J̄ ∼= Col(µ, < j(κ)).

In particular P (κ)/J̄ contains a dense µ-closed

subset.
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Another example

Suppose that I is a countably complete ideal

on ω1 such that P (ω1)/I ∼= Col(ω, ω1). What

is the quotient algebra P (ω1)/Ī after adding

ω1-Cohen reals?
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Answer

By the Duality Theorem:

Add(ω, ω1) ∗ P (ω1)/Ī ∼= P (ω1)/I ∗ Add(ω, ω2).

In particular in the model after adding ω1-Cohen

reals

P (ω1)/Ī ∼= Col(ω, ω1) ∗ Add(ω, ω2).
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Preservation Theorems

(Baumgartner-Taylor/ Laver) Suppose that I

is a κ+-saturated ideal on κ. Let P be c.c.c.

Then if G ⊂ P is generic, Ī is κ+-saturated in

V [G] iff j(P) is κ+-c.c. in V [G, H].

Proof:

P ∗ P (κ)/I ∼= P (κ)/I ∗ j(P).
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More corollaries

Kakuda’s Theorem Suppose that I is a pre-

cipitous ideal on κ and P is κ-c.c. Then Ī is

precipitous in V P.

Theorem Suppose that I is a normal, fine,

precipitous ideal on [λ]<ω1 for some λ, and

P is a proper partial ordering with 2P ≤ λ.

Then there is a dense collection of sets A ∈
P ([λ]<ω1)/I such that I � A precipitous in V P.

In particular, if you collapse a supercompact to

be ω1, then proper forcing preserves the axiom

that ω1 is “generically supercompact.”
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Generalizations

There is a version of the Duality Theorem for

the more complicated case where you force

with j(P)/F, rather than below a master con-

dition. This allows one to compute quotient

algebras in constructions that only have par-

tial master conditions.

The Duality Theorem and its generalizations

allow one to compute the quotient forcing in

all cases I am aware of.
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Consistency results for natural ideals

There are two different approaches for making

natural ideals have nice properties.

1. Take an existing induced ideal and make it

natural by changing the properties of the

sets in the ideal.

2. Start with a natural ideal and manipulate

its antichain structure.
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Making induced ideals natural

Start with a generic elementary embedding

j0 : V0 → M0 and let I be the induced ideal

from U(j0, i) for some i.

A forcing construction is carried out that makes

elements of Ĭ belong to the dual of the nat-

ural ideal. Care must be taken to make sure

that the generic embedding j can be extended

during the forcing construction.

The ability to extend the embedding j implies

that the critical point of j remains a regular

cardinal after the forcing.
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A complication to this outline is that if jα is

the generic embedding after α stages of the

iteration, then the induced ideal Iα for U(jα, i)

may properly contain the original ideal I.
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Thus the construction involves:

1. A “nice” original ideal I = I0.

2. An iteration 〈(Rα, Q̇α) : α < λ〉 such that

in V Rα
0 , the original embedding j can be

generically extended to an embedding jα

from V Rα
0 to M

j(Rα)/mα
0 . Moreover, for α <

β we have mβ ≤ mα and jα ⊆ jβ.

3. An sequence of ideals 〈Iα : α < λ〉 where Iα

is the induced ideal for U(jα, i). Since the

jα’s cohere and the mα’s get stronger with

α, we have Iα ⊆ Iβ for α < β.
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4. For every element S that belongs to some

Iα for an α < λ there is a β so that Qβ puts

S into the natural ideal.

5. I∞ =def
⋃

α<λ Iα is the natural ideal in V
Rλ
0 .

The final model will be V
Rλ
0 . Typically

j∞ =def lim→ jα

gives a generic embedding from V
Rλ
0 to M

j(Rλ)/F
0

and the induced ideal from U(j∞, i) is I∞. By

property 4.), I∞ is the natural ideal.

If the original ideal I has nice properties, e.g.

that I is saturated or that I is precipitous and

the embedding j was the generic ultraproduct

of I, then I∞ can be shown to retain some of

these properties.
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Examples of theorems like this

Theorem(Komjath) Suppose there is a mea-

surable cardinal. Then there is a forcing exten-

sion in which there is a non-meager set A ⊆ R
such that P (A)/{meager sets} is precipitous.

Theorem(Magidor) Suppose that there is a

measurable cardinal, then there is a forcing ex-

tension in which NSω1 is precipitous.

Theorem(Foreman-Komjath) Suppose there

is an almost huge cardinal κ and µ < κ. Then

there is a forcing extension in which a club

guessing ideal on µ+ is saturated.

etc.
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Manipulating the antichain structure

Here the ideas are catching an antichain, good-

ness and self-genericity.

We begin with some definitions: Let I be a

normal, fine ideal on P (Z) for some Z ⊂ P (X).

Let θ >> |Z|.

1. N ≺ H(θ) is good iff N ∩ X ∈ C for all

C ∈ N ∩ Ĭ

2. N catches an antichain A iff N is good and

there is an a ∈ N ∩ A such that N ∩ X ∈ a.

3. N is self-generic iff N catches every an-

tichain A ∈ N .
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Self-genericity

The following are equivalent:

1. N is self-generic

2. U(id, N ∩X) is generic over N for the forc-

ing P (Z)/I.
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Self-genericity and Saturation

If |Z| = |X|, then the following are equivalent:

• I is |X|+-saturated

• Almost every good N is self-generic.
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Antichain catching and precipitousness

Suppose that for all S ∈ I+, and all sequences

〈An : n ∈ ω〉 of maximal antichains below [S]I
there is an elementary substructure N ≺ H(θ)

with I, Z, X, 〈An : n ∈ ω〉, S ∈ N such that:

1. N ∩ X ∈ S and

2. for all n, N catches an index for the an-

tichain An.

Then I is precipitous.
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How to catch antichains

Basic Proposition

Suppose that κ is a Woodin cardinal and µ < κ

is regular. Let G ⊂ Col(µ, < κ) be generic. In

V [G]:

If N ≺ H(θ), A is a maximal antichain in P (µ)/NS,

and A ∈ N , then there is an N ′ such that:

1. N ≺ N ′

2. N ′ catches A

3. N ′ ∩ µ = N ∩ µ.
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Corollary

Suppose that κ is Woodin in V , and G ⊆ Col(µ, <

κ) is generic. Then:

1. NSµ is precipitous

2. If (µ, λ) →→ (κ, ρ) then there is a precipitous
ideal on [µ]κ concentrating on [λ]ρ

3. If µ is Jonsson in V then there is a precip-
itous ideal on [µ]µ

4. If λ and µ = λ+, then there is a precipitous
ideal on

{N ⊂ µ : |N ∩ λ| = λ}.

These are some of the hypothesis used to show
strong results in the first lecture.
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The non-stationary ideal on ω1

Using the Basic Proposition and reflection one

can show that if κ is supercompact and G ⊂
Col(ω1, < κ), then in V [G]:

The non-stationary ideal on ω1 is

presaturated.
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The non-stationary ideal on ω1

We want every maximal antichain in P (ω1)/NSω1

to be of size ω!.

Suppose that A = 〈Aα : α < ω2〉 is a maximal

antichain in P (ω1)/NS. Two tries:

1. by forcing with Col(ω1, ω2)

Problem Then A stops being maximal.

2. by shooting a closed unbounded set through

�β<αAβ for some α < ω2.

Problem This kills stationary sets and so

can’t be iterated.
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Solution

Force with Col(ω1, ω2) ∗ Q where Q shoots a

closed unbounded set through �〈Aα : α < ωV
2 〉.

This partial ordering preserves stationary sets.

Moreover, it is semi-proper iff for almost all

N ≺ H(λ), there is an N ′ such that:

1. N ≺ N ′

2. N ′ catches A

3. N ′ ∩ ω1 = N ∩ ω1.
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Assuming sufficient large cardinals

The forcing for sealing antichains can be it-

erated in such a way that the non-stationary

ideal on ω2 is saturated.

This gives the consistency of the statement:

The non-stationary ideal on ω1 is ω2 saturated.
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Another example of this technique

Ishiu showed from a Woodin cardinal that it is

consistent that:

There is a club guessing sequences such that

the club guessing ideal on ω1 is ω2-saturated.
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The End
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