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These lectures serve as a very brief introduc-

tion to the article

Ideals and generic elementary embeddings,

to appear in the Handbook of Set Theory.
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Plan of Tutorial

Lecture 1: Introduction and consequences of

generic elementary embeddings.

Lecture 2: Consistency results.

Lecture 3: Forcing with towers.
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Standard Large Cardinal Assumption

There is an elementary embedding

j : V → M

where M is well founded.

Two parameters determine the strength of the

embedding:

1. Where j moves ordinals

2. The closure properties of M

Variations on this can include such statements

as: for all f : κ → κ there is a j with critical

point α < κ such that α is closed under f and

Vj(f)(α) ⊂ M .
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Generalized Large Cardinals.

Idea:

Allow j to be defined in a generic extension of

V .

A typical statement is:

There is partial ordering P such that if G ⊂ P
is generic then in V [G] there is an elementary

embedding

j : V → M

where M is well-founded.
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The Three Parameters

Now three parameters determine the strength

of the embedding:

1. Where j moves ordinals

2. The closure properties of M

3. The nature of the forcing P.

For this reason we often speak of “generically

huge”, or “generically supercompact” cardi-

nals.
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Ideals.

Generalized large cardinals are usually discussed

in terms of ideals. The translation goes as fol-

lows:

Suppose that j : M → N is an elementary em-

bedding and i ∈ j(Z) for some set Z ∈ M .

Then there is a natural ultrafilter U(j, i) asso-

ciated with the ideal element i.

Define U(j, i) on P (Z)M by setting

A ∈ U(j, i) iff i ∈ j(A).

Then U(j, i) is M-complete for intersections

of size less than crit(j).
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Ideals Continued.

Suppose now that P is a partial ordering and

U̇ is a term in V P for any ultrafilter on P (Z)V .

Then we get an ideal by setting:

A ∈ I iff ‖A ∈ U̇‖P = 0.

Then I is an ideal and if U is κ-complete for

sequences that lie in V , then I is a κ-complete

ideal.
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Putting this together

Suppose that j : V → M ⊂ V [G] is definable in

V [G] for some generic G ⊂ P, i ∈ M and Z ∈ V

is such that i ∈ j(Z). Then in V [G] there is

an ultrafilter U(j, i) ⊂ P (Z)V . This ultrafilter

gives an ideal I on Z that lies in V .

We can also go the other direction–frequently

ideals yield generic elementary embeddings.
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Generic ultraproducts.

Suppose that I is an ideal on P (Z). Then

P (Z)/I is a Boolean algebra. If we force with

P (Z)/I (without the zero element) then we get

a V -ultrafilter G ⊆ P (Z).

With this ultrafilter we can take the ultraprod-

uct V Z/G using functions in V . This gives us

a generic elementary embedding

j : V → V Z/G.

An ideal I is precipitous if this generic ultra-

power is always well-founded.
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Some conventions.

• X will be a set: typically a cardinal λ

• Z will be a subset of P (X): typically λ itself

or [λ]<κ.

• I ⊂ P (Z) will be a proper ideal.

• For A ⊂ Z not in I we write A ∈ I+.

• Ĭ =def {Z \A : A ∈ I} is the dual filter to I.

• Unless otherwise stated, all of our ideals

will be countably complete and proper.
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Some structural properties of an ideal.

If our ideal element i is of the form j“X, then I

has two additional properties, I is normal and

fine.

Normal:

For all A ∈ I+ and all functions f : A → X such

that f(z) ∈ z for all z ∈ A, there is a y ∈ X such

that {z ∈ A : f(z) = y} ∈ I+.

Fine:

For all x ∈ X the set x̂ = {z ∈ Z : x ∈ z} ∈ Ĭ.
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Standing assumption.

From now on all of our ideals will be normal,

fine and countably complete.
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Saturation

There are many combinatorial properties of

ideals that allow one to computing the clo-

sure of the generic ultraproduct. The most

fundamental is saturation.

An ideal I ⊂ P (Z) is κ-saturated iff P (Z)/I has

the κ-c.c.

Local variations of this idea include presatura-

tion, weak (κ, λ)-saturation etc.

14



Consequences of generic large cardinals

Strong reflection properties are the easiest fruit
to pick. We will state the results in term of
embeddings, rather than in terms of ideals. As-
sume that j : V → M ⊂ V [G] is a generic ele-
mentary embedding and k, m, n ∈ ω.

• If n < m, j(ωn) = ωV
m,j(ωn+k) = ωV

m+k, and
j“ωm+k ∈ M , then

(ωm+k, ωm) →→ (ωn+k, ωn).

• Setting k = 1, m = n + 1 we see that the
existence of such a j implies that

square fails and there are no Kurepa trees.

• Setting k = 2, m = n + 1 we see that

2ωn = ωn+1 implies 2ωm = ωm+1.

etc.
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Consequences cont.

Suppose that j(ℵω) = ℵω, crit(j) < ℵω and

j“ℵω ∈ M , then ℵω is Jonsson.

(Much weaker ideal assumptions also yield the

same conclusion.)
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The CH.

Suppose that there is an elementary embed-

ding j : V → M ⊆ V [G] with critical point ω2

where G ⊂ P is generic for some ω-closed par-

tial ordering P. Then the CH holds.
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Suslin Trees

Suppose that there is a j : V → M ⊂ V [G] such

that:

1. crit(j) = ω1,

2. M is closed under ωV
2 sequences in V [G]

and

3. G ⊆ P is generic where P = Col(ω, ω1).

Then there is a Suslin tree on ω1.

I am giving the easier versions of these results.

In the cases of the Suslin tree and the CH,

Woodin has improved these results by giving

deeper arguments for theorems with different

hypothesis.
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State of the art

For the CH, GCH, properties of trees, descrip-

tive set theory and reflection properties of sta-

tionary sets, generic large cardinals give a uni-

fied picture settling most independent ques-

tions.

There is one rather obscure counterexample,

which we describe next.
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Disunity

Let φ be the partition relation:(
ω2
ω1

)
→

(
ω1
ω1

)
ω

• If there is an (ω2, ω2, ω)-saturated ideal on

ω1 and the CH holds then φ holds.

• If there is an inaccessible λ and a nor-

mal fine ideal I on Z = [λ]ω1 such that

P (Z)/I ∼= B(Col(ω, < λ)), then φ fails.

This is the ONLY known example of this type

for ideal assumptions known to be consistent.
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An axiom of a different form

There is an ideal axiom that is not stated in

terms of the three parameters, whose conse-

quences are radically different. This axiom is:

The non-stationary ideal on ω1 is ω2-saturated.
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The non-stationary ideal on ω1

Theorem (Shelah) Suppose that

P (ω1)/NS ∼= Col(ω, ω1).

Then weak diamond fails. In particular 2ω =

2ω1.

Theorem (Woodin) Suppose that the non-

stationary ideal on ω1 is ω2-saturated and there

is a measurable cardinal. Then:

δ12 = ω2.
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Some puzzles

Is there analogue of the axiom NSω1 is ω2-

saturated for larger cardinals? Simply chang-

ing ω1 to ω2 doesn’t work. For example, as-

suming that there is a measurable cardinal, the

assertion that

NSω2 � cof(ω1) is ω3-saturated

is inconsistent with the statement

NSω1 is ω2-saturated.
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Another puzzle

Why are mutually contradictory “3-parameter”

axioms so sparse? Is there some mutually con-

sistent central theory?
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The End
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