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The last two decades have seen the emergence of a theory of set
theoretic complexity of classification problems in mathematics. In these
lectures we will discuss recent developments concerning the application
of this theory to classification problems in ergodic theory.

The first lecture will be devoted to a general introduction to this
area. The next two lectures will give the basics of Hjorth’s theory of
turbulence, a mixture of topological dynamics and descriptive set the-
ory, which is a basic tool for proving strong non-classification theorems
in various areas of mathematics.

In the last three lectures, we will show how these ideas can be applied
in proving a strong non-classification theorem for orbit equivalence.
Given a countable group Γ, two free, measure-preserving, ergodic ac-
tions of Γ on standard probability spaces are called orbit equivalent if,
roughly speaking, they have the same orbit spaces. More precisely this
means that there is an isomorphism of the underlying measure spaces
that takes the orbits of one action to the orbits of the other. A remark-
able result of Dye and Ornstein-Weiss asserts that any two such actions
of amenable groups are orbit equivalent. Our goal will be to outline a
proof of a dichotomy theorem which states that for any non-amenable
group, we have the opposite situation: The structure of its actions up
to orbit equivalence is so complex that it is impossible, in a vey strong
sense, to classify them (Epstein-Ioana-Kechris-Tsankov).

Beyond the method of turbulence, an interesting aspect of this proof
is the use of many diverse of tools from ergodic theory. These include:
unitary representations and their associated Gaussian actions; rigidity
properties of the action of SL2(Z) on the torus and separability argu-
ments (Popa, Gaboriau-Popa, Ioana), Epstein’s co-inducing construc-
tion for generating actions of a group from actions of another, quan-
titative aspects of inclusions of equivalence relations (Ioana-Kechris-
Tsankov) and the use of percolation on Cayley graphs of groups and
the theory of costs in proving a measure theoretic analog of the von
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Neumann Conjecture, concerning the “inclusion” of free groups in non-
amenable ones (Gaboriau-Lyons). Most of these tools will be intro-
duced as needed along the way and no prior knowledge of them is
required.
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and Greg Hjorth for many valuable comments on an earlier draft of
this paper.
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1. Lecture I. A Survey

A. Classification problems in ergodic theory.

Definition 1.1. A standard measure space is a measure space (X,µ),
where X is a standard Borel space and µ a non-atomic Borel probability
measure on X.

All such spaces are isomorphic to the unit interval with Lebesgue
measure.

Definition 1.2. A measure-preserving transformation (mpt) on (X,µ)
is a measurable bijection T such that µ(T (A)) = µ(A), for any Borel
set A.

Examples 1.3.

• X = T with the usual measure; T (z) = az, where a ∈ T, i.e., T
is a rotation.
• X = 2Z, T (x)(n) = x(n− 1), i.e., the shift transformation.

Definition 1.4. A mpt T is ergodic if every T -invariant measurable
set has measure 0 or 1.

Any irrational, modulo π, rotation and the shift are ergodic. The
ergodic decomposition theorem shows that every mpt can be canonically
decomposed into a (generally continuous) direct sum of ergodic mpts.

In ergodic theory one is interested in classifying ergodic mpts up
to various notions of equivalence. We will consider below two such
standard notions.

• Isomorphism or conjugacy : A mpt S on (X,µ) is isomorphic to
a mpt T on (Y, ν), in symbols S ∼= T , if there is an isomorphism
ϕ of (X,µ) to (Y, ν) that sends S to T , i.e., S = ϕ−1Tϕ.
• Unitary isomorphism: To each mpt T on (X,µ) we can assign

the unitary (Koopman) operator UT : L2(X,µ) → L2(X,µ)
given by UT (f)(x) = f(T−1(x)). Then S, T are unitarily iso-
morphic, in symbols S ∼=u T , if US, UT are isomorphic.

Clearly ∼= implies ∼=u but the converse fails.
We state two classical classification theorems:

• (Halmos-von Neumann [HvN42]) An ergodic mpt has discrete
spectrum if UT has discrete spectrum, i.e., there is a basis con-
sisting of eigenvectors. In this case the eigenvalues are simple
and form a (countable) subgroup of T. It turns out that up
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to isomorphism these are exactly the ergodic rotations in com-
pact metric groups G : T (g) = ag, where a ∈ G is such that
{an : n ∈ Z} is dense in G. For such T , let ΓT ≤ T be its group
of eigenvalues. Then we have:

S ∼= T ⇔ S ∼=u T ⇔ ΓS = ΓT .

• (Ornstein [Orn70]) Let Y = {1, . . . , n}, p̄ = (p1, · · · , pn) a prob-
ability distribution on Y and form the product space X = Y Z

with the product measure µ. Consider the Bernoulli shift Tp̄ on
X. Its entropy is the real number H(p̄) = −

∑
i pi log pi. Then

we have:

Tp̄ ∼= Tq̄ ⇔ H(p̄) = H(q̄)

(but all the shifts are unitarily isomorphic).

We will now consider the following question: Is it possible to classify,
in any reasonable way, general ergodic mpts?

We will see how ideas from descriptive set theory can throw some
light on this question.

B. Complexity of classification.

We will next give an introduction to recent work in set theory, de-
veloped primarily over the last two decades, concerning a theory of
complexity of classification problems in mathematics, and then discuss
its implications to the above problems.

A classification problem is given by:

• A collection of objects X.
• An equivalence relation E on X.

A complete classification of X up to E consists of:

• A set of invariants I.
• A map c : X → I such that xEy ⇔ c(x) = c(y).

For this to be of any interest both I, c must be as explicit and con-
crete as possible.

Example 1.5. Classification of Bernoulli shifts up to isomorphism
(Ornstein).

Invariants: Reals.

Example 1.6. Classification of ergodic measure-preserving transfor-
mations with discrete spectrum up to isomorphism (Halmos-von Neu-
mann).

Invariants: Countable subsets of T.



CLASSIFICATION PROBLEMS IN ERGODIC THEORY 5

Example 1.7. Classification of unitary operators on a separable
Hilbert space up to isomorphism (Spectral Theorem).

Invariants: Measure classes, i.e., probability Borel measures on a
Polish space up to measure equivalence.

Most often the collection of objects we try to classify can be viewed
as forming a “nice” space, namely a standard Borel space, and the
equivalence relation E turns out to be Borel or analytic (as a subset
of X2).

For example, in studying mpts the appropriate space is the Polish
group Aut(X,µ) of mpts of a fixed (X,µ), with the so-called weak
topology. (As usual, we identify two mpts if they agree a.e.) Isomor-
phism then corresponds to conjugacy in that group, which is an ana-
lytic equivalence relation. Similarly unitary isomorphism is an analytic
equivalence relation (in fact, it is Borel, using the Spectral Theorem).
The ergodic mpts form a Gδ set in Aut(X,µ).

The theory of equivalence relations studies the set-theoretic nature of
possible (complete) invariants and develops a mathematical framework
for measuring the complexity of classification problems.

The following simple concept is basic in organizing this study.

Definition 1.8. Let (X,E), (Y, F ) be equivalence relations. E is
(Borel) reducible to F , in symbols

E ≤B F,

if there is Borel map f : X → Y such that

xEy ⇔ f(x)Ff(y).

Intuitively this means:

• The classification problem represented by E is at most as com-
plicated as that of F .
• F -classes are complete invariants for E.

Definition 1.9. E is (Borel) bi-reducible to F if E is reducible to F
and vice versa:

E ∼B F ⇔ E ≤B F and F ≤B E.

We also put:

Definition 1.10.

E <B F ⇔ E ≤B F and F 6≤B E.

Example 1.11. (Isomorphism of Bernoulli shifts) ∼B (=R)
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Example 1.12. (Isomorphism of ergodic discrete spectrum mpts)∼B
Ec, where Ec is the equivalence relation on TN given by

(xn) Ec (yn)⇔ {xn : n ∈ N} = {yn : n ∈ N}.

Example 1.13. (Isomorphism of unitary operators)∼B ME, where
ME is the equivalence relation on the Polish space of probability Borel
measures on T given by

µ ME ν ⇔ µ� ν and µ� ν.

The preceding concepts can be also interpreted as the basis of a
“definable” or Borel cardinality theory for quotient spaces.

• E ≤B F means that there is a Borel injection of X/E into
Y/F , i.e., X/E has Borel cardinality less than or equal to that
of Y/F , in symbols

|X/E|B ≤ |Y/F |B
(A map f : X/E → Y/F is called Borel if it has a Borel lifting
f ∗ : X → Y , i.e., f([x]E) = [f ∗(x)]F .)
• E ∼B F means that X/E and Y/F have the same Borel cardi-

nality, in symbols

|X/E|B = |Y/F |B
• E <B F means that X/E has strictly smaller Borel cardinality

than Y/F , in symbols

|X/E|B < |Y/F |B

C. Non-classification results for isomorphism and unitary iso-
morphism.

Definition 1.14. An equivalence relation E on X is called concretely
classifiable if E ≤B (=Y ), for some Polish space Y , i.e., there is a Borel
map f : X → Y such that xEy ⇔ f(x) = f(y).

Thus isomorphism of Bernoulli shifts is concretely classifiable. How-
ever in the 1970’s Feldman showed that this fails for arbitrary mpts (in
fact even for the so-called K-automorphisms, a more general class of
mpts than Bernoulli shifts).

Theorem 1.15 (Feldman [Fel74]). Isomorphism of ergodic mpts is not
concretely classifiable.
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One can also see that isomorphism of ergodic discrete spectrum mpts
is not concretely classifiable.

An equivalence relation is called classifiable by countable structures
if it can be Borel reduced to isomorphism of countable structures (of
some given type, e.g., groups, graphs, linear orderings, etc.). More
precisely, given a countable language L, denote by XL the space of
L-structures with universe N. This is a Polish space. Denote by ∼= the
equivalence relation of isomorphism in XL. We say that an equivalence
relation is classifiable by countable structures if it is Borel reducible to
isomorphism on XL, for some L.

Such types of classification occur often, for example, in operator al-
gebras, topological dynamics, etc.

It follows from the Halmos-von Neumann theorem that isomorphism
(and unitary isomorphism) of ergodic discrete spectrum mpts is classi-
fiable by countable structures. On the other hand we have:

Theorem 1.16 (Kechris-Sofronidis [KS01]). ME is not classifiable by
countable structures and thus isomorphism of unitary operators is not
classifiable by countable structures.

Theorem 1.17 (Hjorth [Hjo01]). Isomorphism and unitary isomor-
phism of ergodic mpts cannot be classified by countable structures.

This has more recently been strengthened as follows:

Theorem 1.18 (Foreman-Weiss [FW04]). Isomorphism and unitary
isomorphism of ergodic mpts cannot be classified by countable structures
on any generic class of ergodic mpts.

One can now in fact calculate the exact complexity of unitary iso-
morphism.

Theorem 1.19 (Kechris [Kec10]).

i) Unitary isomorphism of ergodic mpts is Borel bireducible to
measure equivalence.

ii) Measure equivalence is Borel reducible to isomorphism of er-
godic mpts.

While isomorphism of ergodic mpts is clearly analytic, Foreman-
Rudolph-Weiss also showed the following:

Theorem 1.20 (Foreman-Rudolph-Weiss [FRW06]). Isomorphism of
ergodic mpts is not Borel.

However recall that unitary isomorphism of mpts is Borel.
It follows from the last two theorems that

(∼=u) <B (∼=),
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i.e., isomorphism of ergodic mpts is strictly more complicated than uni-
tary isomorphism.

We have now seen that the complexity of unitary isomorphism of
ergodic mpts can be calculated exactly and there are very strong lower
bounds for isomorphism but its exact complexity is unknown. An ob-
vious upper bound is the universal equivalence relation induced by a
Borel action of the automorphism group of the measure space (see
[BK96] for this concept).

Problem 1.21. Is isomorphism of ergodic mpts Borel bireducible to
the universal equivalence relation induced by a Borel action of the
automorphism group of the measure space?

More generally one also considers in ergodic theory the problem of
classifying measure-preserving actions of countable (discrete) groups Γ
on standard measure spaces. The case Γ = Z corresponds to the case
of single transformations. We will now look at this problem from the
point of view of the preceding theory.

We will consider again isomorphism (also called conjugacy) and uni-
tary isomorphism of actions. Two actions of the group Γ are isomorphic
if there is a measure-preserving isomorphism of the underlying spaces
that conjugates the actions. They are unitarily isomorphic if the cor-
responding unitary representations (the Koopman representations) are
isomorphic.

We can form again in a canonical way a Polish space A(Γ, X, µ) of all
measure-preserving actions of Γ on (X,µ), in which the ergodic actions
form again a Gδ subset of A(Γ, X, µ), and then isomorphism and uni-
tary isomorphism become analytic equivalence relations on this space.
We can therefore study their complexity using the concepts introduced
earlier.

Theorem 1.22 (Foreman-Weiss [FW04], Hjorth [Hjo97]). For any
infinite countable group Γ, isomorphism of free, ergodic, measure-
preserving actions of Γ is not classifiable by countable structures.

Theorem 1.23 (Kechris [Kec10]). For any infinite countable group Γ,
unitary isomorphism of free, ergodic, measure-preserving actions of Γ
is not classifiable by countable structures.

Recall that an action (γ, x) 7→ γ · x is free if for any γ ∈ Γ \ {1},
γ · x 6= x, a.e.

Except for abelian Γ, where we have the same picture as for Z, it is
unknown however how isomorphism and unitary isomorphism relations
compare with ME. However Hjorth and Tornquist have recently shown
that unitary isomorphism is a Borel equivalence relation. Finally, it is
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again not known what is the precise complexity of these two equivalence
relations. Is isomorphism Borel bireducible to the universal equivalence
relation induced by a Borel action of the automorphism group of the
measure space?

D. Non-classification of orbit equivalence.

There is an additional important concept of equivalence between
actions, called orbit equivalence. The study of orbit equivalence is a
very active area today that has its origins in the connections between
ergodic theory and operator algebras and the pioneering work of Dye.

Definition 1.24. Given an action of the group Γ on X we associate
to it the orbit equivalence relation EX

Γ , whose classes are the orbits of
the action. Given measure-preserving actions of two groups Γ and ∆
on spaces (X,µ) and (Y, ν), resp., we say that they are orbit equivalent
if there is an isomorphism of the underlying measure spaces that sends
EX

Γ to EY
∆ (neglecting null sets as usual).

Thus isomorphism clearly implies orbit equivalence but not vice
versa.

Here we have the following classical result.

Theorem 1.25 (Dye [Dye59, Dye63], Ornstein-Weiss [OW80]). Every
two free, ergodic, measure-preserving actions of amenable groups are
orbit equivalent.

Thus there is a single orbit equivalence class in the space of free,
ergodic, measure-preserving actions of an amenable group Γ.

The situation for non-amenable groups has taken much longer to
untangle. For simplicity, below “action” will mean “free, ergodic,
measure-preserving action.” Schmidt [Sch81], showed that every non-
amenable group which does not have Kazhdan’s property (T) admits at
least two non-orbit equivalent actions and Hjorth [Hjo05] showed that
every non-amenable group with property (T) has continuum many non-
orbit equivalent actions. So every non-amenable group has at least two
non-orbit equivalent actions.

For general non-amenable groups though very little was known about
the question of how many non-orbit equivalent actions they might have.
For example, until recently only finitely many distinct examples of non-
orbit equivalent actions of the free, non-abelian groups were known.
Gaboriau-Popa [GP05] finally showed that the free non-abelian groups
have continuum many non-orbit equivalent actions (for an alternative
treatment see Tornquist [Tor06] and the exposition in Hjorth [Hjo09]).
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In an important extension, Ioana [Ioa07] showed that every group that
contains a free, non-abelian subgroup has continuum many such ac-
tions. However there are examples of non-amenable groups that con-
tain no free, non-abelian subgroups (Ol’shanski [Ol’80]).

Finally, the question was completely resolved by Epstein.

Theorem 1.26 (Epstein [Eps08]). Every non-amenable group admits
continuum many non-orbit equivalent free, ergodic, measure-preserving
actions.

This still leaves open however the possibility that there may be a con-
crete classification of actions of some non-amenable groups up to orbit
equivalence. However the following has been now proved by combining
very recent work of Ioana-Kechris-Tsankov and the work of Epstein.

Theorem 1.27 (Epstein-Ioana-Kechris-Tsankov [IKT09]). Orbit equiv-
alence of free, ergodic, measure-preserving actions of any non-amenable
group is not classifiable by countable structures.

Thus we have a very strong dichotomy:

• If a group is amenable, it has exactly one action up to orbit
equivalence.
• If it non-amenable, then orbit equivalence of its actions is un-

classifiable in a strong sense.

In the rest of these lectures, we will give an outline of the proof of
Theorem 1.27.
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2. Lecture II. Turbulence and classification by
countable structures

A. The space of countable structures.

Definition 2.1. A countable signature is a countable family L =
{fi}i∈I ∪ {Rj}j∈J of function symbols fi, with fi of arity ni ≥ 0, and
relation symbols Rj, with Rj of arity mj ≥ 1. A structure for L or
L-structure has the form

A = 〈A, {fAi }i∈I , {RAj }j∈J〉,
where A is a nonempty set, fAi : Ani → A, and RAj ⊆ Amj .

Example 2.2. If L = {·, 1}, where · and 1 are binary and nullary
function symbols respectively, then a group is any L-structure G =
〈G, ·G, 1G〉 that satisfies the group axioms. Similarly, using various
signatures, we can study structures that correspond to fields, graphs,
etc.

We are interested in countably infinite structures here, so we can
always take (up to isomorphism) A = N.

Definition 2.3. Denote by XL the space of (countable) L-structures,
i.e.,

XL =
∏
i∈I

N(Nni ) ×
∏
j∈J

2(Nmj ).

With the product topology (N and 2 being discrete) this is a Polish
space.

Definition 2.4. Let S∞ be the infinite symmetric group of all per-
mutations of N. It is a Polish group with the pointwise convergence
topology. It acts continuously on XL: If A ∈ XL, g ∈ S∞, then g · A is
the isomorphic copy ofA obtained by applying g. For example, if I = ∅,
{Rj}j∈J consists of a single binary relation symbol R, andA = 〈N, RA〉,
then g · A = B, where (x, y) ∈ RB ⇔ (g−1(x), g−1(y)) ∈ RA. This is
called the logic action of S∞ on XL.

Clearly, ∃g(g · A = B) ⇔ A ∼= B, i.e., the equivalence relation
induced by this action is isomorphism.

Logic actions are universal among S∞-actions.

Theorem 2.5 (Becker-Kechris [BK96, 2.7.3]). There is a countable
signature L such that for every Borel action of S∞ on a standard Borel
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space X there is a Borel equivariant injection π : X → XL (i.e. π(g ·
x) = g · π(x)). Thus every Borel S∞-space is Borel isomorphic to the
logic action on an isomorphism-invariant Borel class of L-structures.

B. Classification by countable structures.

Definition 2.6. Let E be an equivalence relation on a standard Borel
space X. We say the E admits classification by countable structures if
there is a countable signature L and a Borel map f : X → XL such
that xEy ⇔ f(x) ∼= f(y), i.e., E ≤B∼=L

(
=∼= |XL

)
.

By Theorem 2.5 this is equivalent to the following: There is a Borel
S∞-space Y such that E ≤B EY

S∞ , where xEY
S∞y ⇔ ∃g ∈ S∞(g · x = y)

is the equivalence relation induced by the S∞-action on Y .

Examples 2.7.

• If E is concretely classifiable, then E admits classification by
countable structures.
• Let X be an uncountable Polish space. Define Ec on XN by

(xn)Ec(yn)⇔ {xn : n ∈ N} = {yn : n ∈ N}.
Then Ec is classifiable by countable structures. (Ec is, up to
Borel isomorphism, independent of X.)
• (Giordano-Putnam-Skau [GPS95]) Topological orbit equivalence

of minimal homeomorphisms of the Cantor set is classifiable by
countable structures.
• (Kechris [Kec92]) If G is Polish locally compact and X is a Borel
G-space, then EX

G admits classification by countable structures.

Hjorth developed in [Hjo00] a theory called turbulence that provides
the basic method for showing that equivalence relations do not admit
classification by countable structures. (Beyond [Hjo00] extensive expo-
sitions of this theory can be found in [Kec02], [Kan08] and [Gao09].)

Theorem 2.8 (Hjorth [Hjo00, 3.19]). Let G be a Polish group acting
continuously on a Polish space X. If the action is turbulent, then EX

G

cannot be classified by countable structures. In particular if E is an
equivalence relation and EX

G ≤B E for some turbulent action of a Polish
group G on X, then E cannot be classified by countable structures.

The rest of this lecture will be devoted to explaining the concept of
turbulence and sketching some ideas in the proof the Theorem 2.8.
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C. Turbulence.

Let G be a Polish group acting continuously on a Polish space X.
Below U (with various embellishments) is a typical nonempty open set
in X and V (with various embellishments) is a typical open symmetric
nbhd of 1 ∈ G.

Definition 2.9. The (U, V )-local graph is given by

xRU,V y ⇔ x, y ∈ U &∃g ∈ V (g · x = y).

The (U, V )-local orbit of x ∈ U , denoted O(x, U, V ), is the connected
component of x in this graph.

Remark 2.10. If U = X and V = G, then O(x, U, V ) = G · x = the
orbit of x.

Definition 2.11. A point x ∈ X is turbulent if ∀U 3 x ∀V
(
O(x, U, V )

has nonempty interior
)
.

It is easy to check that this property depends only on the orbit of x,
so we can talk about turbulent orbits.

The action is called (generically) turbulent if

(i) every orbit is meager,
(ii) there is a dense, turbulent orbit.

Remark 2.12. This implies that the set of dense, turbulent orbits is
comeager (see [Kec02, 8.5]).

Proposition 2.13. Let G be a Polish group acting continuously on
a Polish space X and let x ∈ X. Suppose there is a neighborhood
basis B(x) for x such that for all U ∈ B(x) and any open nonempty
set W ⊆ U , there is a continuous path (gt)0≤t≤1 in G with g0 = 1,
g1 · x ∈ W and gt · x ∈ U for each t. Then x is turbulent.

Proof. It is enough to show that O(x, U, V ) is dense in U for all U ∈
B(x) and open symmetric nbhds V of 1 ∈ G. Fix such a U, V and
take any nonempty open W ⊆ U and let (gt) be as above. Using
uniform continuity, we can find t0 = 0 < t1 < · · · < tk = 1 such that
gti+1

g−1
ti ∈ V for all i < k. Let h1 = gt1g

−1
t0 = gt1 , h2 = gt2g

−1
t1 , . . . ,

hk = gtkg
−1
tk−1

. Then hi ∈ V and

hi · hi−1 · · ·h1 · x = gti · x ∈ U, ∀1 ≤ i ≤ k

and g1 ·x = hk ·hk−1 · · ·h1 ·x ∈ W , so g1 ·x ∈ O(x, U, V )∩W 6= ∅. �

Example 2.14. The action of the Polish group (c0,+) (with the sup-
norm topology) on (RN,+) (with the product topology) by translation
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is turbulent. The orbits are the cosets of c0 in (RN,+), so they are
dense and meager. Also, any x ∈ RN is turbulent. Clearly the sets of
the form x + C, with C ⊆ RN a convex open nbhd of 0, form a nbhd
basis for x ∈ RN. Now c0 is dense in any such C, so x+(c0∩C) is dense
in x+C. Let g ∈ c0∩C. We will find a continuous path (gt)0≤t≤1 from
1 to g in c0 such that x+gt ∈ x+C for each t. Clearly gt = tg ∈ c0∩C
works.

Remark 2.15. There are groups that admit no turbulent action. For
example Polish locally compact groups and S∞.

D. Generic ergodicity.

Definition 2.16. Let E be an equivalence relation on a Polish space X
and F an equivalence relation on a Polish space Y . A homomorphism
from E to F is a map f : X → Y such that xEy ⇒ f(x)Ff(y).

We say that E is generically F -ergodic if for every Baire measurable
homomorphism f there is a comeager set A ⊆ X which f maps into a
single F -class.

Example 2.17. Assume E = EX
G is induced by a continuous G-action

of a Polish group G on a Polish space X with a dense orbit. Then E is
generically =Y -ergodic, for any Polish space Y . (Proof: Let f : X → Y
be a Baire measurable homomorphism from EX

G to =Y and let (Un)n∈N
be a countable basis of nonempty open subsets of Y . For each n the
set f−1(Un) ⊆ X is a G-invariant set and has the property of Baire.
Thus, it is enough to show that if A ⊆ X is G-invariant and has the
property of Baire, then it is either meager or comeager. Otherwise
there are open nonempty U,U ′ ⊆ X with A comeager in U and X \A
comeager in U ′. Since there is a dense orbit, there is a g ∈ G such that
W = g · U ∩ U ′ 6= ∅ and since g · A = A we have that both A, X \ A
are comeager in W , a contradiction.)

In particular, if every G-orbit is also meager, then E is not concretely
classifiable.

Let as before Ec be the equivalence relation on (2N)N given by

(xn)Ec(yn)⇔ {xn : n ∈ N} = {yn : n ∈ N}.
(Note that this is Borel isomorphic to the one defined in 1.12.)

Theorem 2.18 (Hjorth [Hjo00, 3.21]). The following are equivalent:

(i) E is generically Ec-ergodic.
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(ii) E is generically EY
S∞-ergodic for any Borel S∞-space Y .

For another reference for the proof, see also [Kec02, 12.3].
It follows that if E satisfies these properties and if every E-class is

meager, then E cannot be classified by countable structures.

Theorem 2.19 (Hjorth [Hjo00]). If a Polish group G acts continuously
on a Polish space X and the action is turbulent, then EX

G is generically
Ec-ergodic, so cannot be classified by countable structures.

Proof. (Following the presentation in [Kec02, 12.5]) Assume f : X →
(2N)N is a Baire measurable homomorphism from EX

G to Ec. Let A(x) =
{f(x)n : n ∈ N} so that xEX

G y ⇒ A(x) = A(y).

Step 1. Let A = {a ∈ 2N : ∀∗x (a ∈ A(x))}, where ∀∗x means “on a
comeager set of x.” Then A is countable.(
Proof of Step 1: The function f is continuous on a dense Gδ set C ⊆
X. We have then a ∈ A if and only if ∀∗x ∈ C (a ∈ A(x)). The
set B =

⋃
n{(x, a) ∈ C × 2N : a = f(x)n} is Borel, and thus so is

A = {a : ∀∗x ∈ C (x, a) ∈ B}. So if A is uncountable, it contains a
Cantor set D. Then ∀∗a ∈ D ∀∗x(a ∈ A(x)), so, by Kuratowski-Ulam,
∀∗x∀∗a ∈ D (a ∈ A(x)), thus for some x, A(x) is uncountable, which is
obviously absurd. �[Step 1 ]

)
Step 2. ∀∗x (A(x) = A), which completes the proof.
One proceeds by assuming that this fails, which implies that ∀∗x(A $

A(x)) and deriving a contradiction. Let C be a dense Gδ set such that
f |C is continuous. Then one finds appropriate a 6∈ A, l ∈ N and (using
genericity arguments) zi ∈ C, z ∈ C with zi → z and f(zi)l = a
but a 6∈ A(z). By continuity, a = f(zi)l → f(z)l, so f(z)l = a, i.e.,
a ∈ A(z), a contradiction. The point z is found using the fact that
a 6∈ A, so ∀∗y(a 6∈ A(y)) and the sequence zi is obtained from the
turbulence condition. The detailed proof follows.(
Proof of Step 2. Otherwise, since there is a dense orbit, the invariant

set {x : A = A(x)} (which has the Baire property) must be meager.
It follows that C1 = {x : A $ A(x)} is comeager. Let

C2 = {x : ∀∗y∀U∀V (x ∈ U ⇒ G · y ∩ O(x, U, V ) 6= ∅)},

so that C2 is comeager as well, since it contains all turbulent points.
Next fix a comeager set C0 ⊆ X with f |C0 continuous. For B ⊆ X

let

CB = {x : x ∈ B ⇔ ∃ open nbhd U of x with ∀∗y ∈ U(y ∈ B)}.
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Then, if B has the Baire property, CB is comeager (see [Kec95, 8G]).
Finally fix a countable dense subgroup G0 ⊆ G and find a countable
collection C of comeager sets in X with the following properties:

(i) C0, C1, C2 ∈ C;
(ii) C ∈ C, g ∈ G0 ⇒ g · C ∈ C;
(iii) C ∈ C ⇒ C∗ = {x : ∀∗g(g · x ∈ C)} ∈ C.
(iv) If {Vn} enumerates a local basis of open symmetric nbhds of 1

in G, then, letting

Al,n = {x : ∀∗g ∈ Vn (f(x)l = f(g · x)l)},
we have that CAl,n ∈ C.

(v) If {Un} enumerates a basis for X, and

Cm,n,l = {x : x 6∈ Um or ∀∗g ∈ Vn (f(x)l = f(g · x)l)},
then C contains all Cm,n,l which are comeager.

For simplicity, if x ∈
⋂
C (and there are comeager many such x), we

call x “generic”.
So fix a generic x. Then there is a 6∈ A so that a ∈ A(x) = A(g ·x) for

all g. So ∀g∃l(a = f(g ·x)l), thus there is an l ∈ N and open nonempty
W ⊆ G so that ∀∗g ∈ W (f(g ·x)l = a). Fix p0 ∈ G0∩W and V a basic
symmetric nbhd of 1 so that V p0 ⊆ W . Let p0 · x = x0, so that x0 is
generic too, and ∀∗g ∈ V (f(g · x0)l = a). Now ∀∗g ∈ V (g · x0 ∈ C0),
so we can find gi ∈ V , gi → 1 with gi · x0 ∈ C0 and f(gi · x0)l = a,
so as gi · x0 → x0 ∈ C0, by continuity we have f(x0)l = a. Also since
∀∗g ∈ V (f(x0)l = f(g · x0)l) and x0 is generic, using (iv) we see that
there is a basic open U with x0 ∈ U , such that

∀∗z ∈ U∀∗g ∈ V (f(z)l = f(g · z)l),

i.e., if U = Um, V = Vn, then Cm,n,l is comeager, so by (v) it is in C.
Since a 6∈ A, {y : a 6∈ A(y)} is not meager, so choose y generic with
a 6∈ A(y) and also

∀Ũ , Ṽ (x0 ∈ Ũ ⇒ G · y ∩ O(x0, Ũ , Ṽ ) 6= ∅).

Thus we have G · y ∩O(x0, U, V ) 6= ∅. So choose g0, g1, · · · ∈ V so that
if gi · xi = xi+1, then xi ∈ U and some subsequence of (xi) converges
to some y1 ∈ G · y. Fix a compatible metric d for X.

Since ∀∗h(h · x0 is generic) and ∀∗g ∈ V (f(g · x0)l = a), we can find
h1 so that h1g0 ∈ V , g1h

−1
1 ∈ V , x1 = h1 · x1 ∈ U , d(x1, x1) < 1

2
,

x1 = h1 · g0 · x0 is generic. Then ∀∗g ∈ V (f(x1)l = f(g · x1)l) (as
x1 ∈ Cm,n.l), and f(x1)l = a, so also ∀∗g ∈ V (f(g · x1)l = a). Note
that g1h

−1
1 · x1 = x2 and g1h

−1
1 ∈ V , so since ∀∗h(h · x1 is generic) and

∀∗g ∈ V (f(g·x1)l = a), we can find h2 so that h2g1h
−1
1 ∈ V , g2h

−1
2 ∈ V ,
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x2 = h2 · x2 ∈ U , d(x2, x2) < 1
4
, x2 = h2g1h

−1
1 · x1 is generic. Then

∀∗g ∈ V (f(x2)l = f(g ·x2)l), and f(x2)l = a, so ∀∗g ∈ V (f(g ·x2) = a),
etc.

Repeating this process, we get x0, x1, x2, . . . generic and belonging to
the (U, V )-local orbit of x0, so that some subsequence of {xi} converges
to y1 and ∀∗g ∈ V (f(g · xi)l = a). Now

∀∗g(g · xi ∈ C0), ∀∗g(g · y1 ∈ C0), ∀∗g ∈ V (f(g · xi)l = a),

so fix g satisfying all these conditions. Then for some subsequence
{ni} we have xni → y1, so g · xni → g · y1 and g · xni , g·y1 ∈ C0,
so by continuity, a = f(g · xni)l → f(g · y1)l, so f(g · y1)l = a, i.e.,
a ∈ A(g · y1) = A(y1) = A(y), a contradiction. �[Step 2 ]

)
�
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3. Lecture III. Turbulence in the irreducible
representations

Let H be a separable complex Hilbert space. We denote by U(H)
the unitary group of H, i.e., the group of Hilbert space automorphisms
of H. The strong topology on U(H) is generated by the maps T ∈
U(H) 7→ T (x) ∈ H (x ∈ H), and it is the same as the weak topology
generated by the maps T ∈ U(H) 7→ 〈T (x), y〉 ∈ C (x, y ∈ H). With
this topology U(H) is a Polish group.

If now Γ is a countable (discrete) group, Rep(Γ, H) is the space of
unitary representations of Γ on H, i.e., homomorphisms of Γ into U(H)
or equivalently actions of Γ on H by unitary transformations. It is a
closed subspace of U(H)Γ, equipped with the product topology, so it
is a Polish space. The group U(H) acts continuously on Rep(Γ, H) via
conjugacy T · π = TπT−1 (where TπT−1(γ) = T ◦ π(γ) ◦ T−1) and the
equivalence relation induced by this action is isomorphism of unitary
representations: π ∼= ρ.

A representation π ∈ Rep(Γ, H) is irreducible if it has no non-trivial
invariant closed subspaces. Let Irr(Γ, H) ⊆ Rep(Γ, H) be the space of
irreducible representations. Then it can be shown that Irr(Γ, H) is a
Gδ subset of Rep(Γ, H), and thus also a Polish space in the relative
topology (see [Kec10, H.5]).

From now on we assume that H is ∞-dimensional.
Thoma [Tho64] has shown that if Γ is abelian-by-finite then we have

Irr(Γ, H) = ∅, but if Γ is not abelian-by-finite then ∼= |Irr(Γ, H) is
not concretely classifiable. Hjorth [Hjo97] extended this by showing
that it is not even classifiable by countable structures. This is proved
by showing that the conjugacy action is turbulent on an appropriate
conjugacy invariant closed subspace of Irr(Γ, H) (see [Kec10, H.9]). We
will need below this result for the case Γ = F2 = the free group with
two generators, so we will state and sketch the proof of the following
stronger result for this case.

Theorem 3.1 (Hjorth [Hjo00]). The conjugacy action of U(H) on
Irr(F2, H) is turbulent.

Proof. Note that we can identify Rep(F2, H) with U(H)2 and the action
of U(H) on U(H)2 becomes

T · (U1, U2) = (TU1T
−1, TU2T

−1).

Step 1: Irr(F2, H) is dense Gδ in Rep(F2, H) = U(H)2.(
Proof of Step 1. Note that if U(n) = U(Cn), then, with some canoni-

cal identifications, U(1) ⊆ U(2) ⊆ · · · ⊆ U(H) and
⋃
n U(n) = U(H).
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Now U(n) is compact, connected, so, by a result of Schreier-Ulam

[SU35], the set of (g, h) ∈ U(n)2 such that 〈g, h〉 = U(n) is a dense Gδ

in U(n)2. By Baire Category this shows that the set of (g, h) ∈ U(H)2

with 〈g, h〉 = U(H) is dense Gδ, since for each nonempty open set N
in U(H), the set of (g, h) ∈ U(H)2 that generate a subgroup intersect-
ing N is open dense. Thus the generic pair (g, h) ∈ U(H)2 generates
a dense subgroup of U(H) so, viewing (g, h) as a representation, any

(g, h)-invariant closed subspace A is invariant for all of 〈g, h〉 = U(H),
hence A = {0} or A = H and the generic pair is irreducible.

�[Step 1 ]
)

Step 2: Every orbit is meager.(
Proof of Step 2. It is enough to show that every conjugacy class in
U(H) is meager. This is a classical result but here is a simple proof
recently found by Rosendal. (This proof is general enough so it works
in other Polish groups.)

For each infinite I ⊆ N, let A(I) = {T ∈ U(H) : ∃i ∈ I (T i = 1)}.
It is easy to check that A(I) is dense in U(H). (Use the fact that⋃
n U(n) is dense in U(H). Then it is enough to approximate elements

of each U(n) by A(I) and this can be easily done using the fact that
elements of U(n) are conjugate in U(n) to diagonal unitaries.) Let
now V0 ⊇ V1 ⊇ · · · be a basis of open nbhds of 1 in U(H) and put
B(I, k) = {T ∈ U(H) : ∃i ∈ I(i > k and T i ∈ Vk)}. This contains
A(I \ {0, . . . , k}), so is open dense. Thus

C(I) =
⋂
k

B(I, k) = {T : ∃(in) ∈ IN (T in → 1)}

is comeager and conjugacy invariant. If a conjugacy class C is non-
meager, it will thus be contained in all C(I), I ⊆ N infinite. Thus
T ∈ C ⇒ T n → 1, so letting d be a left invariant metric for U(H) we
have for T ∈ C, d(T, 1) = d(T n+1, T n) → 0, whence T = 1, a contra-
diction.

�[Step 2 ]
)

Step 3: There is a dense conjugacy class in Irr(F2, H) (so the set of
all π ∈ Irr(F2, H) with dense conjugacy class is dense Gδ in Irr(F2, H)).(
Proof of Step 3. As Irr(F2, H) is dense Gδ in Rep(F2, H) it is enough

to find π ∈ Rep(F2, H) with dense conjugacy class in Rep(F2, H) –
then the set of all such π’s is dense Gδ so intersects Irr(F2, H). Let
(πn) be dense in Rep(F2, H) and let π ∼=

⊕
n πn, π ∈ Rep(F2, H). This

π easily works. �[Step 3 ]
)
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Remark 3.2. The also gives an easy proof of a result of Yoshizawa:
There exists an irreducible representation of F2 which weakly contains
any representation of F2.

Step 4: Let π ∈ Irr(F2, H) have dense conjugacy class. Then π is
turbulent.

Thus by Steps 2,3,4, the conjugacy action of U(H) on Irr(F2, H) is
turbulent.(
Proof of Step 4.

Lemma 3.3. For ρ, σ ∈ Irr(F2, H), the following are equivalent:

(i) ρ ∼= σ,
(ii) ∃(Tn) ∈ U(H)N such that Tn · ρ = TnρT

−1
n → σ and no subse-

quence of (Tn) converges in the weak topology of B1(H) = {T ∈
B(H) : ||T || ≤ 1} (a compact metrizable space) to 0.

(Here B(H) is the set of bounded linear operators on H.)(
Proof of Lemma 3.3. Use the compactness of the unit ball B1(H) and

Schur’s Lemma (see, e.g., [Fol95, 3.5 (b)]): if π1, π2 ∈ Irr(F2, H), then
π1
∼= π2 ⇔ (∃S ∈ B(H) \ {0} such that ∀γ ∈ F2 (Sπ1(γ) = π2(γ)S)).

�[Lemma 3.3]
)

Lemma 3.4. Given any nonempty open W ⊆ Irr(F2, H) (open in the
relative topology) and orthonormal e1, . . . , ep ∈ H, there are orthonor-
mal e1, . . . , ep, ep+1, . . . , eq and T ∈ U(H) such that

(i) T (ei) ⊥ ej, ∀i, j ≤ q;
(ii) T 2(ei) = −ei, ∀i ≤ q;
(iii) T = id on (H0 ⊕ T (H0))⊥, where H0 = 〈e1, . . . , eq〉;
(iv) T · π ∈ W .(

Proof of Lemma 3.4. We can assume that

W = {ρ ∈ Irr(F2, H) : ∀γ ∈ F ∀i, j ≤ q

|〈ρ(γ)(ei), ej〉 − 〈σ(γ)(ei), (ej)〉| < ε}

for some e1, . . . , ep, ep+1, . . . , eq, F ⊆ F2 finite, ε > 0, and σ ∈ Irr(F2, H)\
U(H) · π (since this set is comeager, hence dense). So, by Lemma

3.3, there is a sequence (Tn) ∈ U(H)N with Tn · π → σ, Tn
w−→ 0,

so also T−1
n

w−→ 0. Thus for all large enough n, e1, . . . , eq, T
−1
n (−e1),

. . . , T−1
n (−eq) are linearly independent. So apply Gram-Schmidt to

get an orthonormal set e1, . . . , eq, f
(n)
1 , . . . , f

(n)
q with the same span.

Then for all i ≤ q, ||T−1
n (−ei) − f

(n)
i || → 0 (as 〈T−1

n (−ei), ej〉 → 0,

∀i, j ≤ q). Define Sn ∈ U(H) by Sn(ei) = f
(n)
i , Sn(f

(n)
i ) = −ei, ∀i ≤ q,



CLASSIFICATION PROBLEMS IN ERGODIC THEORY 21

and Sn = id on 〈e1, . . . , eq, f
(n)
1 , . . . , f

(n)
q 〉⊥. Then if n is large enough,

T = Sn works. �[Lemma 3.4]
)

We now show that π is turbulent. We will apply Proposition 2.13 of
Lecture II. Fix a basic nbhd of π of the form

U = {ρ ∈ Irr(F2, H) : ∀γ ∈ F ∀i, j ≤ k

|〈ρ(γ)(ei), ej〉 − 〈π(γ)(ei), (ej)〉| < ε},
ε > 0, F ⊆ F2 finite, e1, . . . , ek orthonormal. Let e1, . . . , ek, ek+1, . . . , ep
be an orthonormal basis for the span of {e1, . . . , ek} ∪ {π(γ)(ei) : γ ∈
F, 1 ≤ i ≤ k}, and let W ⊆ U be an arbitrary nonempty open set.
Then let e1, . . . , ep, ep+1, . . . , eq and T be as in Lemma 3.4 (so that
T ·π ∈ W ). It is enough to find a continuous path (Tθ)0≤θ≤π/2 in U(H)
with T0 = 1, Tπ/2 = T , and Tθ · π ∈ U for all θ. Take

Tθ(ei) = (cos θ)ei + (sin θ)T (ei)

Tθ(T (ei)) = (− sin θ)ei + (cos θ)T (ei),

for i = 1, . . . , q and let Tθ = id on (H0 ⊕ T (H0))⊥, where H0 =
〈e1, . . . , eq〉. Then one can easily see that Tθ · π ∈ U , for all θ.

�[Step 4 ]
)
�
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4. Lecture IV. Non-classification of orbit equivalence by
countable structures, Part A: Outline of the proof

and Gaussian actions.

Our goal in the remaining three lectures is to prove the following
result.

Theorem 4.1 (Epstein-Ioana-Kechris-Tsankov [IKT09, 3.12]). Let Γ
be a countable non-amenable group. Then orbit equivalence for measure-
preserving, free, ergodic (in fact mixing) actions of Γ is not classifiable
by countable structures.

We will start be giving a very rough idea of the proof and then
discussing the (rather extensive) set of results needed to implement
it.

A. Definitions.

A standard measure space (X,µ) is a standard Borel space X with
a non-atomic probability Borel measure µ. All such spaces are isomor-
phic to [0, 1] with Lebesgue measure on the Borel sets.

The measure algebra MALGµ of µ is the algebra of Borel sets of X,
modulo null sets, with the topology induced by the metric d(A,B) =
µ(A∆B). Let Aut(X,µ) be the group of measure-preserving automor-
phisms of (X,µ) (again modulo null sets) with the weak topology, i.e.,
the one generated by the maps T 7→ T (A) (A ∈ MALGµ). It is a Polish
group.

If Γ is a countable group, denote by A(Γ, X, µ) the space of measure-
preserving actions of Γ on (X,µ) or equivalently, homomorphisms of Γ
into Aut(X,µ). It is a closed subspace of Aut(X,µ)Γ with the prod-
uct topology, so also a Polish space. We say that a ∈ A(Γ, X, µ) is
free if ∀γ 6= 1 (γ · x 6= x, a.e.), and it is ergodic if every invariant
Borel set A ⊆ X is either null or conull. We say that a ∈ A(Γ, X, µ),
b ∈ A(Γ, Y, ν) are orbit equivalent, aŒ b, if, denoting by Ea, Eb the
equivalence relations induced by a, b respectively, Ea is isomorphic to
Eb, in the sense that there is a measure-preserving isomorphism of
(X,µ) to (Y, ν) that sends Ea to Eb (modulo null sets). Thus Œ is
an equivalence relation on A(Γ, X, µ) and Theorem 4.1 asserts that it
cannot be classified by countable structures if Γ is not amenable.

B. Idea of the proof.

We start with the following fact.
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Theorem 4.2. To each π ∈ Rep(Γ, H), we can assign in a Borel way
an action aπ ∈ A(Γ, X, µ) (on some standard measure space (X,µ)),
called the Gaussian action associated to π, such that

(i) π ∼= ρ⇒ aπ ∼= aρ,
(ii) If κaπ0 is the Koopman representation on L2

0(X,µ) associated to
aπ, then π ≤ κaπ0 .

Moreover, if π is irreducible, then aπ is weak mixing.(
Explanations:

(i) a, b ∈ A(Γ, X, µ) are isomorphic, a ∼= b if there is a T ∈
Aut(X,µ) taking a to b,

TγaT−1 = γb, ∀γ ∈ Γ.

(Here we let γa = a(γ).)
(ii) Let a ∈ A(Γ, X, µ). Let L2

0(X,µ) = {f ∈ L2(X,µ) :
∫
f =

0} = C⊥. The Koopman representation κa0 of Γ on L2
0(X,µ) is

given by (γ · f)(x) = f(γ−1 · x).
(iii) If π ∈ Rep(Γ, H), ρ ∈ Rep(Γ, H ′), then π ≤ ρ iff π is isomor-

phic to a subrepresentation of ρ, i.e., the restriction of ρ to an
invariant, closed subspace of H ′.

)
So let π ∈ Irr(F2, H) and look at aπ ∈ A(F2, X, µ). We will then

modify aπ, in a Borel and isomorphism preserving way, to another
action a(π) ∈ A(F2, Y, ν) (for reasons to be explained later) and finally
apply a construction of Epstein to “co-induce” appropriately a(π), in a
Borel and isomorphism preserving way, to an action b(π) ∈ A(Γ, Z, ρ),
which will turn out to be free and ergodic (in fact mixing i.e., µ(γ ·A∩
B) → µ(A)µ(B) as γ → ∞, for every Borel A,B). So we finally have
a Borel function π ∈ Irr(F2, H) 7→ b(π) ∈ A(Γ, Z, ρ).

Put
πRρ⇔ b(π) Œ b(ρ).

Then R is an equivalence relation on Irr(F2, H), and π ∼= ρ ⇒ πRρ
(since π ∼= ρ⇒ aπ ∼= aρ ⇒ a(π) ∼= a(ρ)⇒ b(π) ∼= b(ρ)).

Fact: R has countable index over ∼= (i.e., every R-class contains only
countably many ∼=-classes).

If now Œ on A(Γ, Z, ρ) admitted classification by countable struc-
tures, so would R on Irr(F2, H). So let F : Irr(F2, H)→ XL be Borel,
where XL is the standard Borel space of countable structures for a
signature L, with

πRρ⇔ F (π) ∼= F (ρ).

Therefore π ∼= ρ⇒ F (π) ∼= F (ρ). By Theorem 3.1 and Theorems 2.18,
2.19, there is a comeager set A ⊆ Irr(F2, H) and A0 ∈ XL such that
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F (π) ∼= A0, ∀π ∈ A. But every ∼=-class in Irr(F2, H) is meager, so
by the previous fact every R-class in Irr(F2, H) is meager, so there are
R-inequivalent π, ρ ∈ A, and thus F (π) 6∼= F (ρ), a contradiction.(
Sketch of proof of Theorem 4.2. (See [Kec10, Appendix E]) For sim-

plicity we will discuss the case of real Hilbert spaces, the complex case
being handled by appropriate complexifications.

Let H be an infinite-dimensional, separable, real Hilbert space. Con-
sider the product space (RN, µN), where µ is the normalized, centered

Gaussian measure on R with density 1√
2π
e−x

2/2. Let pi : RN → R, i ∈ N,

be the projection functions. The closed linear space 〈pi〉 ⊆ L2
0(RN, µN)

(real valued) has countable infinite dimension, so we can assume that
H = 〈pi〉 ⊆ L2

0(RN, µN).

Lemma 4.3. If S ∈ O(H) = the orthogonal group of H (i.e., the group
of Hilbert space automorphisms of H), then we can extend uniquely
S to S ∈ Aut(RN, µN) in the sense that the Koopman operator OS :
L2

0(RN, µN)→ L2
0(RN, µN) defined by OS(f) = f ◦ (S)−1 extends S, i.e.,

OS|H = S.

Thus if π ∈ Rep(Γ, H), we can extend each π(γ) ∈ O(H) to π(γ) ∈
Aut(RN, µN). Let aπ ∈ A(Γ,RN, µN) be defined by aπ(γ) = π(γ). This
clearly works.(
Proof of Lemma 4.3: The pi’s form an orthonormal basis for H. Let

S(pi) = qi ∈ H. Then let θ : RN → RN be defined by θ(x) =
(q0(x), q1(x), . . . ). Then θ is 1-1, since the σ-algebra generated by (qi)
is the Borel σ-algebra, modulo null sets, so (qi) separates points mod-
ulo null sets. Moreover θ preserves µN. This follows from the fact that
every f ∈ 〈pi〉 (including qi) has centered Gaussian distribution and
the qi are independent, since E(qiqj) = 〈qi, qj〉 = 〈pi, pj〉 = δij. Thus
θ ∈ Aut(RN, µN). Now put S = θ−1. �[Lemma 4.3]

)
�[Theorem 4.2]

)
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5. Lecture V. Non-classification of orbit equivalence by
countable structures, Part B: An action of F2 on T2

and a separability argument.

Recall that our plan consists of the three steps

π
(1)−→ aπ

(2)−→ a(π)
(3)−→ b(π),

where π is an irreducible unitary representation of F2, aπ is the cor-
responding Gaussian action of F2, (2) is the “perturbation” to a new
action of F2 and (3) is the co-inducing construction, which from the
F2-action a(π) produces a Γ-action b(π).

We already discussed step (1).

A. Properties of the co-induced action.

Let’s summarize next the key properties of the co-inducing construc-
tion (3) that we will need and discuss this construction in Lecture VI.
Below we write γa · x for γa(x).

Theorem 5.1. Let Γ be non-amenable. Given a ∈ A(F2, Y, ν) we can
construct b ∈ A(Γ, Z, ρ) and a′ ∈ A(F2, Z, ρ) (Z, ρ independent of a)
with the following properties:

(i) Ea′ ⊆ Eb,
(ii) b is free and ergodic (in fact mixing),
(iii) a′ is free,
(iv) a is a factor of a′ via a map f : Z → Y (f independent of a),

i.e., f(δa
′ · z) = δa · f(z) (δ ∈ F2), and f∗ρ = ν, and in fact

if a is ergodic, then for every a′-invariant Borel set A ⊆ Z of

positive measure, if ρA = ρ|A
ρ(A)

, then a is a factor of (a′|A, ρA)

via f .
(v) If a free action a ∈ A(F2, Y , ν) is a factor of the action a via

g : Y → Y

Y
g // Y

Z

f

OO

then for γ ∈ Γ \ {1}, gf(γb · z) 6= gf(z), ρ-a.e.

Moreover the map a 7→ b is Borel and preserves isomorphism.
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B. A separability argument.

We now deal with construction (2). The key here is a particular
action of F2 on T2 utilized first to a great effect by Popa, Gaboriau-
Popa [GP05] and then Ioana [Ioa07]. The group SL2(Z) acts on (T2, λ)
(λ is Lebesgue measure) in the usual way by matrix multiplication

A · (z1, z2) = (A−1)t
(
z1

z2

)
.

This is free, measure-preserving, and ergodic, in fact weak mixing.
Fix also a copy of F2 with finite index in SL2(Z) (see, e.g., [New72,

VIII.2]) and denote the restriction of this action to F2 by α0. It is also
free, measure-preserving and weak mixing. For any c ∈ A(F2, X, µ),
we let a(c) ∈ A(F2,T2 ×X,λ× µ) be the product action

a(c) = α0 × c

(i.e. γa(c) · (z, x) = (γα0 · z, γc · x)). Then in our case we take

a(π) = a(aπ) = α0 × aπ.

Then a(π) is also weak mixing.
The key property of the passage from c to a(c) is the following sep-

arability result established by Ioana (in a somewhat different context
– but his proof works as well here).

Below, for each c ∈ A(F2, X, µ), with a(c) = α0 × c ∈ A(F2, Y, ν),
where Y = T2 × X, ν = λ × µ, we let b(c) ∈ A(Γ, Z, ρ), a′(c) ∈
A(F2, Z, ρ) come from a(c) via Theorem 5.1.

Theorem 5.2 (Ioana [Ioa07]). If (ci)i∈I is an uncountable family of ac-
tions in A(F2, X, µ) and (b(ci))i∈I are mutually orbit equivalent, then
there is uncountable J ⊆ I such that if i, j ∈ J , we can find Borel
sets Ai, Aj ⊆ Z of positive measure which are respectively a′(ci), a

′(cj)-
invariant and a′(ci)|Ai ∼= a′(cj)|Aj with respect to the normalized mea-
sures ρAi, ρAj .

Proof. We have the following situation, letting bi = b(ci): (bi)i∈I is an
uncountable family of pairwise orbit equivalent free, ergodic actions in
A(Γ, Z, ρ), a′i = a′(ci) are free in A(F2, Z, ρ), with Ea′i ⊆ Ebi , and α0 is

a factor of a′i via a map p : Z → T2 such that

(∗) for γ ∈ Γ \ {1}, i ∈ I, p(γbi · z) 6= p(z), ρ-a.e.

Here p = proj ◦ f , where f is as in (iv) of Theorem 5.1 and proj : Y =
T2 ×X → T2 is the projection. This follows from (v) of Theorem 5.1
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with a = α0 ∈ A(F2,T2, λ) and g = proj.

Z

p

��

a′i_

��
T2 α0

By applying to each bi, a
′
i a measure preserving transformation Ti ∈

Aut(Z, ρ), i.e., replacing bi by TbiT
−1 and a′i by Ta′iT

−1, which we just
call again bi and a′i by abuse of notation, we can clearly assume that
there is E such that Ebi = E for each i ∈ I. Then α0 is a factor of a′i
via pi = p ◦ T−1

i and (∗) holds as well for pi instead of p.
Consider now the σ-finite measure space (E,P ) where for each Borel

set A ⊆ E, P (A) =
∫
|Az| dρ(z).

The action of SL2(Z) on Z2 by matrix multiplication gives a semidi-
rect product SL2(Z) n Z2, and similarly F2 n Z2 (as we view F2 as
a subgroup of SL2(Z)). The key point is that (F2 n Z2,Z2) has the
so-called relative property (T):

∃ finite Q ⊆ F2 n Z2, ε > 0, such that for any unitary representa-
tion π ∈ Rep(F2 n Z2, H), if v is a (Q, ε)-invariant unit vector (i.e.,
||π(q)(v)− v|| < ε, ∀q ∈ Q), then there is a Z2-invariant vector w with
||v − w|| < 1

(see [BHV08, 4.2] and also [Hjo09, 2.3]).
Given now i, j ∈ I, we will define a representation πi,j ∈ Rep(F2 n

Z2, L2(E,P )). Identify Z2 with T̂2 = the group of characters of T2 so
that m̃ = (m1,m2) ∈ Z2 is identified with χm̃(z1, z2) = zm1

1 zm2
2 . Via

this identification, the action of F2 on Z2 by matrix multiplication is

identified with the shift action of F2 on T̂2: δ ·χ(t) = χ(δ−1 · t), δ ∈ F2,

χ ∈ T̂2, t ∈ T2. Then the semidirect product F2 n Z2 is identified with

F2 n T̂2 and multiplication is given by

(δ1, χ1)(δ2, χ2) = (δ1δ2, χ1(δ1 · χ2)).

If χ ∈ T̂2, let ηiχ = χ ◦ pi : Z → T. Then define πi,j as follows

πi,j(δ, χ)(f)(x, y) = ηiχ(x)ηjχ(y)f((δ−1)a
′
i · x, (δ−1)a

′
j · y)

for δ ∈ F2, χ ∈ T̂2. To check that this is a representation note that

ηiδ·χ(x) = (δ · χ)(pi(x))

(∗∗) = χ((δ−1)α0 · pi(x)) = χ(pi((δ
−1)a

′
i · x))

= ηiχ((δ−1)a
′
i · x)
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and similarly for j.
Then if v = 1∆, where ∆ = {(z, z) : z ∈ Z}, using the separability

of L2(Z, ρ) and L2(E,P ) one can find J ⊆ I uncountable such that if
i, j ∈ J , then

||πi,j(q)(v)− v||L2(E,P ) < ε,

∀q ∈ Q. Indeed, note that

||πi,j(δ, χ)(v)− v||2L2(E,P ) = 2

∫
<(1− fg)dρ,

where f = ηiχη
j
χ and g = 1

{z:(δ−1)a
′
i ·z=(δ−1)

a′
j ·z}

. Since 1− fg = (1− f) +

(1− g)− (1− f)(1− g), this is bounded by

2(||1− f ||L2(Z,ρ) + ||1− g||L2(Z,ρ) + ||1− f ||L2(Z,ρ)||1− g||L2(Z,ρ)).

Now
||1− f ||L2(Z,ρ) = ||ηiχ − ηjχ||L2(Z,ρ)

and |1− g| = 1
{z:(δ−1)a

′
i ·z 6=(δ−1)

a′
j ·z}

, so denoting by f δi the characteristic

function of the graph of (δ−1)a
′
i and similarly for f δj ,

||1− g||L2(Z,ρ) =
1

2
||f δi − f δj ||L2(E,P )

and so by the separability of L2(Z, ρ) and L2(E,P ), there is J ⊆ I
uncountable, so that if i, j ∈ J , then

||πi,j(q)(v)− v||L2(E,P ) < ε, ∀q ∈ Q.
So by relative property (T), there is f ∈ L2(E,P ) with ||f−1∆|| < 1

and f is Z2-invariant (for πi,j), i.e.,

f(x, y) = ηiχ(x)ηjχ(y)f(x, y), ∀χ ∈ T̂2.

Since f 6= 0 (as ||1∆|| = 1 and ||f − 1∆|| < 1) the set

S = {(x, y) ∈ E : ηiχ(x) = ηjχ(y), ∀χ ∈ T̂2}
has positive P -measure.

Using the fact that E is generated by bj, and the fact that characters
separate points, it follows that for almost all x ∈ X, there is at most one
y such that (x, y) ∈ S. Indeed, fix x such that (x, y1) ∈ S, (x, y2) ∈ S
with y1 6= y2. Then y1 = γ

bj
1 · x, y2 = γ

bj
2 · x, γ1 6= γ2. But also

∀χ
(
ηiχ(x) = ηjχ(γ

bj
1 · x) = ηjχ(γ

bj
2 · x)

)
.

But T̂2 separates points, so

pj(γ
bj
1 · x) = pj(γ

bj
2 · x).
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Let γ1γ
−1
2 = γ 6= 1. Then

pj(γ
bj · γbj2 · x) = pj(γ

bj
2 · x)

which happens only on a null set by (∗) for pj.
Let

Ai = {x : ∃ unique y (x, y) ∈ S}, Aj = {y : ∃x ∈ Ai (x, y) ∈ S}.
Then ρ(Ai) > 0 (as P (S) > 0). Now if (x, y) ∈ S then by (∗∗)

(δa
′
i · x, δa′j · y) ∈ S, ∀δ ∈ F2,

so Ai and Aj are respectively a′i-invariant and a′j-invariant sets of pos-
itive measure. Let ϕ : Ai → Aj be defined by ϕ(x) = y ⇔ (x, y) ∈ S.
Then

ϕ(x) = y ⇔ (x, y) ∈ S
⇔ (δa

′
i · x, δa′j · y) ∈ S

⇔ ϕ(δa
′
i · x) = δa

′
j · y,

i.e., ϕ shows that a′i|Ai ∼= a′j|Aj. �

C. Completion of the proof.

We now complete the proof of Theorem 4.1.
We have a′(π), b(π) as in Theorem 5.1 coming from a(π) in step (3).

Recall that we defined

πRρ⇔ b(π) Œ b(ρ).

To complete the proof of Theorem 4.1, we only had to show that R has
countable index over ∼=. We now prove this:

Assume, toward a contradiction, that (πi)i∈I is an uncountable family
of pairwise non-isomorphic representations in Irr(F2, H) such that if
bi = b(πi), then (bi) are pairwise orbit equivalent. Recall the chain:

πi → aπi = ci → a(πi) = a(ci) = α0 × ci → b(ci) = bi, a
′(ci) = a′i.

By Theorem 5.2, we can find uncountable J ⊆ I such that if i, j ∈ J ,
there are a′i, a

′
j-resp. invariant Borel sets Ai, Aj of positive measure, so

that a′i|Ai ∼= a′j|Aj. Moreover by property (iv) of Theorem 5.1, a(ci) is
a factor of a′i|Ai and similarly for a(cj), a

′
j|Aj.

Fix i0 ∈ J . Then for any j ∈ J , fix Ai0 , Aj as in Theorem 5.2. We
have

πj ≤ κ
aπj
0 ( = κ

cj
0 ) ≤ κ

α0×cj
0 ( = κ

a(cj)
0 ) ≤ κ

a′j |Aj
0

∼= κ
a′i0
|Ai0

0 ≤ κ
a′i0
0 .



30 A.S. KECHRIS AND R.D. TUCKER-DROB

Thus (πj) is (up to isomorphism) an uncountable family of pairwise

non-isomorphic irreducible subrepresentations of κ
a′i0
0 , a contradiction.
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6. Lecture VI. Non-classification of orbit equivalence by
countable structures, Part C: Co-induced actions

It only remains to prove Theorem 5.1 from Lecture V. This is based
on a co-inducing construction due to Epstein [Eps08].

A. Co-induced actions.

We have two countable groups ∆ and Γ (in our case ∆ will be F2) and
are given a free, ergodic, measure-preserving action a0 of ∆ on (Ω, ω)
and a measure-preserving action b0 of Γ on (Ω, ω) with Ea0 ⊆ Eb0 (note
that b0 is also ergodic). Let N = [Eb0 : Ea0 ] = (the number of Ea0-
classes in each Eb0-class) ∈ {1, 2, 3, . . . ,ℵ0}. Work below with N = ℵ0

the other cases being similar.
Given these data we will describe Epstein’s co-inducing construction

that, given any a ∈ A(∆, Y, ν), will produce b ∈ A(Γ, Z, ρ), where
Z = Ω × Y N, ρ = ω × νN, called the co-induced action of a, modulo
(a0, b0),

b = CInd(a0, b0)Γ
∆(a),

which will satisfy Theorem 5.1 of Lecture V. See [IKT09, §3] for more
details.

Put E = Ea0 , F = Eb0 . We can then find a sequence (Cn) ∈
Aut(Ω, ω)N of choice functions, i.e., C0 = id and {Cn(w)} is a transver-
sal for the E-classes contained in [w]F .

To prove this, define first a sequence (Dn) of Borel choice functions
as follows: define the equivalence relation on Γ

γ ∼w δ ⇔ (γb0 · w)E(δb0 · w).

Let {γn,w} be a transversal for ∼w with γ0,w = 1 and put Dn(w) =
γb0n,w · w.

We can then use the ergodicity of E to modify (Dn) to a sequence
(Cn) of 1-1 choice functions (which are then in Aut(Ω, ω)) as follows;
see [IKT09, 2.1]. Fix n ∈ N and consider Dn. As it is countable-to-
1, let Ω =

⊔∞
k=1 Yk be a Borel partition such that Dn|Yk is 1-1. Let

then Zk = Dn(Yk), so that µ(Zk) = µ(Yk). Since E is ergodic, there
is Tk ∈ Aut(Ω, ω) with Tk(w)Ew, a.e., such that Tk(Zk) = Yk (see,
e.g., [KM04, 7.10]). Let then Cn(w) = Tk(Dn(w)), if w ∈ Yk. We have
Cn(w)EDn(w) and Cn is 1-1. So {Cn} are choice functions and each
Cn is 1-1.

Using the {Cn} we can define the index cocycle

ϕE,F = ϕ : F → S∞ = the symmetric group of N
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given by

ϕ(w1, w2)(k) = n⇔ [Ck(w1)]E = [Cn(w2)]E

(cocycle means: ϕ(w2, w3)ϕ(w1, w2) = ϕ(w1, w3) whenever w1Fw2Fw3).

Define also for each (w1, w2) ∈ F , ~δ(w1, w2) ∈ ∆N by

(~δ(w1, w2)n)a0 · Cϕ(w1,w2)−1(n)(w1) = Cn(w2).

Now S∞ acts on the product group ∆N by shift: (σ · ~δ)n = ~δσ−1(n),

where ~δ = (~δn) ∈ ∆N. So we can form the semi-direct product S∞n∆N,
with multiplication

(σ1, ~δ1)(σ2, ~δ2) = (σ1σ2, ~δ1(σ1 · ~δ2)).

Given a ∈ A(∆, Y, ν), we then have a measure-preserving action of
S∞ n ∆N on (Y N, νN) by

((σ,~δ) · ~y)n = (~δn)a · ~yσ−1(n).

Finally we have a cocycle for the action b0, ψ : Γ×Ω→ S∞n∆N given
by

(∗) ψ(γ, w) =
(
ϕ(w, γb0 · w), ~δ(w, γb0 · w)

)
(cocycle means: ψ(γ1γ2, w) = ψ(γ1, γ2 · w)ψ(γ2, w)). Finally let

b = CInd(a0, b0)Γ
∆(a)

be the skew product b = b0 nψ (Y N, µN), i.e., for γ ∈ Γ

γb · (w, ~y) = (γb0 · w,ψ(γ, w) · ~y)

=
(
γb0 · w, (n 7→ (~δ(w, γb0 · w)n)a · ~yϕ(w,γb0 ·w)−1(n))

)
.

We also let a′ = a0 nψ′ (Y
N, µN), where ψ′ is the cocycle for the action

a0 given by replacing b0 by a0 in (∗). Thus for δ ∈ ∆

δa
′ · (w, ~y) =

(
δa0 · w, (n 7→ (~δ(w, δa0 · w)n)a · ~yϕ(w,δa0 ·w)−1(n)

)
.

We verify some properties of a′, b needed in Theorem 5.1:

(i) Ea′ ⊆ Eb: trivial as Ea0 ⊆ Eb0 .
(ii) b is free: trivial as b0 is free.

(iii) a′ is free: trivial as a0 is free.
(iv) Let f : Z = Ω × Y N → Y be given by f(w, ~y) = ~y0. Then a is

a factor of a′ via f (this follows from C0(w) = w).
Next we show that if a is ergodic and A ⊆ Ω × Y N has

positive measure and is a′-invariant, then f∗ρA = ν. Let B ⊆ Y ,
ν(B) = 1 be a-invariant such that ν|B is the unique a-invariant
probability measure on B. Then ρ(f−1(B)) = 1, so f∗ρA lives
on B and then f∗ρA = ν.
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(v) If a ∈ A(∆, Y , ν) is a free action which is a factor of a via
g : Y → Y , then for γ ∈ Γ \ {1}, gf(γb · z) 6= gf(z), ρ-a.e: Fix
γ ∈ Γ \ {1}. We need to show that

(∗∗) g
(
(~δ(w, γb0 · w)0)a · ~yϕ(w,γb0 ·w)−1(0)

)
6= g(~y0)

for almost all w, ~y. Assume not, i.e. for positively many w, ~y
(∗∗) fails. We can also assume that ϕ(w, γb0 · w)−1(0) = k

is fixed for the w, ~y and ~δ(w, γb · w)0 = δ is also fixed. Thus
g(δa ·~yk) = δa ·g(~yk) = g(~y0) on a set of positive measure of w, ~y.
If k 6= 0 this is false using Fubini. If k = 0, then δ = 1 by the
freeness of a, so w = γb0 ·w for a positive set of w, contradicting
the freeness of b0.

B. Small subequivalence relations.

In general it is not clear that the second part of (ii) in 5.1, i.e., “b is
ergodic” is true. However if E = Ea0 is “small” in F = Eb0 in the sense
to be described below, then this will be the case and in fact b will be
mixing.

For γ ∈ Γ, let

|γ|E = ω({w : (w, γ · w) ∈ E}) ∈ [0, 1].

We say that E = Ea0 is small in F = Eb0 , if |γ|E → 0 as γ →∞.

Theorem 6.1 (Ioana-Kechris-Tsankov [IKT09, 3.3]). In the above no-
tation and assuming also that b0 is mixing, if E is small in F , then for
any a ∈ A(∆, Y, ν), b = CInd(a0, b0)Γ

∆(a) is mixing.

We will omit the somewhat technical proof.

C. A measure theoretic version of the von Neumann Conjec-
ture.

Thus to complete the proof of Theorem 5.1 we will need to show that
for ∆ = F2, Γ non-amenable, there are free, ergodic a0 ∈ A(∆,Ω, ω),
and b0 ∈ A(Γ,Ω, ω) mixing with Ea0 ⊆ Eb0 and Ea0 small in Eb0 .

This is based on a construction of Gaboriau-Lyons [GL09], using
ideas from probability theory as well as the theory of costs, who proved
that there are such a0, b0 without considering the smallness condition,
which was later established by Ioana-Kechris-Tsankov. The Gaboriau-
Lyons result provided an affirmative answer to a measure theoretic
version of von Neumann’s Conjecture.
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Since a full account of the background theory needed in this con-
struction will take us too far afield, we will only give a very rough
sketch of the ideas involved.

By some simple manipulations this result can be reduced to the case
where Γ is non-amenable and finitely generated (note that every non-
amenable countable group contains a non-amenable finitely generated
one).

For a fixed finite set of generators S ⊆ Γ, we denote by Cay(Γ, S)
its Cayley graph with (oriented) edge set E (and of course vertex set
Γ): (γ, δ) ∈ E iff ∃s ∈ S (δ = γs). Γ acts freely on this graph by left
multiplication and thus acts on Ω = {0, 1}E by shift. We can view
w ∈ {0, 1}E as the subgraph with vertex set Γ and edges e being those
e ∈ E with w(e) = 1. The connected components of this graph are
called the clusters of w.

On Ω = {0, 1}E we put the product measure µp = νEp , where 0 <
p < 1, and νp({1}) = p. It is invariant under the action of Γ and is
called the Bernoulli bond percolation. This action is also mixing and
free. For an appropriate choice of p, we will take ω = µp and b0 = this
Bernoulli action.

We now define a subequivalence relation Ecl ⊆ Eb0 = F (called the
cluster equivalence relation) by

(w1, w2) ∈ Ecl ⇔ ∃γ(γ−1 · w1 = w2 & γ is in the cluster of 1 in w1).

Each Ecl-class [w]Ecl carries in a natural way a graph structure isomor-
phic to the cluster of 1 in w.

Now Pak and Smirnova-Nagnibeda [PSN00] show that one can choose
S and p so that µp-a.e. the subgraph given by w has infinitely many
infinite clusters each with infinitely many ends. (A connected, locally
finite graph has infinitely many ends if for every k there is a finite set
of vertices which upon removal leave at least k infinite connected com-
ponents in the remaining graph.) It follows that the set U∞ ⊆ Ω given
by

w ∈ U∞ ⇔ [w]Ecl is infinite

has positive ω (= µp)-measure and by a result of Gaboriau [Gab00,
IV.24(2)] Ecl|U∞ has normalized cost that is finite but > 1. (For the
definition and the theory of cost see Gaboriau [Gab00], [Gab10] and
also Kechris-Miller [KM04], [Hjo09].) Also it turns out that Ecl|U∞ is
ergodic. By a standard extension process this gives a subequivalence
relation E ′ ⊆ F such that E ′ is ergodic and has finite cost > 1. Using
the theory of cost, by a result of Kechris-Miller and independently
Pichot (see, e.g., [KM04, 28.11]), E ′ can be assumed to be treeable and
then by a result of Hjorth [Hjo06] (see also [KM04, 28.2]), this gives a
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free, ergodic action a0 ∈ A(F2,Ω, ω) with Ea0 ⊆ E ′ ⊆ F = Eb0 .
To make sure now that Ea0 is small in Eb0 one can either choose

above p with more care or else one starts with any a0, b0 as above
and coinduces by (a0, b0) an appropriate Bernoulli percolation a of F2

to get b0 and then shows that one can find a small subequivalence
relation Ea0 ⊆ Eb0 generated by a free, ergodic action a0 of F2.
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