Discrete Mathematics 21-228 Assignment #7 Solutions

1. Let the random variable X denote the number if fixed points in a permutation. Let

$$X_i = egin{cases} 1 & ext{if i is a fixed point} \ 0 & ext{otherwise} \end{cases}$$

Note

$$X = \sum_{i=1}^{n} X_i$$

There are (n-1)! permutations which have i as a fixed point, so

$$\mathbf{E}(X_i) = \frac{(n-1)!}{n!}$$
$$= \frac{1}{n}$$

for each i. Thus, by linearity of expectation,

$$\mathbf{E}(X) = \sum_{i=1}^{n} \mathbf{E}(X_i)$$
$$= n \cdot \frac{1}{n}$$
$$= 1$$

2. (a) If Pr(H) = p, then $Pr(Alice wins after i flips) = <math>\binom{i-1}{24}p^{25}(1-p)^{i-25}$, since the last coin must come up heads, and there are 24 heads and (i-25) tails among the other flips. Similarly, $Pr(Bob wins after i flips) = \binom{i-1}{24}p^{i-25}(1-p)^{25}$. Thus,

$$\begin{split} \mathbf{E}(X) &= \sum_{i=25}^{49} i \cdot Pr \text{(the game ends after } i \text{ coin flips)} \\ &= \sum_{i=25}^{49} i \left(\binom{i-1}{24} p^{25} (1-p)^{i-25} + \binom{i-1}{24} p^{i-25} (1-p)^{25} \right) \\ &= \sum_{i=25}^{49} i \binom{i-1}{24} \left(p^{25} (1-p)^{i-25} + p^{i-25} (1-p)^{25} \right) \end{split}$$

If $p = \frac{1}{2}$, this reduces to

$$\mathbf{E}(X) = 2\sum_{i=25}^{49} i \binom{i-1}{24} \left(\frac{1}{2}\right)^{i}$$

(b) Similarly,

$$\begin{split} Var(X) &= \mathbf{E}(X^2) - (\mathbf{E}(X))^2 \\ &= \sum_{i=25}^{49} i^2 \binom{i-1}{24} \left(p^{25} (1-p)^{i-25} + p^{i-25} (1-p)^{25} \right) \\ &- \left(\sum_{i=25}^{49} i \binom{i-1}{24} \left(p^{25} (1-p)^{i-25} + p^{i-25} (1-p)^{25} \right) \right)^2 \end{split}$$

If $p = \frac{1}{2}$, this reduces to

$$2\sum_{i=25}^{49}i^2\binom{i-1}{24}\left(\frac{1}{2}\right)^i-\left(2\sum_{i=25}^{49}i\binom{i-1}{24}\left(\frac{1}{2}\right)^i\right)^2$$

(c) At this point in the game, for Bob to win there must be 5 straight tails or 5 tails and one head, with the head coming in the first five tosses. Thus,

$$Pr(\text{Bob wins}) = (1-p)^5 + 5p(1-p)^5$$

If $p = \frac{1}{2}$, this reduces to

$$Pr(\text{Bob wins}) = \frac{1}{32} + \frac{5}{64}$$

= $\frac{7}{64}$

Thus, with a fair coin, Bob should receive $\frac{7}{64}$ of the prize, Alice $\frac{57}{64}$ of it.

- 3. Denote by the r.v. X the number of people who buy eggs in a day.
 - (a) Since X takes only values in N, Markov's Inequality states that $Pr(X \ge t) \le \frac{\mu}{t}$. If we set t = 11,000, we get

$$Pr(X \ge 11,000) \le \frac{10,000}{11,000} = \frac{10}{11}$$

(b) Note $\sigma = \sqrt{1000} \Rightarrow 1000 = \sqrt{1000}\sigma$. Chebycheff's Inequality states that

$$Pr(|X - \mu| \ge t\sigma) \le \frac{1}{t^2}$$

Thus, setting $t = \sqrt{1000}$, we get

$$Pr(|X - 10,000| \ge 1000) \le \frac{1}{1000}$$

Thus

$$Pr(9000 \le X \le 11,000) \ge \frac{999}{1000}$$

4. (a) Recall that the *characteristic vector* of a subset $A \subseteq [n]$ is the vector (x_1, x_2, \ldots, x_n) , where

$$x_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{otherwise} \end{cases}$$

If A is a randomly chosen subset of [n], then $Pr(x_i = 1) = \frac{1}{2}$ for each i. Now, the only way there can be an element in $A \cap B$, but not in C is if there is some i such that the i^{th} entry in the characteristic vectors for A and B is 1, but the i^{th} entry in the characteristic vector for C is 0. The probability of this happening for any particular i is $\frac{1}{8}$, and so the probability that it doesn't happen is $\frac{7}{8}$. Thus the probability that it doesn't happen for any i is $\left(\frac{7}{8}\right)^n$.

(b) Let $m \leq (\frac{8}{7})^{n/3}$. We'll use the probabilistic method to prove the statement. Choose A_1, A_2, \ldots, A_m at random. Let BAD denote the set of bad events (i.e. the events where we choose subsets such that there exist distinct i, j, k s.t. $A_i \cap A_j \subseteq A_k$.) Let BAD(i, j, k) denote the events where $A_i \cap A_j \subseteq A_k$, and note that

$$BAD = \bigcup_{\text{distinct } i,j,k} BAD(i,j,k)$$

Now, given distinct, i, j, k, from part (a) we know that $Pr(BAD(i, j, k)) = \left(\frac{7}{8}\right)^n$. Thus, Boole's Inequality implies

$$Pr(BAD) = Pr\left(\bigcup_{\text{distinct } i,j,k} BAD(i,j,k)\right)$$

$$\leq \sum_{\text{distinct } i,j,k} Pr(BAD(i,j,k))$$

$$= \binom{m}{3} \left(\frac{7}{8}\right)^{n}$$

$$= \frac{(m)_{3}}{3!(m-3)!} \left(\frac{7}{8}\right)^{n}$$

$$\leq \frac{\left(\left(\frac{8}{7}\right)^{n/3}\right)^{3}}{3!(m-3)!} \left(\frac{7}{8}\right)^{n}$$

$$= \frac{1}{3!(m-3)!} \left(\frac{8}{7}\right)^{n} \left(\frac{7}{8}\right)^{n}$$

$$= \frac{1}{3!(m-3)!}$$

$$\leq 1$$

We conclude that since the probability of a bad event is < 1, then there is a nonzero probability of a good event, i.e. there is at least

one good event. Thus there are some subsets A_1,A_2,\ldots,A_m s.t. $A_i\cap A_j\not\subseteq A_k$ for all distinct i,j,k.