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1 Introduction

For any graphs H, G, define ex(H, G) (ex0(H, G)) to be the maximum number of edges (vertices)

which may be contained in a subgraph (induced subgraph) H ′ of H without H ′ containing G

as a subgraph. The study of these quantities for various choices of H and G are known as

Turán type problems. We are interested in the quantities ex(Qn, G) and ex0(Qn, G), where

Qn denotes the n-dimensional hypercube. Qn is the graph with V (Qn) = {0, 1}n, and edges

between vertices which differ in exactly one coordinate.

For a graph G, let c(G, n) (resp. c0(G, n)) be the minimum number of edges (vertices)

required to intersect every copy of G in Qn and

c(G) = lim
n→∞

c(G, n)

|E(Qn)| = lim
n→∞

c(G, n)

n2n−1
, c0(G) = lim

n→∞

c0(G, n)

|V (Qn)| = lim
n→∞

c0(G, n)

2n
.

By a simple averaging argument, each ratio is non-decreasing, so the limits exist. Note c(G, n)+

ex(Qn, G) = |E(Qn)|, so c(G) = 1 − limn→∞
ex(Qn,G)
|E(Qn)| , and c0(G, n) + ex0(Qn, G) = |V (Qn)|, so

c0(G) = 1 − limn→∞
ex0(Qn,G)
|V (Qn)| .

The problem of determining c(G), c(G, n), c0(G), and c0(G, n) for various choices of G has

been studied in extremal graph theory for many years as a variation of the original Turán

problem. Alon, Krech and Szabó [1] wrote a nice introduction to these problems from this

point of view. Another motivation comes from the field of parallel computers, where researchers

have proposed hypercubes, and certain subgraphs of hypercubes, as architectures for parallel

computation, where vertices correspond to processors and edges correspond to communication
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links. Turán type problems correspond to the question of robustness, i.e. how many links (or

processors) must fail before there is no copy of some desired sub-architecture. Graham, Harary,

Livingston, and Stout [12] published an extensive survey of results from this perspective.

For d ≥ 2, the only known value of c(Qd) or c0(Qd) is c0(Q2) = 1/3, proved independently

by Kostochka [18] and Johnson and Entringer [17]. Erdős [10] conjectured ex(Qn, Q2) = (1
2 +

o(1))|E(Qn)|. Currently it is known that

1

2
(n +

√
n)2n−1 ≤ ex(Qn, Q2) / .62256|E(Qn)|.

The lower bound is due to Brass, Harborth, and Neinborg [5], and the upper bound to Thomason

and Wagner [20]. Bialostocki [4] proved that any subgraph of Qn not containing Q2 as a

subgraph and intersecting every Q2 has at most 1
2(n +

√
n)2n−1 edges.

As one generalization of Erdős’ problem, many researchers have studied ex(Qn, Cl), where

Cl is a cycle of length l. Chung [7] showed that if k ≥ 2, ex(Qn, C4k) = o(n)2n, ex(Qn, C6) ≥
1
4n2n−1, and ex(Qn, C6) ≤ (

√
2 − 1 + o(1))n2n−1. Conder [8] showed ex(Qn, C6) ≥ 1

3n2n−1

by constructing a 3-coloring of any hypercube with no monochromatic C6. Alon, Radoic̆ić,

Sudakov, and Vondrák [2] proved for all k ≥ 5, for all r, there exists N such that if n > N ,

every coloring of Qn with r colors contains a monochromatic copy of C2k. Furedi and Ozkahya[?]

have shown ex(Qn, C14) = o(n)2n but it is still open whether ex(Qn, C10) = o(n)2n. Axenovich

and Martin [3] gave a 4-coloring of the edges on Qn containing no induced copy of C10.

Detjer, Emamy-K., and Guan [9], Harborth and Neinborg [14], and Graham, Harary,

Livingston, and Stout [12] have studied c(Qd, n) for small values of n. Their results are

listed in Section 5. It is known that c(Q3) ≤ 1/4, and Alon, Krech, and Szabó [1] conjec-

tured c(Q3) = 1/4. The best known lower bound was due to a result in [12] which implies

c(Q3) ≥ 1 − (5/8)1/4 ≈ .11086. In Section 5 we improve the lower bound for c(Q3) to ≈ .1165.

This will follow from a proof that c(Q3, 6) = 22.

Alon, Krech, and Szabó [1] gave the following bounds:

(1 + o(1))
log d

(d + 2)2d+1
≤ c(Qd) ≤







4
(d+1)2

if d is odd

4
d(d+2) if d is even.

(1 + o(1))
log d

2d+2
≤ c0(Qd) ≤

1

d + 1
,

In Section 2, we adapt a supersaturation method of Erdős and Simonovits [11] to give some

classes of graphs G for which c(G) = c(Qd) for some d.

In Section 3 we define the Fibonacci cube of dimension d, denoted Γd. The Fibonacci cube

is a subgraph of the hypercube which was proposed as an architecture for parallel computing
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in [16]. The fault-tolerance of Fibonacci cubes was studied by Hornh, Jiang, and Kao [15] and

Caha and Gregor [6]. Gregor [13] proved c0(Γ3) = c0(Q2). As an application of our results in

Section 2 we prove that for d ≤ 7, c(Γd) = c(Q⌈d/2⌉) and c0(Γd) = c0(Q⌈d/2⌉).

Many results about Turán type problems on the hypercube come from corresponding Ramsey

type questions. Call an edge coloring (vertex coloring) of a hypercube with r ≥ 2 colors such that

every copy of G contains every color, G-polychromatic. Denote by p(G) (p0(G)) the maximum

number of colors with which it is possible to G-polychromatically color the edges (vertices)

of any hypercube. Since every color class in a G-polychromatic coloring intersects every copy

of G, the value of p(G) gives an upper bound on c(G), namely 1/p(G) ≥ c(G). Similarly,

1/p0(G) ≥ c0(G).

Alon, Krech, and Szabó [1] proved for all d ≥ 1, p0(Qd) = d + 1 and

(

d + 1

2

)

≥ p(Qd) ≥







(d+1)2

4 if d is odd

d(d+2)
4 if d is even,

and subsequently it was proved in [19] that for all d ≥ 1,

p(Qd) =







(d+1)2

4 if d is odd

d(d+2)
4 if d is even.

In Section 4 we give a condition which, if satisfied by a graph G, implies p(G) ≥ 3. This implies

c(G) ≤ 1/3 for these graphs.

1.1 Notation for hypercubes

We refer to the n coordinates of a vertex as bits, and given an edge {x, y}, we refer to the unique

bit where xi 6= yi as the flip bit. We represent an edge of Qn by an n-bit vector with a star

in the flip bit. For example, in Q4, we represent the edge between vertices [0100] and [0101]

by [010∗]. We may denote a copy of Qd in Qn by an n-bit vector with stars in d coordinates.

For instance [1 ∗ 00∗] is the Q2 in Q5 with vertices {[10000], [11000], [10001], [11001]} and edges

{[1 ∗ 000], [1000∗], [1 ∗ 001], [1100∗]}. We call edges with the same flip bit parallel, and call the

class of edges with flip bit i the ith parallel class. For a vertex x ∈ V (Qn), define the weight

w(x) =
∑n

i=1 xi, and for an edge e ∈ E(Qn) with flip bit j define the prefix sum p(e) =
∑j−1

i=1 ei,

and weight w(e) = p(e) +
∑n

i=j+1 ei. The vertices (edges) of Qn can be partitioned into levels

where we say a vertex x (edge e) is on the ith level if w(x) = i (w(e) = i).
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2 Supersaturation results

For many graphs G, we can show that c(G) = c(Qd) or c0(G) = c0(Qd) for some d. The idea

is to show that for fixed d and large n, if H ⊆ Qn has so many edges that it is guaranteed to

contain a copy of Qd, then it is guaranteed to contain many copies, enough so that a copy of G

is also guaranteed.

2.1 Edge version

Lemma 1 Let ǫ > 0, d fixed, and let n → ∞. If H ⊆ Qn has |E(H)| ≥ (1 − c(Qd) + ǫ)n2n−1,

then there are Ω(nd2n) copies of Qd in H.

Proof: We use a standard counting technique due to Erdős and Simonovits [11].

By decreasing ǫ, assume 0 < ǫ < c(Qd) and fix m large enough so that c(Qd, m) ≥ (c(Qd)−
ǫ/2)m2m−1. Suppose n is very large and we remove at most (c(Qd) − ǫ)n2n−1 edges from Qn.

Then there will be some Qd remaining in Qn. Let λ be the proportion of copies of Qm in Qn

which contain a copy of Qd. We get a lower bound on λ by counting the number of edges

removed in each Qm as follows: From each of the (1 − λ)
(

n
m

)

2n−m copies of Qm containing no

copy of Qd, at least (c(Qd) − ǫ/2)m2m−1 edges must be removed, and each edge is in
(n−1
m−1

)

copies of Qm, which gives the following inequality:

(1 − λ)

(

n

m

)

2n−m(c(Qd) − ǫ/2)m2m−1 ≤
(

n − 1

m − 1

)

(c(Qd) − ǫ)n2n−1.

This implies λ ≥ ǫ/2
c(Qd)−ǫ/2 > 0, a bound independent of n.

Each Qd is in
(

n−d
m−d

)

copies of Qm, and there are
(

n
m

)

2n−m copies of Qm in Qn, so there are

at least

λ
(

n
m

)

2n−m

(

n−d
m−d

) = Ω(nd2n)

copies of Qd remaining in Qn. �

Theorem 2 If T is a tree with k edges, then c(T ) = 1.

Proof: Suppose H is a subgraph of Qn with ǫn2n−1 edges, for some ǫ > 0. Then the average

degree of a vertex in H is ǫn. A theorem in graph theory states that any graph with average

degree 2d contains a subgraph with minimum degree d, and thus contains any tree on d vertices.

Thus H contains a copy of T . �

4



The proof of Theorem 2 also implies for any n ≥ k, ex(Qn, T ) ≤ 2k2n−1, and thus c(T, n) ≥
(1 − 2k

n )n2n−1. We can generalize Theorem 2 to apply to other subgraphs of Qn. When the

context is clear, we abuse notation to define the following operations on graphs: G1 ∪ G2

represents the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). G1 ∩ G2

represents the graph with vertex set V (G1) ∩ V (G2) and edge set E(G1) ∩ E(G2). G1 \ G2

represents the graph induced on G1 by the vertex set V (G1) \ V (G2).

Define a Qd-tree of cardinality k to be the union of k copies of Qd, G1, . . . , Gk, such that for

each i > 1, there is some j < i s.t. Gi ∩Gj
∼= Qd−1, and (Gi \Gj)∩

(

∪i−1
l=1Gl

)

= ∅. For example,

a tree is a Q1-tree. Every Qd-tree contains a copy of Qd but contains no copy of Qd+1.

Theorem 3 If T is a Qd-tree of cardinality k, then c(T ) = c(Qd).

Proof: Qd ⊆ T , so c(T ) ≤ c(Qd).

For a graph K ⊆ Qn, define l(K) to be the dimension of the smallest subcube of Qn

containing K, and L(K) to be the maximum value of l(K ′), taken over all K ′ ⊆ Qn where K ′

is isomorphic to K. For example, if P3 is the path with three edges and n ≥ 3, then there are

subgraphs of Qn isomorphic to P3 with l = 2 and l = 3, so L(P3) = 3. By induction, a Qd-tree

of cardinality k has L = d + k − 1. Let ǫ > 0 be arbitrary, n large, and H a subgraph of Qn

with (1− c(Qd) + ǫ)n2n−1 edges. We show that H contains a copy of T with l value d + k − 1.

Initially, let A denote the set of all copies of Qd in H, and B be the set of all copies of Qd−1

in H. By Lemma 1, |A| = Ω(nd2n). For β ∈ B, define D(β) = |{α ∈ A : β ⊆ α}| and let

E[D] denote the average value of D(β) for β ∈ B. There are
(

n
d−1

)

2n−d+1 = O(nd−12n) copies

of Qd−1 in Qn, so |B| = O(nd−12n). Thus E[D] ≥ an for some a > 0, independent of n. We

modify A and B as follows: At each step, if there is an element β ∈ B with D(β) < k, we

remove it from B, and remove from A all elements which contain β. After any step, E[D] ≥ an,

since removing an element from B will cause at most k elements to be removed from A. Thus

at the next step:

E[D] ≥
∑

β∈B D(β) − 2dk

|B| − 1
≥ an|B| − 2dk

|B| − 1
≥ an(|B| − 1)

|B| − 1
= an.

When this process terminates, every element β remaining in B has D(β) ≥ k.

Suppose T = G1 ∪ . . .∪Gk, as in the definition of Qd-tree. Using induction, we may assume

a copy of the Qd-tree of cardinality (k − 1), G1 ∪ . . . ∪ Gk−1, is contained in H and has l

value d + k − 2. Denote this copy by T ′. Let j be an index such that Gk ∩ Gj
∼= Qd−1, and

(Gk \ Gj) ∩
(

∪k−1
l=1 Gl

)

= ∅, and denote by G′ the image of Gk ∩ Gj in H. Since G′ ∈ B,

D(G′) ≥ k. Thus the union of all members of A which contain G′ has L value at least d + k− 1

and there is some α ∈ A such that α ∩ T ′ = G′. The union of α and T ′ is a copy of T . �

5



Define the Cartesian product G×F of two graphs G and F to be the graph with V (G×F ) =

{(x, y) : x ∈ V (G), y ∈ V (F )} and E(G × F ) = {{(x, y0), (x, y1)} : x ∈ V (G), {y0, y1} ∈
E(F )} ∪ {{(x0, y), (x1, y)} : {x0, x1} ∈ E(G), y ∈ V (F )}.

Theorem 4 If d ≥ 2, T is a Qd−1-tree and F is a graph with at least one edge such that

c(F ) = 1, then c(T × F ) = c(Qd).

Proof: Qd ⊆ T × F , so c(T × F ) ≤ c(Qd).

Consider a graph H ⊆ Qn with at least (1− c(Qd) + ǫ)n2n−1 edges. Denote by e the graph

with one edge. T × e is a Qd-tree of cardinality k, so by Theorem 3, H contains some copy of

T × e with l = d + k − 1. In fact, a supersaturation argument identical to Lemma 1 shows H

contains Ω(nd+k−12n) copies of T × e with l value d + k − 1.

Let S be the collection of sets of size d+k−2 in [n]. Since S has cardinality O(nd+k−2), there

is some σ ∈ S and a > 0 such that there are at least an2n copies of T × e in H where each of its

two copies of T have stars in all positions in σ. Consider the set A of all such copies of T . Since

there are only a fixed finite number of copies of T in Qd+k−2, some constant proportion b > 0

of these will have all corresponding edges parallel. Let A′ ⊆ A denote the set of these copies,

and note |A′| ≥ abn2n. Construct a subgraph H ′ of Qn−d−k+2 by making vertices correspond

to the copies of Qd+k−2 with stars in the positions in σ, and putting an edge between them if

the subgraph induced by the two copies of Qd+k−2 contains a copy of T × e which contains two

elements of A′. Since H ′ contains abn2n edges and c(F ) = 1, H contains a copy of F . The

preimage of this graph in H is the desired copy of T × F . �

2.2 Vertex version

We state Lemma 5 for vertices, analogous to Lemma 1 for edges, and note that the number of

copies of Qd guaranteed in the conclusion is identical. The proof follows by the same argument.

Since the other results in Section 2.1 depend only on Lemma 1, all other results are immediate.

We state them here, omitting the (identical) proofs.

Lemma 5 If H ⊆ Qn has |V (H)| ≥ (1− c0(Qd) + ǫ)2n, then there are Ω(nd2n) induced copies

of Qd in H.

Theorem 6 If T is a Qd-tree of cardinality k, then c0(T ) = c0(Qd).

Theorem 7 If d ≥ 2, T is a Qd−1-tree and F is a fixed graph with at least one edge such that

c(F ) = 1, then c0(T × F ) = c0(Qd).
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3 An application to Fibonacci cubes

The Fibonacci cube of dimension d, denoted Γd, can be defined as the subgraph of Qd induced

on vertices which do not contain 1’s in consecutive coordinates. Recursively, the vertex set of

Γd is the union of the vertex sets of Γd−1 and Γd−2:

V (Γd) = {u0 : u ∈ V (Γd−1)} ∪ {v01 : v ∈ V (Γd−2)} for d > 2

and V (Γ2) = {[00], [01], [10]}, V (Γd) = V (Qd) for d < 2.

For all values of d, Q⌈d/2⌉ ⊆ Γd (consider the cube with 0 in every even coordinate and a star

in every odd coordinate). For d ≤ 5, Γd is a subgraph of a Q⌈d/2⌉-tree: Γ1 = [∗], Γ2 = [0∗]∪ [∗0],

Γ3 ⊆ [∗0∗]∪ [0 ∗ ∗], Γ4 = [∗0 ∗ 0]∪ [∗00∗]∪ [0 ∗ 0∗], and Γ5 ⊆ [∗0 ∗ 0∗]∪ [∗00 ∗ ∗]∪ [0 ∗ 0 ∗ ∗], but

this is not true for d ≥ 6..

We now have the following corollaries to the results of Section 2.

Corollary 8 For d ≤ 7, c(Γd) = c(Q⌈d/2⌉).

Proof: For d ≤ 5, Q⌈d/2⌉ is a subgraph of Γd, and Γd is a subgraph of a Q⌈d/2⌉-tree, so we

may apply Theorem 3.

Let T2 denote the tree with 2 edges with V (T2) = {[00], [01], [10]}. For d = 6, 7, Γd−2 is a

subgraph of a Q⌈d/2⌉−1-tree. The statement follows from Theorem 2 and Theorem 4, using the

fact that Γd ⊆ (Γd−2 × T2). �

The vertex version gives identical results, using Theorem 6 and Theorem 7.

Corollary 9 For d ≤ 7, c0(Γd) = c0(Q⌈d/2⌉).

4 A Ramsey type theorem

Given a graph G ⊆ Qn, for each vertex v ∈ V (G) let the graph Hv have nodes V (Hv) = {w :

vw ∈ E(G)} and edges E(Hv) = {wx : v, w, and x are in a Q2 in G}.

Theorem 10 If a graph G has some vertex v with Hv non-bipartite, then p(G) ≥ 3.

Proof: Consider the coloring χ : e → 2p(e) − w(e) (mod 3). We will show χ is a G-

polychromatic 3-coloring. Since Hv is non-bipartite, it contains an odd cycle. This corresponds

to a sequence of copies of Q2, C0, C1, . . . , C2k such that Ci, Ci+1 share an edge (all subscripts
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are taken (mod 2k + 1)). We will show that the subgraph of G made up of the union of these

cycles contains all three colors.

Let m0, . . . , m2k correspond to the positions of the stars in C0, . . . , C2k such that mi, mi+1

are the positions of the stars in Ci. Call a sequence a, b, c monotone if a < b < c or a > b > c.

Consider the following two possiblilities:

(i) There is some i s.t. Ci−1, Ci are on the same two edge levels and mi−1, mi, mi+1 is

monotone.

(ii) There is some i s.t. Ci−1, Ci are on different levels and mi−1, mi, mi+1 is not monotone.

If either (i) or (ii) occur, then the three edges in Ci−1 ∪ Ci using the star in position mi

have all three colors. For example, assume (i) occurs, and without loss of generality i = 1,

m0 < m1 < m2, and the edge shared by C0 and C1 has 0’s in positions m0 and m2, and color

1. Since the two squares are on the same levels the other edge in C0 has color 0 and the other

edge in C1 has color 2. All other cases are checked similarly.

It remains to show that (i) or (ii) must occur: Suppose there is a cycle C0, . . . , C2k such that

neither occurs. Let the set S = {Ci : mi−1, mi, mi+1 is monotone}. Since there must be an even

number of non-monotone triples on a cycle, |S| is odd. Let T = {Ci : Ci−1, Ci are on different

levels }. T must be even. But for neither (i) nor (ii) to happen, S = T , which is impossible. �

Thus if a graph G has some vertex v with Hv non-bipartite, then c(G) ≤ 1/3. An example

of such a graph is obtained by deleting one vertex from Q3.

The following proposition gives a graph G where Hv is bipartite for all v ∈ V (G), but

p(G) = 3, which shows that the converse of Theorem 10 is not true.

Proposition 11 Let G be the graph obtained by removing two parallel edges of Q3 that are not

incident to any common edges. Then p(G) ≥ 3.

Proof: It suffices to show that any embedding of G in Qn must contain edges on three consecutive

edge levels. Then if edge levels are colored (mod 3), this coloring is G-polychromatic.

Consider an embedding of G and denote by C1 and C2 the the two copies of Q2 in G. For

i = 1, 2, denote by xi and yi the two degree three vertices at distance two in V (Ci), where

{x1, x2} and {y1, y2} are edges in G. Since the distance from xi to yi is two for i = 1, 2, these

two edges must be parallel (if they were not parallel, the distance between one of the pairs would

have to be 4). Since xi and yi differ in the same two coordinates for i = 1, 2, the corresponding

edges in C1 and C2 are parallel. Thus x1 is on the same vertex level with respect to the three
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vertex levels covered by C1 as x2 is with respect to those covered by C2. Since x1 and x2 are

on consecutive vertex levels, and C1 and C2 have edges on two levels each, C1 and C2 contain

edges on three consecutive levels. �

5 A new lower bound on c(Q3)

In this section we prove

Theorem 12 c(Q3, 6) = 22

and use it to establish a new lower bound on c(Q3).

Before we prove Theorem 12, we need a few preliminaries. Note that the union of any k

parallel classes in Qn consists of 2n−k disjoint copies of Qk. Call a set of edges intersecting

every Qd in Qn an (n,d)-cover. We will call two covers isomorphic if and only if there is an

automorphism of the cube that maps one to the other.

We will use the following observation repeatedly:

Lemma 13

c(Qd, n + 1) ≥
⌈

2(n + 1)c(Qd, n)

n

⌉

Proof: Consider a minimum cardinality (n+1, d)-cover A. Without loss of generality assume

the (n + 1)st parallel class contains at least as many edges of A as any other class. Then the

union of the other n parallel classes consists of two disjoint Qn’s, so they must contain at least

2c(Qd, n) edges in A. The assumption of maximality on the (n + 1)st class proves the lemma.

�

We will use many known results about c(Qd, n) for small values of n.

d = 2: – c(Q2, 2) = 1.

– c(Q2, 3) = 3. (Lower bound: Lemma 13, upper bound: {[∗00], [1 ∗ 1], [01∗]}, and the

minimum cover is unique.)

– c(Q2, 4) = 8. (Lower bound: Lemma 13, upper bound:{[∗000], [∗111], [1 ∗ 01], [0 ∗
10], [00∗1], [11∗0], [101∗], [010∗]}. Dejter, Emamy-K., and Guan [9] proved that this

construction is unique.)

– c(Q2, 5) = 24. (see [9])

– c(Q2, 6) = 60. (see [14])
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d = 3: – c(Q3, 3) = 1.

– c(Q3, 4) = 3. (Lower bound: Lemma 13, upper bound: {[∗000], [0 ∗ 01], [111∗]}.
The minimum (4,3)-cover is not unique, but the three edges must be in 3 different

classes.)

– c(Q3, 5) = 8. (Lower bound: Lemma 13, upper bound: {[∗0000], [∗1110], [1∗011], [0∗
101], [00 ∗ 11], [11 ∗ 01], [101 ∗ 0], [010 ∗ 0]}. We will show that this cover is unique.)

It was previously known that 20 ≤ c(Q3, 6) ≤ 22 (Lower bound: Lemma 13, upper bound

[12]).

We call a set of edges A′ ⊆ Qn the k-projection of a set A ⊆ Qn+1 if A′ is obtained from

A by identifying all vertices in Qn+1 which differ only in the kth coordinate. For instance,

the minimum (4, 2)-cover given above is a 5-projection of the minimum (5, 3)-cover which was

given. Note that k-projecting a set of edges corresponds to deleting the kth coordinate in each

of their vector representations.

Lemma 14 Suppose an (n+1, d)-cover A contains no edges in the kth parallel class. Then the

k-projection A′ of A is an (n, d − 1)-cover.

Proof: If A′ is not an (n, d − 1)-cover, then it is possible to find a Qd−1 ⊆ Qn containing

no edges of A′. The preimage of this cube is two parallel copies of Qd−1 ⊆ Qn+1 containing no

edges of A and connected by edges in the kth class. Since there are no edges of A in the kth

class, this is a Qd containing no edges of A. �

Lemma 15 If A is a (5, 3)-cover with 8 edges, then one parallel class contains no edges in A.

Proof: Let A be a (5, 3)-cover with 8 edges, and at least one edge in each class. No class

contains 3 edges in A, since otherwise there would be some Q4 covered by only 2 edges, which

contradicts c(Q3, 4) = 3. Thus, A contains 2 edges in 3 classes, and one edge in 2 classes.

Denote the edges of A by a = [a1a2 . . . a5], b = [b1 . . . b5], . . . , h = [h1 . . . h5] and without loss of

generality assume a1 = b1 = ∗, c2 = d2 = ∗, e3 = f3 = ∗, g4 = ∗, and h = [0000∗]. Note that the

matrix M whose rows are a, . . . , h must have the property that for every 2-bit string xy, every

pair of columns contains some row whose entries are xy. If a matrix has this property, we say

it is 2-independent.

Suppose g1 = 0. The cubes [1 ∗ 0 ∗ ∗], [1 ∗ 1 ∗ ∗], [10 ∗ ∗∗], and [11 ∗ ∗∗] do not contain edges

g or h, so c1 = d1 = e1 = f1 = 1, since one of the edges c, d, e, f must be in each of these cubes.

But then the cube [0 ∗ ∗ ∗ g5], where g5 6= g5 does not contain any edges, a contradiction. Thus

g1 = 1 and by symmetry, g2 = g3 = 1.
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Figure 1: Left: M in Lemma 15. Right: M in Lemma 16

Since the first 3 columns of M must be 2-independent, without loss of generality we may

assume 0 = a2 = b3 = c1 = d3 = e1 = f2, and 1 = a3 = b2 = c3 = d1 = e2 = f1 (see the first

matrix in Figure 1). Now consider cubes with stars in positions 2 and 3, but not 1. Since d

or f must be in the cubes [1 ∗ ∗1∗], [1 ∗ ∗0∗], and [1 ∗ ∗ ∗ g5] we conclude d4 6= f4, and at least

one of d5 and f5 is g5. Since c or e must be in the cubes [0 ∗ ∗ ∗ 1], [0 ∗ ∗ ∗ 0],and [0 ∗ ∗1∗],
we conclude c5 6= e5 and at least one of c4 and e4 is 1. Similarly, considering cubes with stars

in positions 1 and 3 but not 2, we derive the following: b4 6= e4, b5 or e5 = 1, a5 6= f5, a4 or

f4 = 1. Considering cubes with stars in positions 1 and 2 but not 3, we get a4 6= c4, a5 or

c5 = 1, b5 6= d5, b4 or d4 = 1. One can verify that the above constraints imply the following:

b4 = c4 = f4, a4 = d4 = e4, b5 = c5 = f5, a5 = d5 = e5. These conditions make it impossible

for all four 2-bit strings to be present in the fourth and fifth columns of M , contradicting the

2-independence of M . �

Lemma 16 If A is a (5, 3)-cover with 8 edges, then it is unique up to isomorphism.

Proof: From Lemma 15, we know that one class, say the fifth, contains no edges in A. Again

denote the 8 edges of A by a, . . . , h, and the matrix where these are the rows by M . Consider

the 5-projection of A. By Lemma 14 this projection must be a (4, 2)-cover containing only 8

edges. Since the 8-edge (4, 2)-cover is unique up to isomorphism, this means that the first four

columns of M are determined up to isomorphism as well. Without loss of generality we may

assign entries in M as in the second matrix in Figure 1.

It remains to check a couple of cases to see that there is only one way to assign values to

the fifth column of M :

a5 6= b5: Without loss of generality we may assume a5 = 0, b5 = 1. For columns 1 and 5 to contain

all four 2-bit strings, d5, e5, and h5 cannot all be the same. If two of them are 1, then
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without loss of generality we may assign d5 = e5 = 1, h5 = 0, then note that for columns

3 and 5 to contain 01, c5 = 1. But then columns 4 and 5 cannot contain 10. If only one of

d5, e5 and h5 are 1, we may assume h5 = 1, then note that for columns 4 and 5 to contain

01, f5 = 1. But then columns 2 and 5 do not contain 10.

a5 = b5: Without loss of generality we may assume a5 = b5 = 0. As before, not all of d5, e5, and

f5 may be the same. We may check as above that it is impossible for two of them to

be zero. If we set two of them equal to one, it extends to a unique assignment, and all

possible choices can be mapped to each other by a cube isomorphism of Q5. One possible

representation is (a5, . . . , h5) = (0, 0, 1, 1, 1, 1, 0, 0). �

Proof of Theorem 12: Assume for the sake of contradiction that c(Q3, 6) < 22 and choose a

(6, 3)-cover A with 21 edges.

Case 1: There is some class with 5 edges in A, say the sixth (Note no class may contain

six edges since then some Q5 would contain only 7 edges, contradicting c(Q3, 5) = 8.). There

can only be one such class, since if there were only 11 edges among 4 classes, in the union of

these four classes, there would be some Q4 with at most two edges, contradicting c(Q3, 4) = 3.

Since ⌈(21− 5)/5⌉ = 4, there is another class with 4 edges, say the fifth. Denote by W, X, Y, Z,

respectively, the Q4’s [∗∗∗∗00], [∗∗∗∗01], [∗∗∗∗10], [∗∗∗∗11]. Each of these Q4’s must contain

exactly 3 edges of A, and since c(Q3, 5) = 8, at least two edges of A must go between each of

the following pairs: WX, WY, XZ, and Y Z. Without loss of generality, we assume there are

three edges of A between W and X, and two between the other pairs. The Q5 determined by

the pair WY contains exactly 8 edges of A, and so by Lemma 15 there must be some class in

WY which contains no edges of A, say the fourth. Since Y contains no edges of A in the fourth

class, it must contain edges in classes 1,2 and 3. Thus Y Z is a Q5 containing 8 edges of A,

some of which are in classes 1, 2, 3, and 6. By Lemma 15, we conclude that Y Z contains no

edges of A in the fourth class. Similarly we may consider XZ and note that it can contain no

edges in the fourth class. Thus there are no edges in A the fourth class at all. If we consider

the 4-projection of A, by Lemma 14 we get a (5, 2)-cover of cardinality 21. But this contradicts

the fact that c(Q2, 5) = 24.

Case 2: A has at most four edges in a class. Similar to the previous case, we may assume

without loss of generality that A contains four edges each in classes 5 and 6. Two edges each

connect the pairs WX, WY, XZ, and Y Z, since otherwise there is a Q5 covered by 8 edges

of A, where there is a parallel class with exactly one edge, while in the unique (5, 3)-cover of

Lemma 16, each nonempty parallel class has two edges. We may assume each of W, X, and Y

contain exactly 3 edges in A, with one each in classes 1, 2, and 3. Then Z contains four edges

of A.
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Lemma 16 allows us to assign the edges in WX. Without loss of generality, we may assume

that the following 8 edges are in A: [1 ∗ 1000], [01 ∗ 100], [∗00100], [0 ∗ 0001], [∗11101], [10 ∗
101], [11000∗][00100∗. Using Lemma 16 again it is not hard to check that the following 5 edges

must be the remaining ones in WY: [0 ∗ 0010], [10 ∗ 110], [∗11110], [1100 ∗ 0], [0010 ∗ 0].

At most two of the edges in Z must be in class 4, since there must be edges in at least three

classes in Z. But if fewer than 2 edges of Z are in class 4, then there are at most 5 remaining

unassigned edges in classes 4, 5, and 6. Each can be in exactly one cube of type [abc∗∗∗] where

a, b, c ∈ {0, 1}. There are 8 such cubes in total, and only [110 ∗ ∗∗] and [001 ∗ ∗∗] contain edges

already assigned in A, leaving 6 unaccounted for, a contradiction. Thus there must be exactly

two edges of A in the fourth class in Z.

Of the remaining unassigned edges, one each must be contained in the Q3’s [∗ ∗ ∗011] and

[∗ ∗ ∗111], and one more each in the Q4’s [∗ ∗ ∗01∗] and [∗ ∗ ∗0 ∗ 1]. This leaves 2 remaining

unassigned edges. For all possible assignments made thus far, there are at least 7 Q3’s of the

form [abc1 ∗ ∗] where exactly one of a, b, c is a star which do not contain an edge in A. However

each remaining unassigned edge can be in at most three such Q3’s, and thus A cannot intersect

every Q3. �

We can use Theorem 12 to improve the lower bound for c(Q3) in [12] which was 1−(5/8)1/4 ≈
.11086.

Theorem 17 c(Q3) ≥ 28,625
245,760 .

Proof: c(Q3, 6) = 22 implies that c(Q3) ≥ 22/192 ≈ .11458. We can improve this using

Lemma 13, which implies

c(Q3, 7) ≥
⌈

2 · 7 · c(Q3, 6)

6

⌉

=

⌈

308

6

⌉

= 52,

giving a new bound of c(Q3) ≥ 52/448 ≈ .11607. We can use Lemma 13 repeatedly in this way

to get c(Q3, 8) ≥ 119, c(Q3, 9) ≥ 268, and so forth until we get c(Q3, 15) ≥ 28, 635, at which

point Lemma 13 ceases to improve the bound on c(Q3). Thus our best lower bound for c(Q3)

is

c(Q3) ≥
28, 625

245, 760
≈ .116516. �

6 Open questions

There are many more questions than results for Turán type problems on Qn. It would be

interesting to find better bounds for c(G) or c0(G) for any of the graphs G discussed in the

paper. It would also be interesting to discover which values the functions c or c0 may take, and
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to further characterize classes of graphs which have the same value. In particular, it would be

interesting to know whether c(Γd) = c(Q⌈d/2⌉) or c0(Γd) = c0(Q⌈d/2⌉) for values of d greater

than seven.
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