POLYCHROMATIC COLORINGS OF SUBCUBES OF THE HYPERCUBE*

DAVID OFFNER ${ }^{\dagger}$

Abstract

Alon, Krech, and Szabó [SIAM J. Discrete Math., 21 (2007), pp. 66-72] called an edge-coloring of a hypercube with p colors such that every subcube of dimension d contains every color a d-polychromatic p-coloring. Denote by p_{d} the maximum number of colors with which it is possible to d-polychromatically color any hypercube. We find the exact value of p_{d} for all values of d.

Key words. coloring of graphs and hypergraphs, extremal problems, Ramsey theory
AMS subject classifications. $05 \mathrm{C} 15,05 \mathrm{C} 35,05 \mathrm{D} 10$
DOI. 10.1137/07068014X

1. Introduction. Denote by Q_{n} the n-dimensional hypercube, and, for fixed graphs G, H, denote by $\operatorname{ex}(G, H)$ the maximum number of edges in a subgraph of G which does not contain a copy of H. Problems about this quantity are called Turán-type problems, after P. Turán, who gave an exact value for $\operatorname{ex}(G, H)$ when G and H are cliques. There is a rich history of studying Turán-type problems where $G=Q_{n}$. To cite some well-known examples, Erdős [7] conjectured that ex $\left(Q_{n}, Q_{2}\right)=$ $\left(\frac{1}{2}+o(1)\right) e\left(Q_{n}\right)$. Currently it is known that

$$
\frac{1}{2}(n+\sqrt{n}) 2^{n-1} \leq \operatorname{ex}\left(Q_{n}, Q_{2}\right) \lesssim .623 e\left(Q_{n}\right)
$$

The lower bound is due to Brass, Harborth, and Neinborg [4] and the upper bound to Chung [5]. Bialostocki [3] proved that any subgraph of the cube not containing Q_{2} as a subgraph and intersecting every Q_{2} has cardinality at most $(n+\sqrt{n}) 2^{n-2}$. As one generalization of Erdős' problem, Erdős [7], Chung [5], Conder [6], and Alon et al. [2] also looked at the size of $\operatorname{ex}\left(Q_{n}, C_{2 k}\right)$, where $C_{2 k}$ is a cycle of even length.

More recently, Alon, Krech, and Szabó [1] asked how large $\operatorname{ex}\left(Q_{n}, Q_{d}\right)$ is and studied related problems. In particular, they called an edge-coloring of a hypercube with p colors such that every subcube of dimension d contains every color a d-polychromatic p-coloring. Denote by p_{d} the maximum number of colors with which it is possible to d-polychromatically color any hypercube. (Note that the value of p_{d} gives a lower bound on $\operatorname{ex}\left(Q_{n}, Q_{d}\right)$; in particular, $e\left(Q_{n}\right)\left(1-1 / p_{d}\right) \leq \operatorname{ex}\left(Q_{n}, Q_{d}\right)$.) They proved the following.

Theorem 1.

$$
\binom{d+1}{2} \geq p_{d} \geq\left\{\begin{array}{l}
\frac{(d+1)^{2}}{4} \text { if } d \text { is odd } \\
\frac{d(d+2)}{4} \text { if } d \text { is even } .
\end{array}\right.
$$

The lower bound was obtained by construction and the upper bound by a surprising application of Ramsey's theorem, one version of which states that for all r, k there exists an n such that, if the edges of a d-uniform hypergraph on at least n vertices are

[^0]colored with k colors, there exists a complete monochromatic subgraph on r vertices. See [8] for a full treatment.

Alon, Krech, and Szabó asked whether it was possible to resolve the behavior of p_{d}. We will prove that for all d, p_{d} is equal to the lower bound in Theorem 1, i.e., the following.

Theorem 2.

$$
p_{d}=\left\{\begin{array}{l}
\frac{(d+1)^{2}}{4} \text { if } d \text { is odd } \\
\frac{d(d+2)}{4} \text { if } d \text { is even }
\end{array}\right.
$$

2. Notation. We follow the notation of [1] in denoting vertices, edges, and subcubes: A vertex of Q_{n} is represented by a vector of n bits. An edge corresponding to two vertices whose vectors differ in one coordinate is represented by a bit vector with a * in that coordinate. A d-dimensional subcube D is represented by a bit vector with d^{*} 's, where the vertices of D are those vectors obtained by replacing the ${ }^{*}$'s with any combination of bits.
3. Proof of Theorem 1. For completeness, since the proof of Theorem 2 will use ideas from the proof of Theorem 1 in [1], and since the proof is very nice, we sketch it here.

Proof of Theorem 1 (lower bound). Assume that d is odd. The following $\frac{(d+1)^{2}}{4}$ coloring of Q_{n} is d-polychromatic: Color the edges with elements of $\mathbf{Z}_{\frac{d+1}{2}} \times \mathbf{Z}_{\frac{d+1}{2}}$ as follows: If an edge has a 1's to the left of its *, and $b 1$'s to the right of its *, assign it the color $\left(a\left(\bmod \frac{d+1}{2}\right), b\left(\bmod \frac{d+1}{2}\right)\right)$. For any subcube Q_{d}, find the $*$ with exactly $\frac{d-1}{2} *$'s on each side of it. Note that, for this subcube, the set of edges with this * contains all colors. The construction is the same if d is even, except a is taken mod $\frac{d}{2}$ and b is taken $\bmod \frac{d+2}{2}$, and for any subcube Q_{d} we consider the edges whose star is the $\frac{d}{2}$ th from the left.

Proof of Theorem 1 (upper bound). Suppose that we have a d-polychromatic p-coloring c of Q_{n}, with n huge. We will use Ramsey's theorem for d-uniform hypergraphs with $p^{d 2^{d-1}}$ colors. We define a $p^{d 2^{d-1}}$-coloring of the d-subsets of $[n]$. Fix an arbitrary ordering of the edges of Q_{d}. For an arbitrary subset S of the indices, define cube (S) to be the subcube whose * coordinates are at the positions of S and all other coordinates are 0 . Let S be a d-subset of $[n]$, and define the color of S to be the vector whose coordinates are the c-values of the edges of the d-dimensional subcube cube (S) (according to our fixed ordering of the edges of Q_{d}). By Ramsey's theorem, if n is large enough, there is a set $T \subseteq[n]$ of $d^{2}+d-1$ coordinates such that the color-vector is the same for any d-subset of T. Fix a set S of d particular coordinates from T : those which are the $(i d)$ th elements of T for $i=1, \ldots, d$. Any two elements of S have at least $d-1$ elements of T in between.

Call a hypercube coloring Ramsey if the color of an edge is determined by the number of 1's to the left of its * and the number of 1's to the right of its *.

Lemma 3. The coloring of cube (S) is Ramsey.
Proof. Let e_{1} and e_{2} be two edges of cube (S) such that they have the same number of 1's to the left of their respective * and the same number of 1 's to the right as well. Since there are at least $d-1$ elements in T in between each coordinate of S, it is possible for us to find a set of d coordinates $S^{\prime} \subseteq T$ and an edge e_{3} of cube $\left(S^{\prime}\right)$ such that
(i) e_{3} is the same edge when restricted to S as e_{1} and
(ii) e_{3} occupies the same position in the ordering of edges in cube $\left(S^{\prime}\right)$ as e_{2} occupies in cube (S).
Thus $c\left(e_{1}\right)=c\left(e_{3}\right)=c\left(e_{2}\right)$, and the lemma is proved.

To finish the proof of the upper bound in Theorem 1, note that there are exactly $1+2+\cdots+d=\binom{d+1}{2}$ ways to separate at most $d-1$'s by a *. By Lemma 3 , a d-polychromatic edge-coloring is not possible with more colors.

4. Proof of Theorem 2.

Lemma 4. If a d-polychromatic p-coloring exists for any n, then one of Ramseytype exists.

Proof. In the proof of the upper bound of Theorem 1, we showed that, in a sufficiently large hypercube, a Ramsey-colored d-dimensional subcube exists by applying Ramsey's theorem to a $p^{d 2^{d-1}}$-coloring of the d-subsets of the indices of $[n]$. To prove that, for a sufficiently large hypercube, a subcube of any dimension k exists with a Ramsey coloring, simply apply Ramsey's theorem to a $p^{k 2^{k-1}}$-coloring of the k-subsets of $[n]$, defined in an analogous way, and proceed in an identical fashion. Thus for any $p \leq p_{d}$, one can show the existence of a Ramsey p-colored d-polychromatic hypercube of dimension k by taking any sufficiently large p-colored d-polychromatic hypercube and applying Ramsey's theorem.

Proof of Theorem 2. Fix d. By Lemma 4, we may consider a Ramsey d polychromatic p_{d}-coloring on an arbitrarily large hypercube. Since the coloring is Ramsey, every edge belongs to some color class (a, b), where there are $a 1$'s to the left of the * and $b 1$'s to the right. It will be convenient to arrange the color classes in a triangular array, with $(0,0)$ in the first row, $(0,1)$ and $(1,0)$ in the second row, and so forth. Define the i th row to be those color classes (a, b), with $a+b=i$, and the i th diagonal to be those classes of the form (i, j) for any j. Define an $i \times j$ rectangle to be a set of color classes of the following form: $\{(a+\alpha, b+\beta): 0 \leq \alpha<j, 0 \leq \beta<i\}$, and say a rectangle R is located at the i th diagonal if i is the least diagonal that intersects R. Define a region to be all color classes contained in some consecutive rows and consecutive diagonals.

In this configuration, a d-cube includes the following color classes, from left to right: a $d \times 1$ rectangle, corresponding to the colors of edges using the leftmost *, followed by a $(d-1) \times 2$ rectangle, corresponding to the colors of edges using the second-leftmost *, etc., until a $1 \times d$ rectangle corresponding to the rightmost *. All of these rectangles cover colors in the same d rows, and they may overlap. They must come in order from left to right, however, since, e.g., if there are $a 1$'s to the left of some ${ }^{*}$, there are at least a 1's to the left of any * further to the right. Call such a sequence of rectangles a cube sequence, and denote them (left to right) by $r_{1}, r_{2}, \ldots, r_{d}$. Note that any cube sequence corresponds to color classes covered by at least one cube. See the examples in Figure 1.

Choose a set of d consecutive very long rows. By our assumption that the coloring is d-polychromatic, it is not possible to find a cube sequence in these rows where every rectangle in the sequence lacks a particular color. In particular, imagine picking a color A and scanning the rows from left to right, looking for a copy of r_{1} not containing A. If we find one, say, at diagonal d_{1}, we note that all copies of r_{1} to the left of d_{1} contain A. Continuing from left to right, we might then seek a copy of r_{2} not containing A, and if the first one we find is at diagonal d_{2}, then we note that every copy of r_{2} between d_{1} and d_{2} contains A. By continuing in this manner, we may partition the rows into at most d regions where, in the i th region, every copy of r_{i} contains A. By repeating this for the other colors, we note that each color partitions the rows into at most d regions, where, in the i th region, each copy of r_{i} contains the color. By taking the intersections of all of these regions, the rows are partitioned into at most $d \cdot p_{d}$ regions such that for each region, for every color A, there is a rectangle

Fig. 1. The triangular array of color classes and some cube sequences.
r_{A} such that every copy of r_{A} in the region contains A. In particular, since we may choose the rows as long as we like, we can find an arbitrarily long region with this property.

Now consider such a region with m diagonals, where $m \gg d$. For each color A, assign d variables, $\left\{A_{i}\right\}_{i=1}^{d}$ corresponding to the number of times A appears in the i th row in our region. Note that, if A appears in the top or bottom row, it can be contained in at most one copy of r_{A}. If it appears in the second or the $d-1$ st row, it can be contained in at most two copies of r_{A}, and so forth. There are at least $m-d$ copies of r_{A} in the region, and thus

$$
A_{1}+2 A_{2}+3 A_{3}+\cdots+\left\lceil\frac{d}{2}\right\rceil A_{\left\lceil\frac{d}{2}\right\rceil}+\cdots+2 A_{d-1}+A_{d} \geq m-d
$$

Since $A_{i}+B_{i}+\cdots=m$, if we add up these equations for each color, we get

$$
m+2 m+3 m+\cdots+\left\lceil\frac{d}{2}\right\rceil m+\cdots+2 m+m \geq p_{d}(m-d)
$$

The left-hand side is equal to $\frac{(d+1)^{2}}{4} m$ if d is odd and $\frac{d(d+2)}{4} m$ if d is even. Divide both sides by m, and note that $(m-d) / m$ can be as close to 1 as desired to obtain the result.

This method may be used to immediately give other similar results. For instance, say two edges in a subcube belong to the same layer if their vector representation contains the same number of 1's. Then, if $q_{d, k}(k \leq d)$ is the maximum number such that any Q_{n} can be edge-colored so that the k th layer of any sub- Q_{d} contains all colors, then $q_{d,\lceil d / 2\rceil}=\lceil d / 2\rceil$ (e.g., $q_{3,2}=2$).

Acknowledgments. The author thanks Oleg Pikhurko and Peter Lumsdaine for helpful discussions and Tibor Szabó and an anonymous referee for comments on the paper.

REFERENCES

[1] N. Alon, A. Krech, and T. Szabó, Turán's theorem in the hypercube, SIAM J. Discrete Math., 21 (2007), pp. 66-72.
[2] N. Alon, R. Radoic̆ić, B. Sudakov, and J. Vondrák, A Ramsey-type result for the hypercube, J. Graph Theory, 53 (2006), pp. 196-208.
[3] A. Bialostocki, Some Ramsey type results regarding the graph of the n-cube, Ars Combin., 16-A (1983), pp. 39-48.
[4] P. Brass, H. Harborth, and H. Neinborg, On the maximum number of edges in a C_{4}-free subgraph of Q_{n}, J. Graph Theory, 19 (1995), pp. 17-23.
[5] F. Chung, Subgraphs of a hypercube containing no small even cycles, J. Graph Theory, 16 (1992), pp. 273-286.
[6] M. Conder, Hexagon-free subgraphs of hypercubes, J. Graph Theory, 17 (1993), pp. 477-479.
[7] P. Erdős, Some Problems in Graph Theory, Combinatorial Analysis and Combinatorial Number Theory, in Graph Theory and Combinatorics, B. Bollobás, ed., Academic Press, New York, 1984, pp. 1-17.
[8] R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, 2nd ed., John Wiley \& Sons, New York, 1990.

[^0]: *Received by the editors January 15, 2007; accepted for publication (in revised form) September 6, 2007; published electronically March 20, 2008.
 http://www.siam.org/journals/sidma/22-2/68014.html
 ${ }^{\dagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 (offner@cmu.edu).

