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Abstract. Alon, Krech, and Szabó [SIAM J. Discrete Math., 21 (2007), pp. 66–72] called an
edge-coloring of a hypercube with p colors such that every subcube of dimension d contains every
color a d-polychromatic p-coloring. Denote by pd the maximum number of colors with which it is
possible to d-polychromatically color any hypercube. We find the exact value of pd for all values
of d.
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1. Introduction. Denote by Qn the n-dimensional hypercube, and, for fixed
graphs G,H, denote by ex(G,H) the maximum number of edges in a subgraph of
G which does not contain a copy of H. Problems about this quantity are called
Turán-type problems, after P. Turán, who gave an exact value for ex(G,H) when G
and H are cliques. There is a rich history of studying Turán-type problems where
G = Qn. To cite some well-known examples, Erdős [7] conjectured that ex(Qn, Q2) =
( 1
2 + o(1))e(Qn). Currently it is known that

1

2
(n +

√
n)2n−1 ≤ ex(Qn, Q2) � .623e(Qn).

The lower bound is due to Brass, Harborth, and Neinborg [4] and the upper bound
to Chung [5]. Bialostocki [3] proved that any subgraph of the cube not containing Q2

as a subgraph and intersecting every Q2 has cardinality at most (n +
√
n)2n−2. As

one generalization of Erdős’ problem, Erdős [7], Chung [5], Conder [6], and Alon et
al. [2] also looked at the size of ex(Qn, C2k), where C2k is a cycle of even length.

More recently, Alon, Krech, and Szabó [1] asked how large ex(Qn, Qd) is and stud-
ied related problems. In particular, they called an edge-coloring of a hypercube with p
colors such that every subcube of dimension d contains every color a d-polychromatic
p-coloring. Denote by pd the maximum number of colors with which it is possible to
d-polychromatically color any hypercube. (Note that the value of pd gives a lower
bound on ex(Qn, Qd); in particular, e(Qn)(1−1/pd) ≤ ex(Qn, Qd).) They proved the
following.

Theorem 1. (
d + 1

2

)
≥ pd ≥

{
(d+1)2

4 if d is odd,
d(d+2)

4 if d is even.

The lower bound was obtained by construction and the upper bound by a surpris-
ing application of Ramsey’s theorem, one version of which states that for all r, k there
exists an n such that, if the edges of a d-uniform hypergraph on at least n vertices are
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colored with k colors, there exists a complete monochromatic subgraph on r vertices.
See [8] for a full treatment.

Alon, Krech, and Szabó asked whether it was possible to resolve the behavior of
pd. We will prove that for all d, pd is equal to the lower bound in Theorem 1, i.e., the
following.

Theorem 2.

pd =

{
(d+1)2

4 if d is odd,
d(d+2)

4 if d is even.

2. Notation. We follow the notation of [1] in denoting vertices, edges, and sub-
cubes: A vertex of Qn is represented by a vector of n bits. An edge corresponding to
two vertices whose vectors differ in one coordinate is represented by a bit vector with
a * in that coordinate. A d-dimensional subcube D is represented by a bit vector with
d *’s, where the vertices of D are those vectors obtained by replacing the *’s with any
combination of bits.

3. Proof of Theorem 1. For completeness, since the proof of Theorem 2 will
use ideas from the proof of Theorem 1 in [1], and since the proof is very nice, we
sketch it here.

Proof of Theorem 1 (lower bound). Assume that d is odd. The following (d+1)2

4 -
coloring of Qn is d-polychromatic: Color the edges with elements of Z d+1

2
× Z d+1

2
as

follows: If an edge has a 1’s to the left of its *, and b 1’s to the right of its *, assign it
the color (a (mod d+1

2 ), b (mod d+1
2 )). For any subcube Qd, find the * with exactly

d−1
2 *’s on each side of it. Note that, for this subcube, the set of edges with this *

contains all colors. The construction is the same if d is even, except a is taken mod
d
2 and b is taken mod d+2

2 , and for any subcube Qd we consider the edges whose star

is the d
2 th from the left.

Proof of Theorem 1 (upper bound). Suppose that we have a d-polychromatic
p-coloring c of Qn, with n huge. We will use Ramsey’s theorem for d-uniform hyper-

graphs with pd2
d−1

colors. We define a pd2
d−1

-coloring of the d-subsets of [n]. Fix an
arbitrary ordering of the edges of Qd. For an arbitrary subset S of the indices, define
cube(S) to be the subcube whose * coordinates are at the positions of S and all other
coordinates are 0. Let S be a d-subset of [n], and define the color of S to be the
vector whose coordinates are the c-values of the edges of the d-dimensional subcube
cube(S) (according to our fixed ordering of the edges of Qd). By Ramsey’s theorem,
if n is large enough, there is a set T ⊆ [n] of d2 + d − 1 coordinates such that the
color-vector is the same for any d-subset of T . Fix a set S of d particular coordinates
from T : those which are the (id)th elements of T for i = 1, . . . , d. Any two elements
of S have at least d− 1 elements of T in between.

Call a hypercube coloring Ramsey if the color of an edge is determined by the
number of 1’s to the left of its * and the number of 1’s to the right of its *.

Lemma 3. The coloring of cube(S) is Ramsey.
Proof. Let e1 and e2 be two edges of cube(S) such that they have the same number

of 1’s to the left of their respective * and the same number of 1’s to the right as well.
Since there are at least d − 1 elements in T in between each coordinate of S, it is
possible for us to find a set of d coordinates S′ ⊆ T and an edge e3 of cube(S′) such that

(i) e3 is the same edge when restricted to S as e1 and
(ii) e3 occupies the same position in the ordering of edges in cube(S′) as e2 occu-

pies in cube(S).
Thus c(e1) = c(e3) = c(e2), and the lemma is proved.
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To finish the proof of the upper bound in Theorem 1, note that there are exactly
1 + 2 + · · · + d =

(
d+1
2

)
ways to separate at most d − 1 1’s by a *. By Lemma 3, a

d-polychromatic edge-coloring is not possible with more colors.

4. Proof of Theorem 2.
Lemma 4. If a d-polychromatic p-coloring exists for any n, then one of Ramsey-

type exists.
Proof. In the proof of the upper bound of Theorem 1, we showed that, in a suffi-

ciently large hypercube, a Ramsey-colored d-dimensional subcube exists by applying

Ramsey’s theorem to a pd2
d−1

-coloring of the d-subsets of the indices of [n]. To prove
that, for a sufficiently large hypercube, a subcube of any dimension k exists with a

Ramsey coloring, simply apply Ramsey’s theorem to a pk2k−1

-coloring of the k-subsets
of [n], defined in an analogous way, and proceed in an identical fashion. Thus for any
p ≤ pd, one can show the existence of a Ramsey p-colored d-polychromatic hypercube
of dimension k by taking any sufficiently large p-colored d-polychromatic hypercube
and applying Ramsey’s theorem.

Proof of Theorem 2. Fix d. By Lemma 4, we may consider a Ramsey d-
polychromatic pd-coloring on an arbitrarily large hypercube. Since the coloring is
Ramsey, every edge belongs to some color class (a, b), where there are a 1’s to the left
of the * and b 1’s to the right. It will be convenient to arrange the color classes in a
triangular array, with (0, 0) in the first row, (0, 1) and (1, 0) in the second row, and so
forth. Define the ith row to be those color classes (a, b), with a + b = i, and the ith
diagonal to be those classes of the form (i, j) for any j. Define an i × j rectangle to
be a set of color classes of the following form: {(a + α, b + β) : 0 ≤ α < j, 0 ≤ β < i},
and say a rectangle R is located at the ith diagonal if i is the least diagonal that
intersects R. Define a region to be all color classes contained in some consecutive
rows and consecutive diagonals.

In this configuration, a d-cube includes the following color classes, from left to
right: a d × 1 rectangle, corresponding to the colors of edges using the leftmost *,
followed by a (d − 1) × 2 rectangle, corresponding to the colors of edges using the
second-leftmost *, etc., until a 1 × d rectangle corresponding to the rightmost *. All
of these rectangles cover colors in the same d rows, and they may overlap. They
must come in order from left to right, however, since, e.g., if there are a 1’s to the
left of some *, there are at least a 1’s to the left of any * further to the right. Call
such a sequence of rectangles a cube sequence, and denote them (left to right) by
r1, r2, . . . , rd. Note that any cube sequence corresponds to color classes covered by at
least one cube. See the examples in Figure 1.

Choose a set of d consecutive very long rows. By our assumption that the coloring
is d-polychromatic, it is not possible to find a cube sequence in these rows where every
rectangle in the sequence lacks a particular color. In particular, imagine picking a color
A and scanning the rows from left to right, looking for a copy of r1 not containing
A. If we find one, say, at diagonal d1, we note that all copies of r1 to the left of
d1 contain A. Continuing from left to right, we might then seek a copy of r2 not
containing A, and if the first one we find is at diagonal d2, then we note that every
copy of r2 between d1 and d2 contains A. By continuing in this manner, we may
partition the rows into at most d regions where, in the ith region, every copy of ri
contains A. By repeating this for the other colors, we note that each color partitions
the rows into at most d regions, where, in the ith region, each copy of ri contains the
color. By taking the intersections of all of these regions, the rows are partitioned into
at most d · pd regions such that for each region, for every color A, there is a rectangle
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Fig. 1. The triangular array of color classes and some cube sequences.

rA such that every copy of rA in the region contains A. In particular, since we may
choose the rows as long as we like, we can find an arbitrarily long region with this
property.

Now consider such a region with m diagonals, where m � d. For each color A,
assign d variables, {Ai}di=1 corresponding to the number of times A appears in the
ith row in our region. Note that, if A appears in the top or bottom row, it can be
contained in at most one copy of rA. If it appears in the second or the d− 1st row, it
can be contained in at most two copies of rA, and so forth. There are at least m− d
copies of rA in the region, and thus

A1 + 2A2 + 3A3 + · · · +
⌈
d

2

⌉
A� d

2 � + · · · + 2Ad−1 + Ad ≥ m− d.

Since Ai + Bi + · · · = m, if we add up these equations for each color, we get

m + 2m + 3m + · · · +
⌈
d

2

⌉
m + · · · + 2m + m ≥ pd(m− d).

The left-hand side is equal to (d+1)2

4 m if d is odd and d(d+2)
4 m if d is even. Divide

both sides by m, and note that (m − d)/m can be as close to 1 as desired to obtain
the result.

This method may be used to immediately give other similar results. For instance,
say two edges in a subcube belong to the same layer if their vector representation
contains the same number of 1’s. Then, if qd,k (k ≤ d) is the maximum number such
that any Qn can be edge-colored so that the kth layer of any sub-Qd contains all
colors, then qd,�d/2� = �d/2� (e.g., q3,2 = 2).
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J. Graph Theory, 53 (2006), pp. 196–208.

[3] A. Bialostocki, Some Ramsey type results regarding the graph of the n-cube, Ars Combin.,
16-A (1983), pp. 39–48.

[4] P. Brass, H. Harborth, and H. Neinborg, On the maximum number of edges in a C4-free
subgraph of Qn, J. Graph Theory, 19 (1995), pp. 17–23.

[5] F. Chung, Subgraphs of a hypercube containing no small even cycles, J. Graph Theory, 16
(1992), pp. 273–286.

[6] M. Conder, Hexagon-free subgraphs of hypercubes, J. Graph Theory, 17 (1993), pp. 477–479.
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